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Summary

During the 1950s and 1960s the problem of integrating singular distributions on smooth
manifolds arose in control theory. From this research the concept of singular foliations
arose. Singular foliations are partitioning’s of manifolds into smoothly immersed con-
nected submanifolds that we call the leaves of the foliation. They appear naturally in
the study of differential geometry: Lie group actions, symplectic foliations on Poisson
manifolds,... An important difference with regular foliations is that the dimension of the
leaves may vary. A classic result from differential geometry is Frobenius’s theorem. It
states that when given a foliation, one can associate to it a constant rank distribution.
From this distribution one gets a submodule of the vectorfields on the manifold by taking
(global) compactly supported sections of the distribution. Furthermore Frobenius’s the-
orem ensures that the geometric point of view i.e., the partitioning into leaves, and the
algebraic point of view i.e., through the submodule of the vector fields, are equivalent. For
singular foliations the situation is more complicated. In the singular case the algebraic
point of view carries inherently more information. This is due to the fact that when given
a partitioning into leaves, there may be infinitely many choices of submodules that induce
this partitioning. In this context the problem of defining invariants to singular foliations
arose. In [AS09] Androulidakis and Skandalis gave two such invariants: the isotropy Lie
algebra (a more local invariant) and the holonomy groupoid (which can give more global
information). The aim of this thesis is to introduce the necessary concepts and results
to understand a recently discovered invariant by S. Lavau, C. Laurent-Gengoux and T.
Strobl in [LGLS20]. Throughout the whole thesis we will provide more detailed proofs
from the results in [LGLS20] than the ones found in the original publication. In their
work they constructed the universal Lie ∞-algebroid of a singular foliation. This object
involves constructing a ‘higher structure’ on a so called geometric resolution of a singular
foliation. By this we mean constructing ‘higher brackets’ between sections of a particular
complex of vector bundles associated to the foliation, in such a way that these brackets
satisfy ‘higher Jacobi identities’. Our main focus will be on defining all the involved ob-
jects and necessary lemmas, propositions and theorems following, for the most part, our
main source [LGLS20]. Once we have defined all the necessary concepts we will shift our
focus to answering the following question: ‘can all rank r singular foliations be locally
induced by a rank r Lie algebroid?’. For this we again follow our main source [LGLS20].
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Introduction

Foliations
Regular foliations are classical objects of study in differential geometry. They are treated
in most introductory texts on differential geometry, see for instance [Lee12]. A foliation
F describes the partition of a smooth manifold M into smoothly immersed disjoint sub-
manifolds, called leaves, of the same dimension that satisfy the foliation property (that
is they fit together nicely like illustrated in figure 1). An important result in the study
of regular foliations is Frobenius’s theorem: it allows to couple a distribution D ⊂ TM
to a foliation F and from this distribution we also get a submodule Γc(D) ⊂ X(M) that
completely describes the foliation F . All of these results will be described in the first
section of chapter 1 of this thesis.

Figure 1: Example of a regular foliation of R3 by hypersurfaces.

In the 1950s and 1960s a lot of work was done in the field of control theory. In par-
ticular the study of the solvability of first-order differential equations under the influence
of certain external parameters. It turned out that this can be modelled by considering
the flow of a family of vector fields on a smooth manifold. In his work from 1963 [Her63]
R. Hermann described a relation between control theory and differential geometry: he
worked on the problem of integrating a family of vector fields on a manifold M into a
singular foliation. A singular foliation is a partition of a manifold into leaves but unlike
the regular case we do not require the leaves to have a fixed dimension.

Over the years this sparked more research into integrability problems of families of vec-
tor fields and their associated generalized distributions (these are distributions D ⊂ TM
for which dimDm need not to be constant for all m ∈ M). Some prominent figures in
the development of this research are Hermann, Nagano, Stefan and Sussmann. For a
description of the historical development of this research we refer the reader to [Lav18].
The main results of this research were some Frobenius like theorems which give conditions
under which a family of vector fields or a generalized distribution is integrable.

ix



x Introduction

Nowadays singular foliations are objects studied purely in the setting of differential
geometry as they arise frequently: the action of a Lie group G on a smooth manifold M ,
the symplectic foliation on a Poisson manifold,... Because of the dimension jump/drop
that may occur for singular foliations their description becomes quite complicated. For
regular foliations we can take a strictly geometric point of view or an equivalent algebraic
point of view by the module F = Γc(D), this is not possible for singular foliations. For
this class of foliations an algebraic description will carry more information than just the
geometric picture (see for instance [AS09]). In the second section of the thesis, we will
describe the two main definitions used in the literature today. Firstly, we will look at the
point of view [AS09], [AZ13] take (not an exhaustive list of works that use this definition).
There a singular foliation is considered as being a locally finitely generated involutive sub-
module F ⊂ Xc(M). After this we will explore the point of view [LGLS20] takes; here a
singular foliation is considered as being a locally finitely generated involutive subsheaf of
X (the sheaf of vector fields on a manifold). We will also show that these two notions are
equivalent by following the arguments given in [Gar19].

Finally, we will also explain geometric resolutions of singular foliations. These are
important objects for the further development of the material. In this section we will
give a detailed proof of the first point in proposition 2.3 in [LGLS20]. The proof of this
particular point is given without details in [LGLS20]. For this purpose, we will give
a proof of Hilbert’s syzygy theorem following and adapting the argument in [Har97].
Furthermore, we will give a proof of lemma 3.19 in [LGLS20]. The proof of this lemma
is left out in the original publication but is used at several point throughout the paper
[LGLS20].

Higher Structures and the Universal Lie ∞-algebroid of a Singu-
lar Foliation
Throughout the years it became clear that singular foliations are not as well-behaved as
their regular counterparts. Hence the need to define certain invariants associated to them
arose. In their work [AS09] Androulidakis and Skandalis mentioned two first invariants:
the isotropy Lie algebra gm and the holonomy groupoid. Both of these can give some
geometrical information of the foliation.

In this thesis we will explore a recently discovered invariant, the universal Lie ∞-
algebroid of a singular foliation, it was first proposed in Sylvain Lavau’s PhD thesis [Lav16]
and recently published by T. Strobl, S. Lavau and C. Laurent-Gengoux in [LGLS20]. Lie
∞-algebroids can be seen as a combination of two objects: a Lie algebroid and an L∞-
algebra. Lie algebroids are quite familiar objects in differential geometry. A Lie algebroid
is a vector bundle A→ M for which Γ(A) is a Lie algebra together with an anchor map
ρ : A → TM that satisfies a Leibniz identity and hence also is a Lie algebra homomor-
phism. On the other hand L∞-algebras where first studied in theoretical physics while
studying string theory, supergravity, quantum field theory,... see for instance: [Sta92],
[Zwi93], [KS06] and [LS93]. These objects consist of a graded vector space E = ⊕i∈ZE−i
and a family of skew-symmetric brackets ({· · · }k)k≥1 called the k-ary brackets that satisfy
so-called ‘higher Jacobi identities’. Lie ∞-algebroids are then a combination of these two
notions; both Lie∞-algebroids and L∞-algebras will be introduced in chapter 2. Here we
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will also explain the duality between Lie∞-algebroids and objects from graded geometry
called NQ-manifolds. Using this duality we may view Lie∞-algebroids as NQ-manifolds
(E,Q).

In chapter 3 we will then give one of the main results of [LGLS20] that is the following
theorem.

Theorem (Theorem 2.7 in [LGLS20]). Let F be a singular foliation on a manifold M
which admits a geometric resolution (E, d, ρ). Then there exists a universal Lie ∞-
algebroid of F , the linear part of which is the geometric resolution.

Throughout this chapter we will provide some small details and calculations to prove
the statements. These where not always given completely in [LGLS20]. There also is a
‘uniqueness’ result proven in [LGLS20]. The most interesting consequence of this unique-
ness result is that any two universal Lie ∞-algebroids of a singular foliation F are homo-
topy equivalent and any two such homotopy equivalences are homotopic. This allows one
to essentially ‘guess’ a Lie ∞-algebroid structure on any geometric resolution of F and
immediately conclude this is the universal one.

From the theorem above it also follows that we can only look at a special class of
singular foliations, namely the ones that admit geometric resolutions. In chapter 3 we
will also explain the main steps in the proof of the existence result which will be considered
as a deformation problem. We will leave out the very technical details and solely focus
on how one solves the associated deformation problem.

The geometry of singular foliations
In the final chapter we will then use the theory of universal Lie ∞-algebroids to answer
the following question, following section 4 in [LGLS20]:

does there always exist a Lie algebroid of minimal rank which locally induces the
foliation F?

For this we exploit cohomologies that arise out of the universal Lie ∞-algebroid.
In particular we will focus on the isotropy L∞-algebra and show that the isotropy Lie
algebra gm from [AS09] can be recovered from this object. In this chapter we will provide
more detailed proofs of lemma 4.13, proposition 4.27 and proposition 4.29 in [LGLS20] by
providing the necessary calculations which are left out in the original publication. We will
end this chapter by giving an original example of a foliation which answers the question
above negatively.
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Chapter 1

Singular Foliations

In this chapter we will introduce the notion of a singular foliation. In the first section we
will briefly recall regular foliations. Our focus will be on ending with Frobenius’s theorem
which is an important result in the study of regular foliations.

In the second section we will introduce singular foliations. This kind of foliation allows
for the dimension of the leaves to jump. While for regular foliations a geometric point
of view and an algebraic point of view are equivalent it turns out an algebraic approach
is preferred for singular foliations. We will introduce singular foliations in the two main
ways they are used in the literature: as modules and as sheaves.

After laying the foundations through definitions we will then explain several associated
constructions that are necessary for the next chapters.

1.1 Regular Foliations
In this section we will first review some material about regular foliations. It is based on
Chapter 19 in Lee’s book [Lee12] to which we also refer for all results left without proof.

1.1.1 Distributions and Involutivity
Let M be a smooth manifold.
Definition 1.1.1 ([Lee12]). A distribution on M of rank k is a rank k subbundle of
the tangent bundle TM . It is called a smooth distribution if it is smooth subbundle.

Perhaps the most intuitive way to think about distributions is by specifying for each
point p ∈ M a k-dimensional linear subspace Dp ⊂ TpM and then letting D = ∪p∈MDp.
From the local frame criterion for subbundles it then follows that D is a smooth distri-
bution if and only if each point p ∈M has a neighborhood U on which there are smooth
vector fields X1, . . . , Xk : U → TM such that X1(q), . . . , Xk(q) for a basis for Dq for
each q ∈ U . We then say that the distribution D is locally spanned by the vector fields
X1, . . . , Xk.
Definition 1.1.2 ([Lee12]). Assume that D ⊂ TM is a smooth distribution. A nonempty
immersed submanifold N ⊂M is called an integral manifold of D if TpN = Dp at each
point p ∈ N .

1



2 CHAPTER 1. SINGULAR FOLIATIONS

Example 1.1.3. ConsiderM = R3 with coordinates x, y, z. Now consider the distribution
D = 〈 ∂

∂x
, ∂
∂y
〉. The integral manifolds to this distribution are the planes {z = constant} ⊂

R3. �

The following example shows that not all distributions have integral manifolds.

Example 1.1.4. Consider again R3 with coordinates x, y, z and the distribution spanned
by the following two vector fields

X = ∂

∂x
+ y

∂

∂z
, Y = ∂

∂y
.

This distribution has no integral manifolds: suppose N is an integral manifold through
the origin, both X and Y are tangent to N and any integral curve of X and Y that starts
in N has to stay in N for short time. Because the x-axis is an integral curve of X, the
integral manifold N has to contain a small part of it. Also, for sufficiently small x, it
contains an open subset of the line parallel to the y-axis and passing through the point
(x, 0, 0) because this corresponds to an integral curve of Y . Therefore, N contains an
open subset of the xy-plane. However, for any point p not on the x-axis the tangent plane
to the xy-plane at that point is not equal to Dp. Therefore, no such integral manifold can
exist. �

We now continue with two definitions

Definition 1.1.5 ([Lee12]). Suppose D is a smooth distribution on M . We say that D is
involutive if the Lie bracket of two smooth local sections is again a smooth local section
of D.

If D is a smooth distribution on M then one can show that D is involutive if and only
if Γ(D) is a Lie subalgebra of X(M).

Definition 1.1.6 ([Lee12]). A smooth distribution D on M is said to be integrable if
each point of M is contained in an integral manifold of D.

1.1.2 Frobenius’s Theorem
Definition 1.1.7 ([Lee12]). Given a rank-k distribution D ⊂ TM we say that a coordi-
nate chart (U,ϕ) on M is a flat chart for D if ϕ(U) is a cube in Rn and at points in U ,
D is spanned by the first k coordinate vector fields ∂

∂x1
, . . . , ∂

∂xk
. In any such chart each

slice of the form xk+1 = ck+1, . . . , cn = cn for constants ck+1, . . . , cn is an integral manifold
of D.

Note that the definition above captures the ‘nicest possible way’ for integral manifolds
to fit together: locally they all fit together like parallel subspaces of Rn, this is illustrated
in figure 1.1.

Definition 1.1.8 ([Lee12]). Suppose D ⊂ TM is a distribution then we call it com-
pletely integrable if there exists a flat chart for D in a neighborhood of each point of
M .
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Figure 1.1: Flat chart for a distribution (mind the slightly different notation compared
to definition 1.1.7), source [Lee12]

Note that we have the following sequence of implications

completely integrable⇒ integrable⇒ involutive.

The Frobenius’s theorem shows that these are in fact equivalences.

Theorem 1.1.9. (Frobenius’s Theorem) Every involutive distribution is completely inte-
grable.

For a proof see the proof of theorem 19.12 in [Lee12]

1.1.3 Foliations
We now come to the notion of a foliation; it captures the behavior of ‘dividing up’ a
smooth manifold into k-dimensional submanifolds that fit together in a nice way.

Definition 1.1.10 ([Lee12]). Let M be a smooth n-manifold and let F be any collection
of k-dimensional submanifolds of M . A smooth chart (U,ϕ) for M is said to be flat for
F if ϕ(U) is a cube in Rn and each submanifold in F intersects U in either the empty set
or a countable union of k-dimensional slices of the form xk+1 = ck+1, . . . , xn = cn.

This concept is illustrated nicely in figure 1.2, this figure uses different notation (X
corresponds to our ϕ and U is not necessarily mapped to a cube) but the idea is still clear.

Definition 1.1.11 ([Lee12]). We define a regular foliation of dimension k on M to
be a collection F of disjoint, connected, nonempty, immersed k-dimensional submanifolds
of M that we call the regular leaves of the foliation, whose union is M and such that
in a neighborhood of each point p ∈M there exists a flat chart for F .

In the above definition we emphasize the word regular so there does not arise any
confusion later when we will start to talk about foliations by which we will mean singular
foliations (to be defined in due course).

We will now provide some examples of regular foliations.
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Figure 1.2: Geometrical illustration of flat chart as defined in definition 1.1.10 (again
mind the different notation), source Wikipedia

Example 1.1.12 (Example 19.18 in [Lee12]). Let M and N be connected smooth mani-
folds then the collection F = {M×{q} | q ∈ N} forms a foliation of the product manifold
M × N . A particular example of this is when we consider the torus T 2 = S1 × S1. We
can now form two collections of submanifolds:

F1 = {S1 × {q} | q ∈ S1}
F2 = {{p} × S1 | p ∈ S1}.

They form two different foliations of the torus as shown in figure 1.3, here F1 corresponds
to picture (a) while F2 corresponds to (b).

Figure 1.3: Foliations of the torus T 2 from example 1.1.12 , source [Lee12]

�

Example 1.1.13 (Example 19.18(e) in [Lee12]). There is another interesting example
of a foliation on the torus with 1-dimensional leaves called the Kronecker foliation. It
consists of the images of all curves of the form

γθ(t) =
(
eit, ei(αt+θ)

)
,

as θ ranges over R. If α ∈ Q each leaf is an embedded circle, if α ∈ R \ Q each leaf is
dense. An illustration of this is given in figure 1.4. �

The global Frobenius’s theorem now establishes a one-to-one correspondence between
involutive distributions on the one hand and foliations on the other.
Theorem 1.1.14 (Global Frobenius’s Theorem). Let D be an involutive distribution on
a smooth manifold M . The collection of all maximal connected integral manifolds of D
forms a foliation of M .

For a proof we refer to the proof of theorem 19.21 in [Lee12].



1.2. SINGULAR FOLIATIONS 5

Figure 1.4: Foliation of the torus T 2 from example 1.1.13, source [Lee12]

1.2 Singular Foliations
This section is based on the book by Dufour and Zung (see section 1.2 [DN05]), Alfonso
Garmendia’s PhD thesis [Gar19], the paper by Laurent-Gengoux, Lavau and Strobl (see
section 3.1 in [LGLS20]), the paper by Androulidakis and Zambon (see [AZ13]) and the
paper by Androulidakis and Skandalis (see [AS09]). It will contain the basic definitions
and examples of singular foliations which will be the central object of the thesis. There are
two main definitions in use for singular foliations and we will explain both of them: the
first one considers singular foliations as being finitely generated involutive submodules of
the compactly supported vector fields Xc(M), the other one considers singular foliations
as sheaves. We will proceed by first explaining the first definition.

Throughout this section it will be assumed that M is a smooth (real) manifold unless
stated otherwise.

1.2.1 Singular Foliations Through Distributions and Submod-
ules

By a Stefan-Sussman singular foliation we mean a partition F = {Fα}α∈A of a manifold
M into a disjoint union of smoothly immersed connected submanifolds, which we call the
leaves of the foliation, which satisfy the local foliation property at each point p ∈M . This
means that when we denote by Fp the leaf that contains p, by d the dimension of Fp and by
m the dimension of M then there is a smooth local chart of M with coordinates y1, . . . , ym
on a neighborhood U of p with U = {−ε < y1 < ε,−ε < y2 < ε, . . . ,−ε < ym < ε}. In
such a way that the d-dimensional disk {yd+1 = · · · = ym = 0} coincides with the path
connected component of the intersection Fp ∩ U . Furthermore each d-dimensional disk
{yd+1 = cd+1, . . . , ym = cm} (with the ci ∈ R) is wholly contained in some leaf Fα of F .
Like for regular foliations we begin by considering some type of distribution.

Definition 1.2.1 ([DN05]). A singular distribution on a manifold M is the assignment,
to each point x ∈M , of a vector subspace Dx of the tangent space TxM . The dimension
of Dx may depend on x.

Example 1.2.2. Let F be a Stefan-Sussman singular foliation like explained above then
it has a natural associated tangent distribution DF . This distribution is defined at each
x by taking the tangent space DFx to the leaf of F which contains x, at x. �
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Definition 1.2.3 ([DN05]). We call a singular distribution D smooth if for all p ∈ M
and any X0 ∈ Dp, there exists a smooth vector field X defined in a neighborhood U of p
which is tangent to the distribution: X(y) ∈ Dy for all y ∈ U and it extends X0 in the
sense that X0 = X(p). If the dimension of Dp does not depend on p we say that D is a
smooth regular distribution

From now on when we talk about distributions on a manifold, we see them in the
sense of definition 1.2.3. As explained in section 1.2.1 of [Lav16] an equivalent way of
saying that a distribution is smooth is by saying that there exists (a possibly infinite)
family of vector fields {Xk}k∈I such that for all y ∈ U we have that Dy = span{Xk(y)}.
In [DLPR10] it is shown however that the generating family of vector fields can always be
chosen to be finite. An important remark to be made here is that this does not imply that
the C∞(M)-module of sections Γ(D) is finitely generated. This is shown in section 5 of
[DLPR10] where they propose the following counterexample (there are technical details
involved for which we refer to the original publication):

Example 1.2.4. Define the vector field X = χ(x) ∂
∂x

on M = R with the function χ a
rapidly vanishing function in a neighborhood of the origin, for example

χ(x) =

e−
1
x for x > 0

0 for x ≤ 0
,

then the associated distribution D looks like

Dx =

TxR for x > 0
0 for x ≤ 0

.

One can show (see [DLPR10] proposition 5.3) that Γ(D) is not finitely generated in a
neighborhood of the origin.

�

Definition 1.2.5 ([DN05]). The distribution D is called locally finitely generated if
for every point p there exists a neighborhood U such that the C∞(U)-module ΓU(D) is
finitely generated.

Definition 1.2.6 ([DN05]). Given a distribution D on a manifold M an integral sub-
manifold is a connected immersed submanifold N of M such that for all y ∈ N the
tangent space TyN is a subspace of Dy. We call it a maximal integral submanifold when
it is not contained in any other integral submanifold. The maximum dimension of the
tangent space to y ∈ N is exactly the dimension of Dy.

Notice the resemblance with the notion of integral manifold above. This time the
situation is more complicated because of the possibility that the dimension varies. When
we consider a smooth regular distribution as defined above we just recover the definition
from the previous section.

Definition 1.2.7 ([DN05]). A distribution D on M is called integrable when each p ∈M
is contained in a maximal integral manifold of maximum dimension of D.

The following example shows that when considering distributions that are possibly
singular, Frobenius’s theorem fails.
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Example 1.2.8. Define the following distribution on R2 with coordinates x, y

D(p,q) =

T(p,q)R2 if p > 0,
〈 ∂
∂x
〉 if p ≤ 0.

Sections of this distribution consist of vector fields of the form X = f ∂
∂x

+ g ∂
∂y

where
g(x, y) = 0 when x ≤ 0. Now also consider Y = f̃ ∂

∂x
+ g̃ ∂

∂y
to be a section of D then the

Lie bracket between X and Y is given by

[X, Y ] =
(
f
∂f̃

∂x
− f̃ ∂f

∂x
− g̃ ∂f

∂y
+ g

∂f̃

∂y

)
∂

∂x
+
(
f
∂g̃

∂x
− f̃ ∂g

∂x
+ g

∂g̃

∂y
− g̃ ∂g

∂y

)
∂

∂y
.

Now clearly when g(x, y) = 0 and g̃(x, y) = 0 when x ≤ 0. We also have that

∂g̃

∂x
− f̃ ∂g

∂x
+ g

∂g̃

∂y
− g̃ ∂g

∂y
= 0,

when x ≤ 0 so we get another section ofD. This shows thatD is an involutive distribution.
We now argue that it is not integrable. On the right halve plane x > 0 we have that the
integral submanifold is the open half-plane. For x < 0 we have that the leaves are
horizontal because their tangent space is spanned by ∂

∂x
. This still holds for x = 0 and so

the leaves are the horizontal rays. When we consider these rays as subspaces of R they
are not open (the right end is closed) and hence they are not submanifolds. �

The example above thus illustrates that we need some other extra conditions for a
singular distribution to be integrable. Important progress on this question was made by
Nagano (for the analytical case), Hermann, Lobry, Stefan, Sussmann and others. The
road to these results is quite a bumpy one and many (wrong) results were published. For
a chronological exposition and resume of important results in this domain we refer to
[Lav18]. The first proper result in the smooth case is due to Hermann and bears his name
today.

Theorem 1.2.9. (Hermann, 1962) Any finitely generated submodule of X(M) defines an
integrable distribution if it is involutive.

Remark 1.2.10. It deserves to be noted that the converse of Hermann’s theorem is false.
Indeed, consider the following counterexample due to Balan (it was contained in unpub-
lished notes, we refer to [Lav18] for this example). Consider M = R2 and define the
vector fields

X = ϕ(x, y) ∂
∂x

Y = (x2 + y2) ∂
∂y
,

where the function ϕ(x, y) is defined as

ϕ(x, y) =

e
− 1

x2+y2 for (x, y) 6= (0, 0),
0 for (x, y) = (0, 0).
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Let F = 〈X, Y 〉C∞(M) then the distribution that D that F induces is given by

D(x,y) =

T(x,y)R2 for (x, y) 6= (0, 0)
0 for (x, y) = (0, 0).

Obviously, this distribution is integrable: one maximal integral submanifold of dimen-
sion 2 i.e., the plane without the origin and the origin itself as 0-dimensional integral
submanifold. Now choose (x, y) 6= (0, 0) then a small computation shows that

[X, Y ] (x, y) = 2xϕ(x, y)
x2 + y2X −

2y
x2 + y2Y.

Now one can show that the function (x, y) 7→ 2xϕ(x,y)
x2+y2 is smooth at the origin (this is due

to the rapid vanishing of ϕ as (x, y) approaches the origin). However, when considering
the function (x, y) 7→ f(x, y) := 2y

x2+y2 we encounter some problems as

lim
x→0

f(x, 0) 6= lim
y→0

f(0, y),

i.e. the limit as (x, y)→ (0, 0) of f(x, y) does not exist and so it is not a smooth function.
This also means that [X, Y ] is not contained in F because it has non-smooth coefficients.
Of course that means that F induces and integrable distribution but is itself not involutive.

Theorem 1.2.9 leads us to the following definition of a singular foliation in terms of
submodules of the compactly supported vector fields Xc(M).

Definition 1.2.11 ([Gar19]). A C∞c (M)-submodule F ⊂ Xc(M) is finitely generated
if there exists a finite set of vector fields Y1, . . . , Yn ∈ X(M) such that

F = 〈Y1, . . . , Yr〉C∞c (M).

Definition 1.2.12 ([Gar19]). A submodule F ⊂ Xc(M) is locally finitely generated
if every point m ∈M has a neighborhood U ⊂M such that

ι−1
U F := {X|U | X ∈ F and supp(X) ⊂ U},

is finitely generated as a C∞c (U)-module.

Definition 1.2.13 ([AZ13], [AS09]). A singular foliation on a manifold M is a locally
finitely generated submodule F ⊂ Xc(M) such that [F ,F ] ⊂ F .

One may wonder why we require the condition of the vector fields in the submodule
to have compact support. The reason for this is that want the map

{regular foliations} → {singular foliations},

that maps a regular distribution D to some submodule1 of X(M), to be injective. This
means that when we consider a regular foliation F we want it to correspond to a singular
foliation in a unique way: there is only one submodule F ⊂ Xc(M) such that it generates
the regular foliation. The following example shows that this does not need to be the case
when we consider the whole of X(M).

1Actually we map D to Γc(D) but this is what we want to explain.
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Example 1.2.14. Consider for example the foliation on R2 described by the distribution
D = 〈 ∂

∂x
〉 (the leaves thus look like horizontal lines in the plane). Now we can make two

choices of submodules of X(M) that both generate the given foliation, for example

F = Γ(D) =
{
f(x, y) ∂

∂x
| f ∈ C∞(R2)

}
,

F ′ = C∞c (R2) ∂
∂x
.

�

The following proposition, that can be found in [AZ16], shows that we can make the
map above injective if we let F = Γc(D).

Proposition 1.2.15. Let F be a singular foliation whose evaluation at points of M de-
livers a constant rank distribution D, then necessarily F = Γc(D).

Proof. The proof comes from [AZ16] lemma 1.7. Let k denote the rank of the distribution
D. Note that for all p ∈M there exists a subset Y = {Y1, . . . , Yk} ⊂ F for which Y(p) is a
basis for Dp (here Y(p) denotes the evaluation of each element in Y at p). Let V be an open
neighborhood of p ∈M on which the set Y is linearly independent. Now we can construct
an open cover {Vα}α∈A where each Vα is as V above. Fix an element X ∈ Γc(D) then we
have to show that X ∈ F . Since X has compact support supp(X) there are finitely many
Vα’s covering it. Hence we may assume that our open cover {Vα}α∈A is of such nature
that only finitely many Vα’s intersect supp(X) (this is a form of being locally finite and
we will denote it as that). Now let {ϕα}α∈A be a partition of unity subordinate to the
open cover {Vα}α∈A, i.e. ∑α∈A ϕα(p) = 1 for all p ∈ M and supp(ϕα) ⊂ Vα. Since ϕαX
is supported on Vα for all α ∈ A there exist smooth functions hiα ∈ C∞(M) for which
ϕα = ∑k

i=1 h
i
αY

i
α ∈ F . Hence by the locally finiteness property the sum X = ∑

α∈A ϕαX
is essentially a finite sum and so lies in F .

1.2.2 Singular Foliations as Sheaves
In this section we will introduce singular foliations in the language of sheaves as this is
the point of view [LGLS20] takes. Before proceeding we will briefly recall the definition
of sheaves and related concepts, this information is mainly based on [Har97] and [Vak17].

Definition 1.2.16 ([Har97]). Let X be a topological space. A presheaf G with values
in a category C2 is an assignment U 7→ G(U) which associates to any open U in X an
object G(U) in C such that for every inclusion V ⊂ U of open sets we get a restriction
morphism

ρUV : G(U)→ G(V ),

in the category C. Furthermore, for every open U in X the morphism ρUU must be the
identity and for a sequence of inclusions of open sets W ⊂ V ⊂ U we have ρUW = ρVW ◦ ρUV .

2We assume C to be a set-like category, which roughly speaking means that C has properties similar
to Set.
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Remark 1.2.17. We can make this definition more compact when using more category
theory. If X is a topological space we can attach a category OpenX to it: objects are
just the open sets of X and if V and U are objects in OpenX then there exists a unique
morphism V → U in OpenX if V ⊂ U and no morphism otherwise. Now let Openopp

X

denote the opposite category then a presheaf on X is a functor

G : Openopp
X → C.

Definition 1.2.18 ([Har97]). Let G be a presheaf on a topological space X then we say
that G is a sheaf if the following conditions are satisfied.

1. Let U be an open subset of X and let {Ui|i ∈ I} be an open cover of U . Let
f, g ∈ G(U) then f = g if and only if the restrictions of f and g to the Ui are equal
for all i ∈ I.

2. Let U be an open subset of X and let {Ui|i ∈ I} be an open cover of U . Let
fi ∈ G(Ui) for every i ∈ I and assume that the restrictions of fi and fj are equal on
Ui ∩ Uj for all i, j ∈ I. Then there exists an element f ∈ G(U) whose restriction is
equal to fi for every i ∈ I. By the first property this f must be unique.

3. The object G(∅) is a final object in C.

Remark 1.2.19. Note that for most categories C the last condition follows from the first
two.

Example 1.2.20. A smooth manifold together has two natural sheaves: the sheaf of rings
C∞ i.e. the smooth functions and the sheaf of vector fields X that is also a C∞-module.

Definition 1.2.21 ([Har97]). A subsheaf G ′ of a sheaf G is a sheaf such that G ′(U) ⊂
G(U) is a sub object in C (e.g. subgroup, submodule,...).

As a final note we say that a sheaf of modules G on a manifold (M,C∞) (i.e. a presheaf
that takes values in the category of C∞-modules that is also a sheaf) is locally finitely
generated3 if for all p ∈ M there exists a neighborhood U such that there is some n > 0
and a surjective morphism of sheaves ϕ : (C∞)n |U → G|U . Using this terminology, we
can define a singular foliation in the following way.

Definition 1.2.22 ([LGLS20]). A singular foliation is a subsheaf F : U 7→ F(U) of
the sheaf of vector fields X that is locally finitely generated as a C∞-module and is closed
with respect to the Lie bracket of vector fields.

The notions of singular foliations as a submodule and the one as sheaf seem very
different at first sight. We will now explain that these two definitions are indeed the same
thing. This is entirely based on section 1.5 of [Gar19]. More precisely we will have the
following theorem.

Theorem 1.2.23 (Theorem 1.5.1 in [Gar19]). For any smooth manifold M , we have the
following:

• there is a bijection between submodules of Xc(M) and subsheaves of X,
3One can define this concept for any ringed space but we will only need it for smooth manifolds.
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• the condition of being locally finitely generated is invariant under this bijection,

• the involutivity condition is invariant under this bijection.

It is useful to define the following object to proof theorem 1.2.23.

Definition 1.2.24 (Definition 4.1 in [ZA16] and Definition 1.5.2 in [Gar19]). Given a
submodule F ⊂ Xc(M), the global hull of F is given by

F̂ := {X ∈ X(M) | fX ∈ F ,∀f ∈ C∞c (M)}.

Given a submodule S ⊂ X(M) one can define its compact elements

(S)c := {X ∈ S | supp(X) is compact} = 〈S〉C∞c (M).

We can show the following important property of these objects.

Lemma 1.2.25 (Lemma 1.5.3 in [Gar19]). For a submodule F ⊂ Xc(M) and a subsheaf
S of X and U ⊂M open, we get the following equalities:(

F̂
)
c

= F ,
̂((S(U))c) = S(U).

Proof. It is clear that the first equality holds by definition and that S(U) ⊂ ̂((S(U))c). So,
we proceed by showing the other inclusion. Take X ∈ ̂((S(U))c) and {ϕi}i∈I a partition of
unity for U with functions that have compact support. There exists a cover {Uj}j∈J of U
such that the sum ∑

i ϕiX is finite in each Uj. Moreover we have that ϕiX ∈ U . Therefore
X|Uj

= ∑
i ϕiX|Uj

∈ S(Uj). Now by the gluing property of sheaves (property 2 described
in definition 1.2.18) there exists an element Y ∈ S(U) such that Y |Ui

= X|Uj
and by the

locality of sheaves (point 1 in definition 1.2.18) we conclude that X = Y ∈ S(U).

So when given a subsheaf S of X it is straightforward to define a submodule of Xc(M):
define F := (S(M))c. We now show that the reverse can also be done, i.e. recovering a
subsheaf of X from a given submodule of Xc(M). For this we first establish the notation
that when F ⊂ Xc(M) and U ⊂M open, we denote

ι−1
U F := {X|U | X ∈ F , supp(X) ⊂ U}.

Lemma 1.2.26 (Lemma 1.5.4 in [Gar19]). Let S be a subsheaf of X. Denote F = (S(M))c
then for any open set U ⊂M we have (S(U))c = ι−1

U F and therefore also

S(U) = ι̂−1
U F .

Proof. We will show that (S(U))c = ι−1
U F for all U ⊂ M open. From this the result

immediately follows by lemma 1.2.25. Take X ∈ (S(U))c, then X ∈ S(U) and U together
with M \ supp(X) are a cover of M . Since S is a sheaf we can use the gluing property
to conclude that there exists an element Y ∈ S(M) = F̂ for which Y |U = X and
Y |M\supp(X) = 0. Note that Y has compact support, then Y ∈ F and supp(Y ) ⊂ U .
Therefore we have by definition X = Y |U ∈ ι−1

U F . Conversely, let X ∈ ι−1
U F then by

definition there exists a Y ∈ F = (S(M))c ⊂ S(M) such that Y |U = X and supp(Y ) ⊂ U .
So, we conclude that X = Y |U ∈ (S(U))c.
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Lemma 1.2.26 provides us with a way to associate, to a given singular foliation F ⊂
Xc(M), a presheaf in the following manner:

SF(U) := ι̂−1
U F . (1.1)

To conclude that the assignment

{subsheaf S of X} → {submodule F ⊂ Xc(M)},

is invertible, i.e. to a singular foliation we can associate a subsheaf of X, it suffices to
show that the presheaf determined by equation (1.1) indeed gives a sheaf. This is done
in the following lemma.

Lemma 1.2.27 (Lemma 1.5.5. in [Gar19]). Given a submodule F ⊂ Xc(M), the presheaf
SF as determined by equation (1.1) is a sheaf.

Proof. To prove this we need to check the conditions in definition 1.2.18. Because SF
is a sub-presheaf of the sheaf X the locality (point 1 in definition 1.2.18) is immediately
satisfied. We proceed by showing the gluing axiom. Let U ⊂ M be an open subset
and {Ui}i∈I an open cover of U for which Ui ⊂ U for all i ∈ I. Let Xi ∈ SF(Ui) such
that Xi|Ui∩Uj

= Xj|Ui∩Uj
. Since X is a sheaf, there exists a vector field X ∈ X(U) for

which X|Ui
= Xi. It now suffices to show that X ∈ SF(U). Take f ∈ C∞c (U) then

by compactness of supp(f) there exist finitely many Ui in the family {Ui}i∈I that cover
supp(f). After a possible renumbering we may assume that these are U1, . . . , Uk. Now let
U0 := U \ supp(f). There exists a partition of unity ϕ0, ϕ1, . . . , ϕk ∈ C∞c (U) subordinate
to the cover U0, U1, . . . , Uk. For all j > 0 the functions ϕj have compact support on Uj,
then ϕjfX = ϕjfXj ∈ ι−1

U F . Therefore, we immediately have that

fX =
∑
j>0

ϕjfX ∈ ι−1
U F .

Since f was chosen arbitrary we have that X ∈ ι̂−1
U F = SF(U).

From lemma 1.2.27 we conclude that the correspondence

{subsheaf S of X} ←→ {submodule F ⊂ Xc(M)},

is a bijection. This also shows the first point in theorem 1.2.23. For the second and third
point of theorem 1.2.23 we refer to lemma 1.5.8 and proposition 1.5.9 in [Gar19]

1.2.3 Examples of Singular Foliations
In this section we will provide some examples of singular foliations. Throughout we will
use definition 1.2.13 and definition 1.2.22 interchangeably.

Example 1.2.28. A first example of a singular foliation is a regular foliation. Let D be
the distribution corresponding to the regular foliation then let F = Γc(D). �

Example 1.2.29. Let G be a Lie group acting on a smooth manifold M , i.e. we are given
a group homomorphism G→ Diff(M). Then from this group action we have an associated
infinitesimal action ρ : g → X(M) where g = Lie(G), the associated Lie algebra to G.
Now when v1, . . . , vn is a basis for g we can take F to be the C∞c (M)-module generated
by {ρ(v1), . . . , ρ(vn)}. �
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The above example is actually a particular instance of a more general object.

Definition 1.2.30 ([dSW99]). A Lie algebroid is a triple (A, [·, ·]A , ρ) where A is a
vector bundle over M , [·, ·]A is a Lie bracket on Γ(A) and ρ : A→ TM is a vector bundle
morphism over the identity on M , called the anchor, such that for all f ∈ C∞(M) and
sections x, y ∈ Γ(A) we have that

[x, fy]A = f [x, y]A + (ρ(x)(f)) y.

Remark 1.2.31. From the identity [x, fy]A = f [x, y]A + (ρ(x)(f)) y it also follows that ρ
is a Lie algebra homomorphism between Γ(A) and X(M). The full proof is quite a long
calculation but the main insight is using the following version of the Jacobi identity:

[x, [y, fz]A]A + [fz, [x, y]A]A + [y, [fz, x]A]A = 0,

for x, y, z ∈ Γ(A) and f ∈ C∞(M). Now using the Leibniz identity to expand all of these
brackets and cancelling some terms gives that ρ is indeed a Lie algebra homomorphism.

Example 1.2.32. From a Lie algebroid (A, [·, ·]A , ρ) we get a singular foliation. By using
the sheaf point of view we let F(U) := ρ (Γ(A|U)). We show that this indeed yields a
singular foliation. Let x1 = ρ(a1) and x2 = ρ(a2) for some a1, a2 ∈ A and U1 and U2
two open neighborhoods of x1 and x2 respectively s.t. x1|U1∩U2 = x2|U1∩U2 . Let f1, f2
be a partition of unity subordinate to U1 and U2 then a := f1a1 + f2a2 ∈ Γ (A|U1∪U2).
Now consider ρ(a) = f1ρ(a1) + f2ρ(a2). Now clearly for p ∈ U1 ∩ U2 we have that
ρ(a)(p) = f1(p)x1(p) + f2(p)x2(p) = x1(p)(f1(p) + f2(p)) = x1(p) = x2(p). Similarly for
p ∈ U1 \ (U1 ∩ U2) we have that f2(p) = 0 and so ρ(a)(p) = x1(p). Completely similar
one can show that for p ∈ U2 \ (U1 ∩ U2), ρ(a)(p) = x2(p). The only thing left to show
is that this F is indeed locally finitely generated. Given a point p ∈ M we can find an
open neighborhood V of p on which A is trivial. Let a1, . . . , an ∈ Γ(A|V ) be a local frame.
Then every a ∈ Γ(A|V ) is of the form a = ∑

fiai for f ∈ C∞(M) hence we also have that
any x ∈ ρ (Γ(A|V ) can we written as x = ∑

fiρ(ai). �

Example 1.2.33. As noted above the example of a Lie group/algebra action on M can
be seen as the foliation arising from a Lie algebroid. From a Lie group action we get an
infinitesimal action ϕ : g→ X(M). Now consider the vector bundle g×M then we will give
this the structure of a Lie algebroid. Define the anchor ρ : g×M → TM : (v, p) 7→ ϕ(v)p.
For v, w ∈ g let v, w denote the corresponding constant sections M → g. Now define

[v, w] := [v, w]g.

Note that this bracket inherits the properties from the Lie bracket [·, ·]g and so is a Lie
bracket itself. Finally, one can extend this bracket to non-constant sections by using the
Leibniz identity. For example when we let G = S1 and M = C we can let G act on M
by t · z := eitz. When we write z = x + iy we have that the infinitesimal generator ϕ is
given by

ϕ : R→ X(C) : v 7→ v

(
x
∂

∂y
− y ∂

∂x

)
.

The resulting foliation is illustrated in figure 1.5, the regular leaves are concentric circles
while the singular leaf consists of the origin.

�
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Figure 1.5: Foliation given by the action (R,+) y C from example 1.2.33.

Example 1.2.34 (Taken from [LGLS20]). Consider M = R and the partition into leaves
(−∞, 0), {0} and (0,+∞). In this case there are infinitely many modules that induce
this foliation, they are indexed by a k ∈ N0 and have the form

Fk =
〈
xk

∂

∂x

〉
C∞c (M)

.

This example illustrates that the definition using submodules or sheaves inherently carries
more information than the ‘geometric picture’ that comes from the partition into leaves
only, which is illustrated in figure 1.6. �

Figure 1.6: Foliation Fk from example 1.2.34

Example 1.2.35 (Example 3.12 in [LGLS20]). To a bivector π ∈ X2(M) we can associate
a map π] : Ω1(M) → TM : df 7→ π(df ∧ ·). We say that π is foliated when π] (Ω1(M))
is closed under the Lie bracket. As an application of Dirac geometry we know that when
π is a Poisson bivector, T ∗M gets a Lie algebroid structure with anchor π]. We call the
resulting foliation of the Poisson manifold the symplectic foliation. This because when
π is Poisson, the leaves inherit a non-degenerate Poisson structure which is inverse to a
symplectic structure. For more information on this we refer to section 1.3.4 in [LGPV13].

�

Example 1.2.36 (Based on Example 3.36 in [LGLS20]). Consider the space Cn and a
k-tuple of polynomials ϕ = (ϕ1, . . . , ϕk) where ϕk ∈ C [x1, . . . , xn]. Let Xpol(Cn) denote
the module of polynomial vector fields (the coefficients are polynomials in C [x1, . . . , xn]).
Now consider all X ∈ Xpol(Cn) such that Xϕ = 0. We argue that these vector fields form
a singular foliation. Let X, Y be such that X [ϕ] = 0 and Y [ϕ] = 0 then [X, Y ]ϕ = 0,
indeed [X, Y ]ϕ = X(Y [ϕ]) − Y (X [ϕ]) = 0 and so this set of vector fields is closed
under the Lie bracket. If F denotes all X ∈ Xpol(Cn) for which Xϕ = 0 then it can
easily be seen that F is a C [x1, . . . , xn]-submodule of Xpol(Cn). The only thing left to
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show is that F is finitely generated but this is a standard result in commutative algebra:
Xpol(Cn) is a finitely generated C [x1, . . . , xn]-module and C [x1, . . . , xn] is a Noetherian
ring (another standard result of commutative algebra), now Xpol(Cn) is also a Noetherian
C [x1, . . . , xn]-module and hence all submodules are finitely generated so in particular F
is finitely generated. We will use this example as an example at several point throughout
this thesis, for convenience we will denote it by Fϕ.

Note that one could replace C by R and all the results still remain true. Indeed
Xpol(Rn) is still a finitely generated R [x1, . . . , xn]-module and R [x1, . . . , xn] is still Noethe-
rian4. Hence Xpol(Rn) is also a Noetherian R [x1, . . . , xn]-module and so all submodules
are finitely generated. In particular F is finitely generated.

Figure 1.7 gives an illustration of Fϕ when we let ϕ(x1, x2) = x1x2. We see the blue
and green leaves as the 1-dimensional ones while the origin is the only 0-dimensional leaf.

Figure 1.7: Foliation Fϕ for ϕ(x1, x2) = x1x2

�

1.2.4 Singular Foliations and (almost-)Lie algebroids
Examples 1.2.32, 1.2.33 and 1.2.35 form a large class of examples, it is natural to ask
whether all singular foliations arise, locally or globally, as the image of a Lie algebroid.
Note that this is indeed the case for regular foliations F for which we can take the vector
bundle to be D = TF and use the Lie bracket [·, ·] on X(M) to define a Lie bracket on
Γ(D) and the anchor is just the inclusion. It turns out that the answer to the question
when considered in a global setting is negative: for this see the next example which also

4In fact when R is a Noetherian ring we have that R [x1, . . . , xn] is Noetherian as an R-module.
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contains the definition of a first important invariant associated to a singular foliation at
a point. Later in the thesis we will discuss the local question using the tools that where
developed.

Example 1.2.37 (Based on Lemma 1.3 in [AZ13]). A first invariant of a singular folia-
tion as introduced by Androulidakis and Skandalis in [AS09] is called the isotropy Lie
algebra gx at some point x ∈M . It is defined as the quotient

gx := F(x)
IxF

= {X ∈ F | X(x) = 0}
IxF

where Ix = {f ∈ C∞(M) | f(x) = 0}. The vector space gx gets a Lie algebra structure
because IxF ⊂ F(x) is a Lie ideal. We now use this object to show that not all singular
foliations are induced (in the sense of example 1.2.32 meaning that F = ρ (Γ(A))), glob-
ally, by a Lie algebroid.

Let F be such a foliation coming from a Lie algebroid A. Consider the space ker ρx
(called the isotropy of the Lie algebroid at x). Then there is a well-defined linear mapping
ker ρx → gx that maps a to 〈ρ(a)〉 where a ∈ Γ(A) is any extension of a. Remark that
this map is surjective: every element in gx is represented by an X ∈ F that vanishes
at x; hence X = ρ(a) for some a ∈ C∞c (A,M) with ρx(ax) = 0. Hence we have that
dim gx ≤ rkA for all x ∈M .

Now let k ≥ 1 and consider the foliation Fk of R2 generated by

(x− k)iyj ∂
∂x
, (x− k)iyj ∂

∂y
∀i, j ≥ 0 for which i+ j = k.

Now take the foliation F generated by ∪k≥1ϕkFk where ϕk is some fixed bump function on
R2 with small support concentrated around (k, 0). Then one can show that g(k,0) = R2k+2.
So the dimension of the spaces g(k,0) grows linearly with k and so is certainly not bounded
above; so F cannot come from a Lie algebroid.

�

We can also look at almost-Lie algebroids. They are very similar to Lie algebroids and
the only difference is that the bracket [·, ·]A need not to satisfy the Jacobi identity.

Definition 1.2.38 (As defined in [Hue05]). An almost-Lie algebroid over a manifold
M is a vector bundle A → M , equipped with a vector bundle morphism ρ : A → TM
called the anchor and skew-symmetric bracket [·, ·]A on Γ(A). This bracket must satisfy
the Leibniz identity

∀x, y ∈ Γ(A), f ∈ C∞(M) [x, fy]A = f [x, y]A + ρ(x) [f ] y,

and the anchor must be an algebra morphism w.r.t. the bracket operation5

∀x, y ∈ Γ(A) ρ ([x, y]A) = [ρ(x), ρ(y)] . (1.2)
5Note this is not a Lie algebra morphism as the Jacobi identity does not need to hold for the bracket

[·, ·]A.
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The following proposition shows that from a singular foliation one can get an almost-
Lie algebroid. This also shows that the main failure point in getting a Lie algebroid from
a singular foliation is getting the Jacobi identity for the bracket on the sections.

Proposition 1.2.39 ([Lav16] and [LGLS20]). Let M be a smooth manifold and (A, ρ)
and anchored vector bundle6.

1. For every almost-Lie algebroid structure on A → M , the image of the anchor map
ρ : Γ(A)→ X(M) is a singular foliation.

2. Every finitely generated foliation on M is the image under the anchor map of an
almost-Lie algebroid, defined on a trivial bundle.

3. Every anchored vector bundle (A, ρ) over M that covers a singular foliation F can
be equipped with an almost-Lie algebroid structure with anchor ρ.

4. A singular foliation is the image under the anchor of an almost-Lie algebroid if and
only if it is finitely generated.

Proof. 1. This follows immediately from the definition.

2. Let X1, . . . , Xr be generators of a singular foliation F . By definition F is closed
under the Lie bracket of vector fields and so there exist functions ckij ∈ C∞(M) such
that

[Xi, Xj] =
r∑

k=1
ckijXk ∀i, j ∈ {1, . . . , r}.

Now when ckij 6= −ckji we may replace ckij by 1
2

(
ckij − ckji

)
. Now when gkij = 1

2

(
ckij − ckji

)
it is easy to see that gkij = −gkji. Remark that this replacing does not change any-
thing:

[Xi, Xj] =
r∑
i=1

ckijXk  
r∑
i=1

1
2
(
ckij − ckji

)
Xk

= 1
2

r∑
k=1

ckijXk −
1
2

r∑
k=1

ckjiXk

= 1
2 [Xi, Xj]−

1
2 [Xj, Xi]

= [Xi, Xj] .

Where we used the antisymmetry of the Lie bracket. We now define A = Rr×M →
M and construct an almost-Lie algebroid structure on it. Denote its canonical global
sections as e1, . . . , er then define:

• the anchor map ρ(ei) = Xi for i = 1, . . . , r,
• the bracket using the structure functions ckij, [ei, ej]A = ∑r

k=1 c
k
ijek; this bracket

can then be extended to nonconstant sections using the Leibniz rule.

With this we have by definition ρ(Γ(A)) = F .
6An anchored vector bundle is a vector bundle A→M together with an anchor map ρ : A→ TM

over the identity on M .
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3. Let (Ui)i∈I denote a collection of open sets such that A|Ui
is trivial for all i ∈ I. We

may then choose a partition of unity (ϕi)i∈I subordinate to the open cover (Ui)i∈I .
Just as we did in the previous we can find an anchor ρ and a collection of brackets
[·, ·]Ui

on Γ(A|Ui
). Now we can glue these brackets together using the partition of

unity
[·, ·]A :=

∑
i∈I

ϕi [·, ·]Ui
.

4. This follows immediately from the previous item.

1.2.5 Geometric Resolutions of Singular Foliations
Geometric resolutions of a singular foliations will become important when we define the
universal Lie ∞-algebroid of a singular foliation.

Definition 1.2.40 (Definition 2.1 in [LGLS20]). Let F ⊂ X(M) be a singular foliation
on a manifold M . A geometric resolution of F is a triple (E, d, ρ) such that

1. E = ⊕i≥1E−i is a collection of vector bundles over M ,

2. d is a family of vector bundle morphisms d(i) : E−i → E−i+1 over the identity on M ,

3. ρ is a vector bundle morphism ρ : E−1 → TM over the identity on M called the
anchor of the geometric resolution.

All such that the following sequence of C∞(M)-modules is exact7

· · · d
(4)
−−→ Γ(E−3) d(3)

−−→ Γ(E−2) d(2)
−−→ Γ(E−1) ρ−→ F → 0.

When all E−i are trivial bundles we speak of a resolution by trivial bundles. A geometric
resolution is called minimal at m ∈ M if for all i ≥ 2 the linear maps d(i)

m : E−i|m →
E−i+1|m vanish.

By the Serre-Swan theorem, see for instance theorem 12.32 in [Nes20], we know that
the C∞(M)-module of sections of a vector bundle is a projective C∞(M)-module. This
means that geometric resolutions can be seen as projective resolutions of the module F . It
is a standard result in commutative algebra (see for instance part XX §1 in [Lan05]) that
every module admits a free resolution and hence also a projective resolution. This however
does not mean that all singular foliations admit geometric resolutions8. Indeed there do
exists counterexamples on R (in the smooth case). However the following theorem, which
is part of proposition 2.3 in [LGLS20], gives a class of foliations for which we do have an
existence result.

Theorem 1.2.41. Every algebraic singular foliation on a Zariski open subset of Cn admits
a geometric resolution of length less than or equal to n+ 1.

7Remark that we used the same notation d(i) for the maps between vector bundles and the induced
map on the module of sections.

8Not every projective module arises as the module of sections of a vector bundle over M . Indeed,
they need not to be finitely generated which is a necessary condition for the converse of the Serre-Swan
theorem.
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To show theorem 1.2.41 we will make use of Hilbert’s syzygy theorem (see for instance
[Eis95], corollary 19.7). The proof we give here is an adaptation of the proof originally
given by Cartan and Eilenberg as discussed in section 19.1 of [Eis95]. We give an adap-
tation of their proof because they originally gave it in the setting of local rings. We will
need it for the case of graded rings and so some adaptations of necessary lemmas and
the statements of some propositions are needed. Before giving the proof we need some
preliminary results.

Lemma 1.2.42 (Graded Nakayama Lemma). Let R = ⊕r≥0Rr be a graded ring with the
degree 0 component a field k. Let M be a finitely generated graded R-module and I C R
a graded homogeneous ideal such that I ⊂ R+ = ⊕r>0Rr and IM = M . Then we have
M = 0.

Proof. Since M is a graded module, we can write M = ⊕n∈ZMn. Since M is assumed
to be finitely generated we can write M = 〈x1, . . . , xl〉R for some homogeneous elements
x1, . . . , xl. Let d := mini=1,...,l deg xi then Md 6= 0 (there is some element of degree d that
generates M) but Md−m = 0 for all m ≥ 1 (there are no elements of degree < d that
generate M). Note that R does not contain any elements of negative degree and I ⊂ R+
so in IM the minimal degree of elements in IM must be d+ 1 which of course also means
that Md is not contained in IM which clearly contradicts IM = M . In this way we
conclude that there does not exist an integer d for which Md 6= 0 hence M = 0.

Remark 1.2.43. A classic application of Nakayama’s lemma is to make sense of a minimal
generating set for M (i.e. no smaller subset generates M) . For arbitrary finitely generated
modules over arbitrary rings this does not need to be a well-defined notion. In our case,
by using Nakayama’s lemma, it will be well-defined. Note that since R0 = k is a field
we have that R/R+ = k. Hence M/R+M is a k-vector space. This means it has a basis
〈x̂1, . . . , x̂n〉 where xi ∈ M and x̂i is it representative in M/R+M . For a basis of a k-
vector space V we do have a well-defined notion of minimal generating sets. One needs
exactly dimk V linearly independent elements to generate V . Now consider the submodule
N := 〈x1, . . . , xn〉. By construction of the submodule N we have that M/N = R+ (M/N).
Now applying the graded Nakayama lemma 1.2.42 with I = R+ we get M/N = 0. Hence
we must have M = 〈x1, . . . , xn〉. I.e. we have lifted a basis of a vector space to a generating
set of M and the minimal number of generators is well-defined.

Definition 1.2.44 ([Eis95]). A graded free resolution of an R-module M is a complex

F : · · · −→ Fn
ϕn−→ · · · −→ F1

ϕ1−→ F0 −→M −→ 0, (1.3)

where R = ⊕d≥0Rd is graded ring and all the Fi are graded free modules, that is Fi =
⊕d∈IRd for I some index set. Furthermore, the maps are homogeneous of degree zero.
We call the resolution finite of length n if Fn+1 = 0 and Fi 6= 0 for 0 ≤ 1 ≤ n.

Definition 1.2.45 ([Eis95]). A complex

F : · · · −→ Fn
ϕn−→ Fn−1 −→ · · · ,

of graded modules over a graded ring R = ⊕d≥0Rd is called minimal if the maps in the
complex F⊗R/R+ are all 0. That is imϕn ⊂ R+Fn−1.
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Lemma 1.2.46 ([Eis95]). A graded free resolution

F : · · · −→ Fn
ϕn−→ Fn−1 −→ · · ·

ϕ1−→ F0

over a (positively) graded ring R is a minimal complex if and only if for each n, a basis
of Fn−1 maps onto a minimal generating set of cokerϕn.

Proof. Let R+ be as above and let ϕ0 denote the natural map F0 → cokerϕ1. For any
n ≥ 0 consider the surjective map of vector spaces given by

Fn−1

R+Fn−1
→ cokerϕn

R+ cokerϕn
.

By the graded Nakayama lemma 1.2.42 a basis for cokerϕn/R+ cokerϕn can be lifted to
a minimal set of generators for cokerϕn, see remark 1.2.43. Thus we have that a basis of
Fn−1 is mapped onto a minimal generating set for cokerϕn if and only if the surjective map
from above is in fact an isomorphism which happens exactly when imϕn ⊂ R+Fn−1.

The following result will be the key result in proving Hilbert’s syzygy theorem. Before
proceeding note that by pdM we denote the projective dimension of M which is the
minimal length of projective resolutions of M , gldimR is the supremum of the projective
dimensions of all R-modules. Also recall that the functor TorRi (−, N) can be computed
as the left derived functors of the functors −⊗R N .

Proposition 1.2.47 ([Eis95]). Let R be a positively graded ring with R0 = k a field
and M a finitely generated nonzero graded R-module. In this case pdM is the length
of any minimal free resolution. Furthermore, pdM is the smallest integer i for which
TorRi+1(k,M) = 0 and thus pd k = gldimR.

Proof. As remarked earlier TorRi+1(k,M) can be computed as the left derived functor of
−⊗RM which means it is the i+ 1-th homology of a projective resolution of M tensored
with k. Thus if n = pdM by definition the projective modules Pi+1 for i ≥ n in the
projective resolution are zero. From this it immediately follows that also TorRi+1(k,M) = 0.
Now assume that

F : · · · −→ 0 −→ Fn
ϕn−→ Fn−1 −→ · · ·

ϕ1−→ F0,

is a graded free resolution of M of length n. Let i ≥ 0 be the smallest integer for which
TorRi+1(k,M) = 0 then we immediately have that n ≥ pdM ≥ i. When F is a minimal free
graded resolution the differentials in the complex R/R+⊗F are zero and since R/R+ = k
we have that the differentials in the complex k ⊗ F are zero which immediately implies

TorRi+1(k,M) = k ⊗ Fi+1.

Hence TorRi+1(k,M) = 0 if and only if Fi+1 = 0 and so i = n. From theorem 10.94
in [Rot08] it follows that we can also compute TorRi+1(k,M) starting from a projective
resolution of k. Clearly TorRi+1(k,M) = 0 for all i ≥ pd k and so combined with the above
we have that pdM ≤ pd k. Indeed, if j = pd k and n = pdM and assume j ≤ n then
we would have TorRi+1(k,M) = 0 for i ≥ j but we have just shown that n is the smallest
integer for which TorRi+1(k,M) = 0 for i ≥ n which clearly contradicts. So, we conclude
pdM ≤ pd k and combined with Auslander’s theorem (a classical result, see theorem 19.1
in [Eis95]) this gives gldimR = pd k.
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We give the following definition in the setting where R is a commutative ring and F
is a free R-module with basis {e1, . . . , es}.

Definition 1.2.48 ([Eis95]). A regular sequence is a sequence r1, . . . , rd ∈ R such that
ri is not a zero-divisor in R/(r1, . . . , ri−1)R for i = 1, . . . , d and R/(r1, . . . , rd)R 6= 0.

The following definition is an adaptation of definition of a Koszul complex in [Rot08]
on page 1004. The notion of a Koszul complex will also come up later in examples 1.2.59
and 1.2.60.

Definition 1.2.49 ([Eis95]). Let x = (x1, . . . , xd) be a sequence in R then the Koszul
complex of x is defined as

K(x)• : · · · −→ ∧pF dp−→ ∧p−1F −→ · · · −→ ∧2F
d2−→ F

d1−→ R,

where the differentials dp are defined as

dp
(
ei1 ∧ · · · ∧ eip

)
=

s∑
r=0

(−1)r−1xrei1 ∧ · · · ∧ êir ∧ · · · ∧ eip ,

and especially d1(∑s
i=1 ciei) = ∑s

i=1 cixi.

We now use (without proof) that the ideal R+ of positively graded elements in R is
generated by a regular sequence x = (x1, . . . , xn) and by corollary 19.3 in [Eis95] the
Koszul complex K(x)• forms a minimal graded free resolution of length n of k = R/R+.

Theorem 1.2.50 (Hilbert’s syzygy theorem). If k is a field, then every finitely generated
graded module over k [x1, . . . , xn] has a graded free resolution of length ≤ n.

Proof. Using that K(x)• forms a minimal free resolution of length n for k we can combine
this with proposition 1.2.47 to conclude that n = pd k is equal to the global dimension of
R which means that the length of graded free resolutions are bounded above by n.

Now that we have theorem 1.2.50 we are almost done. Our singular foliation F is a
finitely generated module over the ring of functions on Zariski open subsets of Cn which
of course is the ring R = C [x1, . . . , xn]. We think that in general there is no way to
make certain that F is generated by homogeneous elements and so we need to proof the
following, quite surprising, corollary of Hilbert’s syzygy theorem which gets rid of the
graded condition and works for arbitrary finitely generated modules over k [x1, . . . , xn].
Once we have this result, we will give the proof of theorem 1.2.41.

Corollary 1.2.51 ([Eis95]). Every finitely generated module over k [x1, . . . , xn] has a
finite free resolution.

The proof is taken from corollary 19.8 in [Eis95].

Proof. Let S = k [x1, . . . , xn] and M a finitely generated S-module. It is a standard result
from commutative algebra that any module admits a free presentation so we choose a free
presentation F

ϕ−→ G −→ M −→ 0. We can choose a basis such that ϕ : F → G is
represented by a matrix with polynomial coefficients. By introducing a new variable
x0 we can homogenize all entries in this matrix: let d denote the maximal degree of a
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polynomial in this matrix, next multiply all entries by the appropriate power of x0 to
take the degree of the entry up to d. In this way we start working over the polynomial
ring T = k [x0, x1, . . . , xn] and get a new matrix ϕ̃ with entries consisting of homogeneous
polynomials of degree d. Note that S ∼= T/(1 − x0) where (1 − x0) denotes the ideal
generated by 1 − x0 in T . This makes S into a T -module and with this structure it is
clear that ϕ = ϕ̃ ⊗T S (indeed this just says that replacing x0 by 1 in ϕ̃ just gives ϕ).
Now define M̃ := coker ϕ̃ for which we thus have M̃ ⊗T S = M . By Hilbert’s syzygy
theorem 1.2.50 there exists a free resolution F̃ of M̃ . We now finish the proof by showing
that F̃ ⊗T S gives a free resolution for M . This holds in particular when F̃ ⊗T S has no
homology (except the 0-th homology) which in turn means that TorTi

(
M̃, S

)
= 0 for all

i ≥ 1 (by construction of the Tor-functor). We can compute the modules TorTi
(
M̃, S

)
starting from the following free resolution for S

0 −→ T
1−x0−−−→ T −→ S −→ 0.

We tensor this free resolution with M̃ over T to get the complex from which we can
compute the Tor modules. This gives us the following sequence

0 −→ M̃
1−x0−−−→ M̃ −→M −→ 0,

and this sequence has no homology (except again at the 0-th step) when the part 0 −→
M̃

1−x0−−−→ M̃ is an exact sequence. This thus means that ker(1 − x0) = {0} i.e. 1 − x0
is not a zero divisor on M̃ . This however is clear since any element m̃ ∈ M̃ can be
written as m̃ = m̃e + (degree greater than e) where deg m̃e = e and so (1 − x0)m̃ =
m̃e + (degree greater than e) which proves what we wanted to show.

We are now ready to give a proof of theorem 1.2.41:

Proof of theorem 1.2.41. We have that F ⊂ Xpol(Cn) is an involutive submodule. Since
Xpol(Cn) is a finitely generated module over the Noetherian ring S = C [x1, . . . , xn] we
have that Xpol(Cn) is a Noetherian S-module. Hence since F is a submodule of the
Noetherian module Xpol(Cn) we have that F is finitely generated. By corollary 1.2.51 we
have that a finite free resolution of F exists and hence also a projective resolution. Note
that by definition this implies that pdF <∞. In fact, by examining the proof of corollary
1.2.51, we even have that pdF ≤ n+1. We will now show that we are able to construct a
projective resolution in which all the projective modules are finitely generated S-modules.

Since F is finitely generated we have that F = 〈X1, . . . , Xk〉S. Now consider the free
module P0 = ⊕ki=1S with basis denoted e1, . . . , ek. Then there is a unique surjection9

mapping the ei to the Xi

P0
ϕ0−→ F → 0.

Note that this P0 is clearly finitely generated as an S-module. Hence P0 is a Noetherian
S-module. Now define M0 := kerϕ0, then M0 ⊂ P0 as an S-submodule and so M0 is
finitely generated. One can now do the same steps with M0 to obtain the next projective

9Any module can be written uniquely as the quotient of a free module. In particular finitely generated
modules are exactly the ones that are isomorphic to a quotient of a finite rank free module.
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module P1 in the projective resolution which will again be finitely generated by the same
arguments. This process can be continued to obtain the complete projective resolution.
Indeed, this process stops because pdF ≤ n+ 1 (as observed above) and so there can at
most be n+ 1 projective modules Pi.

We have now shown that when

Pl
ϕl−→ Pl−1

ϕl−1−−→ · · · ϕ2−→ P1
ϕ1−→ P0

ϕ0−→ F → 0, l ≤ n+ 1,

is a projective resolution of F , all modules Pi are finitely generated. Since all Zariski open
sets U ⊂ Cn are connected, the Serre-Swan theorem asserts that all the Pi arise as the
module of sections of some vector bundle E−i hence obtaining a geometric resolution of
length at most n+ 1.

Remark 1.2.52. In this particular case we are able to construct a projective resolutions
with finitely generated projective modules. The key property to do this is that the poly-
nomial ring is Noetherian. This fails in the smooth case: C∞(M) is not Noetherian when
dimM > 0. Hence in the smooth case a geometric resolution may not always exist (as
we already remarked earlier).

1.2.6 Relations Between Geometric Resolutions
In this part we will examine the relation between two geometric resolutions. An object
that provides a relaxation of the conditions in the definition of a geometric resolution and
thus also gives some slightly more general results is defined in the following definition.
Note that all vector bundle morphisms involved are considered to be over the identity on
M .

Definition 1.2.53 (Definition 3.16 in [LGLS20]). A complex of vector bundles (E, d, ρ)
over a singular foliation F is a collection E of vector bundles (E−i)i≥1 over M , a collec-
tion d of vector bundle morphisms d(i) : E−i → E−i+1 and a vector bundle morphism
ρ : E−1 → TM such that d(i−1) ◦ d(i) = 0 for all i ≥ 3, ρ ◦ d(2) = 0 and ρ (Γ(E−1)) ⊂ F .

Remark that in particular every geometric resolution is a complex of vector bundles
over F and that every complex of vector bundles over F is a geometric resolution if and
only if it is exact on the level of sections and ρ (Γ(E−1)) = F . The following definition
captures the notion of morphisms and homotopy of morphisms for complexes of vector
bundles over F .

Definition 1.2.54 (Definition 3.17 in [LGLS20]). • A morphism ϕ between two com-
plexes of vector bundles (E, d, ρ) and (E ′, d′, ρ′) over F is a collection of vector bun-
dle morphisms ϕi : E−i → E ′−i (over the identity map on M) making the following
diagram commutative

· · · E−3 E−2 E−1 TM

· · · E ′−3 E ′−2 E ′−1 TM

d(3)

ϕ3

d(2)

ϕ2

ρ

ϕ1 1

d′(3) d′(2) ρ
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• two morphisms ϕ, ψ : (E, d, ρ)→ (E ′, d′, ρ′) are said to be homotopic if there exists
a collection of vector bundle morphisms hi : E−i → E ′−i−1 such that ϕi = ψi +
d′(i+1) ◦ hi + hi−1 ◦ d(i) for all i ≥ 2 and ϕ1 = ψ1 + d′(2) ◦ h1. That is the following
diagram commutes

· · · E−3 E−2 E−1 TM

· · · E ′−3 E ′−2 E ′−1 TM

d(3)

ϕ3ψ3
h3

d(2)

ϕ2ψ2
h2

ρ

ϕ1ψ1
h1

1

d′(3) d′(2) ρ′

• two complexes of vector bundles (E, d, ρ) and (E ′, d′, ρ′) over F are said to be
homotopy equivalent if there exist chain maps ϕ : (E, d, ρ) → (E ′, d′, ρ′) and ψ :
(E ′, d′, ρ′) → (E, d, ρ) such that ϕ ◦ ψ and ψ ◦ ϕ are homotopic to the respective
identity morphism of complexes of vector bundles.

An important lemma that is used at several points in the paper [LGLS20] but is left
without proof is the following one.

Lemma 1.2.55 (Lemma 3.19 in [LGLS20]). Let (E, d, ρ) be a geometric resolution of a
singular foliation F . For every complex of vector bundles (E ′, d′, ρ′) over F , there exists
a morphism of complexes of vector bundles over F from (E ′, d′, ρ′) to (E, d, ρ) and any
two such morphisms are homotopy equivalent.

Proof. Define the C∞(M)-modules Pi := Γ(E−i) and Qi := Γ(E ′−i). Then both of these
are projective modules and furthermore the complex P• (consisting of the modules Pi and
the differentials di : Pi+1 → Pi) is a projective resolution of the module F . Furthermore
when we define F ′ := ρ

(
Γ(E ′−1)

)
then we know, since (E ′, d′, ρ′) is a complex of vector

bundles over F , F ′ ⊂ F as submodules. So we have a natural map (the inclusion)
f : F ′ → F and the following diagram where the bottom row is exact:

· · · Q2 Q1 F ′ 0

· · · P2 P1 F 0

d′2 d′1 ρ′

f

d2 d1 ρ

.

We now show that there exists a sequence of maps fn : Qn → Pn such that all the formed
squares commute. We do this by induction on n ≥ 1. First let n = 1 then we have the
following diagram

Q1

P1 F 0
f◦ρ′

f1
ρ

and the projectivity of the module Q1 together with the fact that ρ is surjective (from
exactness) implies the existence of a morphism of modules f1 : Q1 → P1 such that
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ρ ◦ f1 = f ◦ ρ′. Now for the inductive step consider

Qn+1 Qn Qn−1

Pn+1 Pn Pn−1

d′n d′n−1

fn fn−1

dn dn−1

.

If we can now show that fn ◦ d′n ⊂ im dn then we have the diagram

Qn+1

Pn+1 im dn 0

fn◦d′n

dn

,

and so the projectivity of Qn+1 would give us a map fn+1 : Qn+1 → Pn+1. The inclusion
can be shown as follows: from exactness of the bottom row we get im dn = ker dn−1 and
so it suffices to show that dn−1 ◦ fn ◦ d′n = 0. But this follows immediately from the
commutativity of the square formed by fn, fn−1, d

′n−1 and dn−1 together with the fact
that the top row is a complex and so d′n−1 ◦ d′n = 0. So this shows the existence of all
the module homomorphisms fn : Qn → Pn, we denote this chain map by f• : Q• → P•.
Now suppose that g• : Q• → P• is another chain map that satisfies the conditions (i.e.
makes diagrams commute and ρ ◦ g1 = f ◦ ρ′). Then we now construct the terms of a
homotopy sn : Qn → Pn+1 inductively. Define δ• := f• − g• then δ1 = f1 − g1. Note that
ρ ◦ δ1 = f ◦ ρ′ − f ◦ ρ′ = 0 and so im(δ1) ⊂ ker(ρ). The map P2 → ker(ρ) induced by
d1 : P2 → P1 is surjective by exactness and so we get a commutative diagram

Q1

P2 ker(ρ) 0

δ1

d1

and projectivity of Q1 gives us a map s1 : Q1 → P2 such that d1 ◦ s1 = δ1. Now to
construct s2 : Q2 → P3, note that

d1 ◦
(
δ2 − s1 ◦ d′1

)
= d1 ◦ f2 − d1 ◦ g2 − d1 ◦ s1 ◦ d′1

= f1 ◦ d′1 − g1 ◦ d′1 − s1 ◦ d′1

= (f1 − g1 − d1 ◦ s1) ◦ d′1

= (d1 ◦ s1 − d1 ◦ s1) ◦ d′1

= 0,

and so im(δ2 − s1 ◦ d′1) ⊂ ker(d1) and again the differential d2 : P3 → P2 induces a
surjective map P3 → ker(d1) and so we get the following diagram

Q2

P3 ker(d1) 0

δ2−s1◦d′1

d2
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and again projectivity of Q2 gives us a map s2 : Q2 → P3 for which d2 ◦ s2 = δ2 − s1 ◦ d′1
which is exactly the homotopy between f2 and g2. One can continue this proces inductively
to get a chain homotopy between f• and g•. As all the maps in the construction are
C∞(M)-module homomorphisms they are in particular C∞(M)-linear and so come from
vector bundle morphisms for which the homotopy property is preserved. This shows that
there is a morphism of complexes of vector bundles over F from (E ′, d′, ρ′) to (E, d, ρ)
and that two such morphisms are homotopic.

An immediate consequence of this lemma is the following one.

Corollary 1.2.56 (Lemma 3.20 in [LGLS20]). Any two geometric resolutions of a singular
foliation F are homotopy equivalent.

Examples of Geometric Resolutions
We now give some examples of geometric resolutions.

Example 1.2.57 (Example 3.29 in [LGLS20]). Let F be a regular foliation then E−1 :=
TF , E−i = 0 for all i ≥ 2 together with ρ : TF ↪→ TM is a geometric resolution.

�

Example 1.2.58 (Example 3.31 in [LGLS20]). Consider the Lie algebra sl2(R) with its
three generators denoted h, e, f that satisfy the following relations:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We let sl2(R) act on R2 in the following way:

h = x
∂

∂x
− y ∂

∂y
, e = x

∂

∂y
, f = y

∂

∂x
.

We now let F = 〈h, e, f〉C∞c (M). The resulting partitioning of R2 is displayed in figure 1.8,
it consists of a 2-dimensional leaf R2 \ {0} (the blue leaf) and a 0-dimensional leaf {0}
(the red leaf).

The vector fields h, e, f are not linearly independent over C∞(R2) but it can be shown
that every relation between them is a multiple of

xyh+ y2e− x2f = 0.

We will now describe a geometric resolution for this foliation. Define E−1 to be the trivial
bundle of rank 3 generated by the sections ẽ, f̃ , h̃. Define an anchor ρ : E−1 → TM by
fixing the images of the generating sections

ρ(ẽ) = e, ρ(f̃) = f, ρ(h̃) = h.

Note that E−1 = R2×R3 [1] ∼= R2× sl2(R) [1]. Define E−2 to be the trivial bundle of rank
1 generated by a section denoted s and define a vector bundle morphism

d(2)(s) = xyh̃+ y2ẽ− x2f̃ .
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Figure 1.8: Foliation given by the action sl2(R) on R2 as given in example 1.2.58

Note that E−2 = R2×R [2]. Finally for i ≥ 3 define E−i = 0 and d(i) = 0. Then the triple
(E, d, ρ) provides a geometric resolution of F . Indeed we need to check exactness of the
sequence

R [2] d(2)
−−→ sl2(R) [1] ρ−→ F → 0.

Clearly we have that ρ (sl2(R) [1]) = F , furthermore we have that ρ ◦ d(2) = 0 by con-
struction. Because also every relation between the vector fields h, e, f is multiple of
xhh+ y2e− x2f = 0 we also immediately have im d(2) ⊂ ker ρ proving exactness.

�

Example 1.2.59 (Example 3.33 in [LGLS20]). Let ϕ be a polynomial function on V = Cn

then if ιdϕ denotes the contraction by dϕ we get a complex of trivial vector bundles over
V

· · · ιdϕ−−→ ∧3TV
ιdϕ−−→ ∧2TV

ιdϕ−−→ TV
ιdϕ−−→ C.

Here W is the notation for the trivial bundle V ×W . Let Xi = Γ(∧iTV ) be the sheaf of
i-multivector fields on V then taking sections of the complex above gives

· · · ιdϕ−−→ X3 ιdϕ−−→ X2 ιdϕ−−→ X1 ιdϕ−−→ C∞(V ). (1.4)

This is also a complex since ιdϕ ◦ ιdϕ = 0. This is because when X1 ∧ · · · ∧Xk ∈ Xk and
α1, . . . , αk ∈ Ω1 then

X1 ∧ · · · ∧Xk(α1, . . . , αk) = det [αi(Xj)]ki,j=1 .

From this it can easily be seen that contracting with dϕ twice yields two row-equivalent
rows and so by the properties of the determinant this becomes zero. We call this the
Koszul complex associated to ϕ. Note than when x1, . . . , xn are coordinates on V we have
that X1 is generated by the sections ∂

∂x1
, . . . , ∂

∂xn
. Hence by contracting all of these section

by dϕ we get that the image of X1 → C∞(V ) is generated by the functions ∂ϕ
∂x1
, . . . , ∂ϕn

∂xn
. It

can be shown that when ϕ is a weight-homogeneous polynomial that admits an isolated
singularity at the origin, the Koszul complex of ϕ actually is an exact sequence. Now
consider the following complex of vector bundles

· · · ιdϕ⊗id−−−−→ ∧3TV ⊗ V ιdϕ⊗id−−−−→ ∧2TV ⊗ V ιdϕ⊗id−−−−→ TV ⊗ V ιdϕ⊗id−−−−→ C⊗ V ∼= V . (1.5)
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Then on the level of sections we have Γ
(
∧kTV ⊗ V

)
for which Γ(∧kTV⊗V ) ∼= Γ(∧kTV )⊗C∞

Γ(V ). Now Γ(V ) is a free C∞-module because Γ(V ) ∼= ⊕ni=1C
∞ hence Xk ⊗C∞ Γ(V ) ∼=

Xk ⊗C∞ (⊕ni=1C
∞) ∼= ⊕ni=1X

k. From this it also follows that on the level of sections the
complex (1.5) is exact. Now consider the sequence

· · · d
3
−→ Γ

(
∧2TV ⊗ V

)
d2
−→ Γ (TV ⊗ V ) d1

−→ F → 0,

then this sequence is exact at F if and only if im d1 = F . So using that Γ(TV ⊗ V ) ∼=
Γ(TV )⊗ Γ(TV ) and we assume Γ(TV ) to be generated by the section ∂

∂x1
, . . . , ∂

∂xn
then

we find for αi, βj ∈ C∞(V ),

d1

( n∑
i=1

αi
∂

∂xi

)
⊗

 n∑
j=1

βj
∂

∂xj

 = (ιdϕ ⊗ 1)
( n∑

i=1
αi

∂

∂xi

)
⊗

 n∑
j=1

βj
∂

∂xj


=
∑
i,j

αiβjιdϕ

(
∂

∂xi

)
⊗ 1

(
∂

∂xj

)

=
∑
i,j

αiβj
∂ϕ

∂xi
⊗ ∂

∂xj

=
∑
i,j

αiβj
∂ϕ

∂xi

∂

∂xj
.

Where we used that ∂ϕ
∂xi
∈ C∞(V ) for all i = 1, . . . , n. Hence we see that when we let F

be defined as
F =

{
∂ϕ

∂xi

∂

∂xj
| i, j = 1, . . . , n

}
,

then we obtain a geometric resolution for this foliation.
�

Example 1.2.60 (Example 3.36 in [LGLS20]). The following example will be an impor-
tant example throughout the rest of the thesis. Let ϕ be a function on V = Cn such
that

(
∂ϕ
∂x1
, . . . , ∂ϕ

∂xn

)
is a regular sequence. By a theorem of Koszul (see theorem 16.5(i)

[Mat87]) this implies that the sequence (1.4) is an exact sequence. Consider the singular
foliation consisting of all vector fields X for which X [ϕ] = 0. Since (1.4) is exact it has
no cohomology in degree −1 which exactly means that

im
(
ιdϕ : X2 → X

)
= ker (ιdϕ : X→ C∞(V )) .

Since X ∈ ker (ιdϕ : X→ C∞(V )) exactly means that X [ϕ] = 0 this means that there
exists a bivector field π ∈ X2 of the form

π = 1
2
∑
i,j

πij
∂

∂xi
∧ ∂

∂xj
,

such that ιdϕ(π) = X and so

ιdϕ(π) = 1
2
∑
i,j

πij

(
∂ϕ

∂xi

∂

∂xj
− ∂ϕ

∂xj

∂

∂xi

)
.
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From this we conclude that the foliation Fϕ is generated as

Fϕ =
{
∂ϕ

∂xi

∂

∂xj
− ∂ϕ

∂xj

∂

∂xi
| 1 ≤ i < j ≤ n

}
.

From the Koszul complex we also immediately get a geometric resolution by defining
E−i := ∧i+1TV and d := ιdϕ.

�

As we already discussed above not all smooth foliations admit geometric resolutions.
Therefore it might be interesting to give such an example. Before doing so we cite the
following result from [LGLS20] (for which the authors credit Marco Zambon).

Proposition 1.2.61 (Proposition 2.5 in [LGLS20]). If a singular foliation F on a con-
nected manifold M admits a geometric resolution of finite length in a neighborhood of all
points in M , then all its regular leaves have the same dimension r. Moreover, for every
geometric resolution of finite length (E, d, ρ) of F over an open subset of M :

r =
∑
i≥1

(−1)i−1 rk(E−i).

The following example from [LGLS20] is accredited to Jean-Louis Tu.

Example 1.2.62 (Example 3.38 in [LGLS20]). Let χ be a smooth real-valued function
on M := R that vanishes identically on R− and is strictly positive on R+

0 . Consider the
singular foliation F generated by the vector field v defined as

v := χ(t) d
dt
. (1.6)

Now all points of R−0 and R+
0 are regular points. Therefore, there is an uncountable family

of 0-dimensional leaves and a 1-dimensional leaf. If a finite geometric resolution where to
exist, this clearly contradicts proposition 1.2.61. So, we conclude there does not exists a
finite geometric resolution.

One can even show more: in the neighborhood of t = 0 there does not even exist an
infinite geometric resolution for F . For the proof of this we refer to the aforementioned
example in [LGLS20]. In conclusion we have that this particular F does not admit any
smooth geometric resolutions.

�
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Chapter 2

Lie ∞-algebras & Lie ∞-algebroids

In this chapter we will give the definitions of Lie ∞-algebras (also called homotopy Lie
algebras, sh-Lie algebras or L∞-algebras)1 and Lie ∞-algebroids. The concept of L∞-
algebras as we present it in this text was first given by Stasheff and Lada (altough they
credit other authors, for more information see [nLa19]) in [Sta92] and [LS93]. Their work
was inspired by work of Zwiebach in [Zwi93] which concerned closed string theory in
theoretical physics. The L∞-algebra structure also comes up in other parts of theoretical
physics: supergravity, string field theory, perturbative quantum field theory,... which also
means a lot of examples can be found in these parts of physics. The second important
structure introduced here are Lie ∞-algebroids will be the most important object in this
thesis. We will associate to singular foliations which admit a (finite) geometric resolution
a so-called universal Lie∞-algebroid from which we will be able to deduce some geometric
properties of the foliation. Altough we will use it in a ‘pure mathematics’ setting these
objects also comes up in several domains of theoretical physics.

2.1 Lie ∞-algebras
We will start by giving the definition of Lie ∞-algebras as we will use it later. First note
that when E = ⊕i≥1E−i is a graded vector space we call the elements of E−i homogeneous
of degree −i. For a real vector space V we denote by Sn(V ) the n-th symmetric product
of V that is defined as

Sn(V ) = ⊗nV
〈x1 ⊗ · · · ⊗ xn − xσ(1) ⊗ · · · ⊗ xσ(n) | σ ∈ Sn〉

From this we can also construct the symmetric algebra of V as S(V ) = ⊕n≥0S
n(V ) where

we set S0(V ) = R or any field over which V is defined2. By S(i, n − i) we denote the
(i, n− i)-unshuffles, these are the σ ∈ Sn for which σ(1) < · · · < σ(i) and σ(i+ 1) < · · · <
σ(n). Using this terminology, we can make the following definition.

Definition 2.1.1 (Definition 3.39 in [LGLS20]). A Lie ∞-algebra is a graded vec-
tor space E = ⊕i≥1E−i together with a family of graded-symmetric n-multilinear maps
(νn := {. . . }n)n≥1 of degree +1 that we call the n-ary brackets, which satisfy a set of

1We will mainly use the last notational convention.
2The same can be done for modules M over a ring R and then we set the 0-th symmetric power to be

the ring over which M is defined as a (left/right) module.

31
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compatibility conditions that are called the general Jacobi identities. This means that
for all n ≥ 2 and for every n-tuple of homogeneous elements x1, . . . , xn ∈ E the following
equation is satisfied

n∑
i=1

∑
σ∈S(i,n−i)

ε(σ){{xσ(1), . . . , xσ(i)}i, xσ(i+1), . . . , xσ(n)}n−i+1 = 0. (2.1)

Here ε(σ) is the Koszul sign defined by

xσ(1) � · · · � xσ(n) = ε(σ)x1 � · · · � xn.

We call a Lie ∞-algebra structure a Lie n-algebra when E−i = 0 for all i ≥ n+ 1.

As is noted in [Lav16] an important remark needs to be made here: in, for example,
[LS93] and [LM95], a different convention is used to define an L∞-algebra. In these afore-
mentioned works an L∞ structure on a graded vector space E is defined to be a collection
of skew symmetric linear maps (ln : ⊗nE → E)n≥1 of degree 2−n, i.e. a collection of maps
(µn : ∧nE → E)n≥1

3 of degree 2− n such that they satisfy some higher Jacobi identities.
In this framework, what we call an L∞-algebra is actually an L∞ [1]-algebra (a shift in
degrees of elements). This convention is somewhat easier to construct examples out of
(the examples below indeed use this convention) but will not be the preferable convention
for the further theory. Hence, we will only use it to display two examples and from there
on we use the definition 2.1.1. One can show through the so-called décalage isomorphism
that these two different notions of L∞ structures are indeed the same, symbolically this
isomorphism states that

Sn (E [1]) ∼=
(
n∧
E

)
[n] , (2.2)

between spaces of linear maps this translates into the following isomorphism (where the
superscript denotes the degree of the considered maps)

Homi

(
n∧
E,E

)
∼= Homi+n−1 (Sn (E [1]) , E [1]) .

From this isomorphism it can be seen immediately that degree 2−n maps µn : ∧nE [−1]→
E [−1] correspond uniquely to degree +1 maps νn : Sn(E)→ E (which directly translates
to the brackets we are considering). In particular given a collection of n homogeneous
elements x1, . . . , xn and their representatives in y1, . . . , yn ∈ E [1] (remember that |yi| =
|xi|−1) then the isomorphism between a graded skew-symmetric bracket [· · · ]n on E and
a graded symmetric bracket on E [1] that we denote by {· · · }n is given by the following
equation

[x1, . . . , xn]n = (−1)n(2−n)+
∑n

i=1(n−i)(|yi|+1){y1, . . . , yn}n. (2.3)

Example 2.1.2. When using the convention from, for example [LS93] and [LM95], an
L∞-algebra with only l1 and l2 nontrivial is a differential graded Lie algebra or DGLA
for short. The degree 1 map l1 corresponds to the differential and the degree 0 map l2
corresponds to the bracket.

�
3By skew symmetry of the ln they factor through such maps µn.
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Example 2.1.3. In particular when E = E−1 we recover an ordinary Lie algebra (again
working in the same setting as example 2.1.2).

�

Of course, one can also talk about morphisms between L∞-algebras. They are defined
in the following way.

Definition 2.1.4 (Definition 6 in [KS06]). Let (E, µk) and (E ′, µ′k) be two L∞-algebras
in the sense of definition 2.1.1. An L∞-algebra morphism is a collection of maps

fk : Sk(E)→ E ′

for which ∑
σ∈S(k,l=n−k)

ε(σ)f1+l
(
µk ⊗ 1

⊗l
) (
xσ(I)

)

=
∑

σ∈S(k1,...,kj)
k1+···+kj=n
j=1,...,n

ε(σ)
j! µ′j

(
fk1 ⊗ · · · ⊗ fkj

)
(xσ(I)). (2.4)

Here we denote by ε(σ) the Koszul sign as above and for I = (i1, . . . , in), xσ(I) denotes
xσ(i1) � · · · � xσ(in) for homogenous elements xi1 , . . . , xin .

Remark 2.1.5. In the notation in definition 2.1.4 we denote the degree +1 graded sym-
metric k-ary bracket from definition 2.1.1 by µk, not to be confused with notation we used
to illustrate the difference between the graded skew-symmetric brackets and the graded
symmetric brackets from the paragraph after definition 2.1.1.

2.2 Lie ∞-algebroids
Definition 2.2.1 (Definition 3.40 in [LGLS20]). Let M be a smooth manifold and E =
(E−i)1≤i<∞ a sequence of vector bundles over M . A Lie ∞-algebroid structure on E
consists of a Lie ∞-algebra structure on Γ(E) and a vector bundle morphism4 ρ : E−1 →
TM , called the anchor, such that the brackets {. . . }n are C∞(M)-linear in each of their
n arguments except if n = 2 and at least one of the two entries has degree −1. Then the
2-ary bracket satisfies the following Leibniz identity

{x, fy}2 = f{x, y}2 + ρ(x) [f ] y,

for all x ∈ Γ(E−1), y ∈ Γ(E) and f ∈ C∞(M).

Remark 2.2.2. Like for Lie algebroids this Leibniz identity implies that ρ is a Lie algebra
homomorphism. Furthermore, it follows that ρ◦{·}1|E−2 = 0. To make the notation a bit
more clear we write d := {·}1. Now indeed if we let x1, x2 ∈ Γ(E) be degree homogeneous
elements then from the higher Jacobi identity (2.1) for n = 2 it follows that

d ({x1, x2}2) = {dx1, x2}2 + (−1)|x1|{x1, dx2}2. (2.5)
4Over the identity on M .
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Now let e ∈ Γ(E−2), x ∈ Γ(E) and f ∈ C∞(M). Then we have, by the Leibniz identity
for the 2-ary bracket, that

{de, fx}2 = f{de, x}2 + ρ(de) [f ]x. (2.6)

On the other hand, by C∞(M)-linearity, we have fd ({e, x}2) = d ({e, fx}). Furthermore,
by equation (2.5) and the Leibniz identity (2.6) one has

fd ({e, x}2) = f{de, x}2 + f{e, dx} (2.7)
= f{de, x}2 + ρ(de) [f ] f − ρ(de) [f ]x+ f{e, dx}2 (2.8)
= {de, fx}2 − ρ(de) [f ]x+ f{e, dx}2. (2.9)

Now again by C∞(M)-linearity and equation (2.5) we have that

d ({e, fx}2) = {de, fx}2 + f{e, dx}2.

Using this result combined with equation (2.9) we recover that

�������
fd ({e, x}2) = �������

d ({e, fx}2) −�����
f{e, dx}2 − ρ(de) [f ]x+ �����

f{e, dx}2 .

So we conclude that for arbitrary e ∈ Γ(E−2), x ∈ Γ(E) and f ∈ C∞(M) one has that

ρ(de) [f ]x = 0.

Hence, we have shown that ρ ◦ {·}1|E−2 = 0.

Note that from the generalized Jacobi identity (2.1) it follows that for n = 1, for all
x ∈ Γ(E): {{x}1}1 = 0 i.e. the unary bracket squares to zero. Since {·}1 : Γ(E)→ Γ(E)
is a multilinear map of degree +1 it consists of a family of C∞(M)-linear maps d(i) :
Γ(E−i) → Γ(E−i+1) which, by C∞(M)-linearity, come from vector bundle morphisms
d(i) : E−i → E−i+1 (see for instance lemma 10.29 in [Lee12]). As {·}2

1 = 0 it also follows
that d(i) ◦ d(i−1) = 0 so we get a complex of vector bundles

· · · d
(4)
−−→ E−3

d(3)
−−→ E−2

d(2)
−−→ E−1

ρ−→ TM. (2.10)

We call (2.10) the linear part of the Lie ∞-algebra.

Example 2.2.3. When M = {∗} we recover the definition of an L∞-algebra.
�

Example 2.2.4. Later in this chapter we will see that a Lie algebroid is a special instance
of a Lie∞-algebroid. We include this example here without further details as to continue
the direction taken in examples 2.1.2 and 2.1.3 where we reviewed special ‘limiting’ cases
of L∞-algebras.

�
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2.2.1 NQ-manifolds
In this section we will introduce N -manifolds and Q-manifolds, both of these are studied
in graded geometry which is the geometrical framework developed in the 1970s to study
supersymmetry in physics. The theory of Lie ∞-algebroids as we explained above is
quite complicated to work with and in this part of the text we will explain the duality
between Lie ∞-algebroids and NQ-manifolds on which certain notions (e.g. morphisms,
homotopy, ...) are more easily accessible. For more background on graded geometry, we
refer to [Fai17].

Definition 2.2.5 ([LGLS20]). A sequence of finite rank vector bundles E = (E−i)i≥1
over M is called an N-manifold and we denote it E →M .

Remark 2.2.6. Strictly speaking this is not the definition of an N -manifold but by Batch-
elor’s theorem we may, after a noncanonical choice of a so-called splitting, assume that a
general N -manifold (not defined here) is of the form presented in definition 2.2.5. For a
proof of this we refer to theorem 1 in [BP13].

We will now define the functions on the N -manifold: the sheaf of graded commutative
C∞-algebras of smooth sections of the graded symmetric algebra S(E∗) will be denoted as
E and these are the functions on the N -manifold E → M . Some remarks on the degrees
of elements: an element x ∈ Γ(E−i) is said to be of degree −i while an element of Γ(E∗−i)
are said to be of degree +i and where E∗ = ⊕i≥1E

∗
−i. Using this definition elements f ∈ E

get ‘two gradings’. Namely the one from inside the graded vector bundle E∗ and the one
from the graded symmetric algebra S(E∗). When � denotes the graded-symmetric tensor
product (i.e. the product on the graded symmetric algebra) this boils down to sections of⊕

i1+···+ik=n
E∗−i1 � · · · � E

∗
−ik

being of degree n and of arity k. We denote the collection of these elements as E (k)
n .

For example, the degree 0 functions are just the smooth functions on the base manifold
M and the degree 1 functions are sections of E∗−1, degree 2 functions are sections of
E∗−2 ⊕ S2(E∗−1).

Definition 2.2.7 ([LGLS20]). Graded derivations of E are called vector fields on the
N -manifold E → M . A vector field Q is said to be of arity k if for all f ∈ E of arity l
the arity of Q [f ] is l + k (degree of Q is defined completely similarly). A vector field Q
of odd degree satisfying Q2 := 1

2 [Q,Q] = 0 is called homological (here [·, ·] denotes the
commutator).

Remark 2.2.8. Graded manifolds equipped with a homological vector field are called Q-
manifolds, sometimes also denoted differential graded manifolds (or dg-manifolds) in the
literature.

Example 2.2.9 (Based on Example 4.1 in [LGLS20]). Let M be a smooth n-dimensional
manifold with tangent bundle TM . We can lift the degree of fiber elements to obtain
the suspended tangent bundle5 T [1]M and obtain an N -manifold6 E−1 := T [1]M →

5By this we mean the following: elements in TM are considered to be of degree 0, in the suspended
bundle T [1]M we view them as having degree −1.

6We have E−i = 0 for i ≥ 2.
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M with functions defined as sections of the vector bundle S (T ∗ [1]M) which, by the
décalage isomorphism, is isomorphic to ∧T ∗M . We of course recognize sections of the
bundle ∧T ∗M as being the sheaf of differential forms Ω on M . This means that the pair
ΘT [1]M = (T [1]M,Ω) forms an N -manifold. Just as on ordinary smooth manifolds we
can choose coordinates on an N -manifold. The big difference between them is that now
certain subsets of the coordinates may have nonzero degrees and are noncommutative
with respect to the other coordinates. We refer to [Fai17] for more information on this.
Let (xi)i=1,...,n denote coordinates on the base M (these are the degree 0 coordinates)
then we get a coordinate system (xi, dxi)i=1,...,n on ΘT [1]M where the dxi are the degree
1 coordinates. Now we already know a nice example of a derivation on the differential
forms: the de Rham differential is a derivation of Ω(V ) for V ⊂ M open. Locally it
is given as d = ∑

dxi
∂
∂xi

and so it is an example of a vector field on ΘT [1]M . For the
particular case of the de Rham differential it also holds, by construction, that deg(d) = 1
and d2 = 0 i.e. [d, d] = 0 and so it also is a homological vector field. We conclude that(
ΘT [1]M , d

)
is a Q-manifold.

�

Remark 2.2.10. If Q is a vector field on an N -manifold E →M and Q(k) denotes a vector
field of arity k then Q can be written as

Q =
∑
k≥−1

Q(k).

Definition 2.2.11 (Definition 3.43 in [LGLS20]). An NQ-manifold is a pair (E,Q)
where E → M is an N -manifold over some base M and where Q is homological vector
field of degree +1.

Example 2.2.12. Of course the pair
(
ΘT [1]M , d

)
from example 2.2.9 is an NQ-manifold.

�

The following examples can be found in [Lav16] as examples 6 and 7 in chapter 1.

Example 2.2.13 (Example 6 in [Lav16]). This example was of great importance in the
historical development of the notion of Lie ∞-algebroids as being ‘higher Lie algebroids’
by Voronov [Vor10]. Let A → M be a Lie algebroid with bracket [·, ·]. This bracket is
in particular a skew-symmetric bracket on Γ(A). By equation (2.3) we can translate the
skew-symmetry of the bracket to a symmetric bracket on the vector space Γ (A [1]). Note
again that elements of Γ(A [1]) have degree −1 while they have degree 0 when considered
in Γ(A) thus a direct application of (2.3) with n = 2 yields that for all x, y ∈ Γ(A [1])
with representatives x̃, ỹ ∈ Γ(A) one has

{x, y} = [x̃, ỹ] .

As discussed the space of functions on A [1] is isomorphic to Γ(S (A [1]∗)), so it is sufficient
to define a vector field Q on C∞(M) and Γ(A [1]∗) and then extend by derivation. Note
that Q has degree +1 and so it maps C∞(M) to Γ (A [1]∗) and in turn maps this module
to Γ(S2(A [1]∗)). Now define the following relations for all f ∈ C∞(M), α ∈ Γ (A [1]∗)
and for all x, y ∈ Γ(A [1]):

〈Q [f ] , x〉 = ρ(x) [f ]
〈Q [α] , x� y〉 = ρ(x)〈α, y〉 − ρ(y)〈α, y〉 − 〈α, {x, y}〉.
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One can now extend Q to the whole of Γ(S(A [1]∗)) by the derivation property. Some small
computations reveal something very interesting: there is a one-to-one correspondence
between Lie algebroids and degree +1 Q-manifold structures on A [1]. Indeed when f ∈
C∞(M) we have that Q [f ] ∈ Γ(A [1]∗) hence

〈Q [Q [f ]] , x� y〉 = ρ(x)〈Q [f ] , y〉 − ρ(y)〈Q [f ] , x〉 − 〈Q [f ] , {x, y}〉
= ρ(x)ρ(y) [f ]− ρ(y)ρ(x) [f ]− ρ({x, y}) [f ]
= ([ρ(x), ρ(y)]− ρ({x, y})) [f ] ,

and using that Q is a degree +1 derivation one can show that also

〈Q2 [α] , x� y � z〉 =
〈
α,
{
{x, y}, z

}
+
{
{y, z}, x

}
+
{
{z, x}, y

}〉
.

Hence requiring that Q2 = 0 (i.e. requiring A [1] to be a Q-manifold) exactly means that
ρ needs to be a Lie algebra homomorphism and that the bracket {·, ·} on Γ(A [1]) must
satisfy the Jacobi identity. All of this corresponds precisely to A [1] being a Lie algebroid.
This is also a first hint towards theorem 2.2.15 that we will state below.

�

Example 2.2.14. Combining examples 1.2.35 and 2.2.13 we see that for a Poisson mani-
fold (M,π) one gets a Lie algebroid structure on T ∗M which implies that we can associate,
to every Poisson manifold, a Q-manifold structure on T ∗M [1].

�

For a given NQ-manifold (E,Q) with sheaf of functions E we know that there is an
isomorphism of sheaves E0 ∼= C∞. While as we remarked already E1 ∼= Γ(E∗−1) and since Q
is a degree +1 derivation of E we have a map Q : C∞(M)→ Γ(E∗−1) which is a derivation.
If 〈·, ·〉 denotes the duality pairing then the map

C∞(M)→ C∞(M) : f 7→ 〈Qf, x〉, ∀x ∈ Γ(E∗−1),

is a derivation of C∞(M). So to every x ∈ Γ(E∗−1) we get an associated vector field in
Γ(TM) (this is because vector fields on M can be characterized as being derivations of
the algebra of smooth functions on M). I.e. we have a map

τ : Γ(E−1)→ Γ(TM).

Now since this τ is C∞(M)-linear and E−1 and TM are both vector bundles over M we
have, by lemma 10.29 in [Lee12], that this τ comes from a vector bundle morphism

ρ : E−1 → TM.

Note that this ρ satisfies that 〈Qf, x〉 = ρ(x)f , for all x ∈ Γ(E−1) and for all f ∈ C∞(M).
One can show that for a degree +1 vector field we have that

Q =
∑
k≥0

Q(k).

The following theorem (originally discussed in[Vor10], for a proof in the notation
from this thesis see [Lav16] theorem 1.1.11) will be of great importance as it describes
the duality between Lie ∞-algebroids and NQ-manifolds. This duality will help when
describing morphisms of Lie ∞-algebroids as we can then consider them as being NQ-
manifolds and describe the morphisms in the category of NQ-manifolds.
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Theorem 2.2.15 (Theorem 3.44 in [LGLS20]). Let E = (E−i)i≥1 be a sequence of vector
bundles over a manifold M . There is a one-to-one correspondence between NQ-manifolds
and Lie ∞-algebroid structures on E. The anchor ρ of both is defined like we described
above and furthermore we have that:

1. The differential d of the linear part of the Lie ∞-algebroid structure is obtained by
dualizing the arity 0 component Q(0) of Q, i.e. for all α ∈ Γ(E∗) and x ∈ Γ(E)

〈Q(0)α, x〉 = (−1)degα〈α, d(x)〉. (2.11)

2. The 2-ary bracket {·, ·}2 and the arity one component Q(1) are related by

〈Q(1)α, x� y〉 = ρ(x)〈α, y〉 − ρ(y)〈α, x〉 − 〈α, {x, y}2〉,

for all homogeneous elements x, y ∈ Γ(E) and α ∈ Γ(E∗).

3. For every n ≥ 3 the n-ary brackets {· · · }n : Γ(Sn(E)) → Γ(E) and the component
of arity n− 1, Q(n−1) : Γ(E∗)→ Γ(Sn(E∗)) are dual to each other.

Theorem 2.2.15 can be combined with example 2.2.13 from which we also immediately
see that a Lie algebroid can be seen as an example of a Lie ∞-algebroid, a fact that we
will use later when discussing singular foliations using Lie ∞-algebroids. It also deserves
to be noted that when we apply theorem 2.2.15 with M = {∗} we recover a similar duality
theorem for L∞-algebras (using example 2.2.3).

From here on we will use the notation (E,Q) to denote a Lie ∞-algebroid with Q the
homological vector field that gives the brackets as described in theorem 2.2.15.

2.2.2 Lie ∞-algebroid Morphisms and Homotopies
Morphisms

Just as for L∞-algebras one can define morphisms between Lie ∞-algebroids and homo-
topies between those. For this the point of view we developed in section 2.2.1 and more
specifically theorem 2.2.15 will come in very useful as morphisms are more easily explained
in the category of NQ-manifolds. Dualizing then yields the appropriate definitions for
Lie ∞-algebroids, we develop these definitions following section 3.4.2 in [LGLS20]. To
define morphisms we take inspiration from the smooth manifold case: giving a smooth
map f : M → N between smooth manifolds is equivalent to giving an algebra morphism
f ∗ : C∞(N)→ C∞(M) between the function spaces on N and M respectively. We view a
Lie ∞-algebroid as a pair (E,Q) (as established by theorem 2.2.15 ) and denote its sheaf
of functions by E . Then a Lie ∞-algebroids morphism can be defined in the following
way.

Definition 2.2.16 (Definition 3.45 in [LGLS20]). A Lie ∞-algebroid morphism from
a Lie ∞-algebroid (E ′, Q′) to a Lie ∞-algebroid (E,Q) with sheaves of functions E ′ and
E respectively, is a graded commutative algebra morphism Φ : E → E ′ that satisfies

Φ ◦Q = Q′ ◦ Φ. (2.12)

We say that Φ intertwines the homological vector fields Q and Q′.
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Remark 2.2.17. Note that Φ in particular induces some other morphisms:
• base morphism: since Φ is a degree 0 morphism of graded commutative algebras we

in particular have that Φ maps E0 to E ′0. Which exactly means giving an algebra
morphism C∞(M)→ C∞(M ′), i.e. it induces a smooth map ϕ : M ′ →M ,

• linear part: by definition of the sheaves of functions on an N(Q)-manifold we have
that E = Γ(S(E∗)) and E ′ = Γ(S(E ′∗)) and so Φ : Γ(S(E∗))→ Γ(S(E ′∗)). Because
Φ is an algebra morphism we may restrict to looking at the restricted map Φ :
Γ(E∗) → Γ(S(E ′∗)). Now we use the following fact from the theory of vector
bundles: given vector bundles A → M and A′ → M ′, giving a vector bundle
morphism Ξ : A → A′ is equivalent to giving the following data: (a) an algebra
morphism ξ∗ : C∞(M ′) → C∞(M) and (b) a linear map Ψ : Γ(A′∗) → Γ(A∗) such
that Ψ(fe) = ξ∗(f)Ψ(e) for all e ∈ Γ(A′∗) and f ∈ C∞(M ′). Now applying this to
the restricted morphism Φ : Γ(E∗) → Γ(S(E ′∗)) we get a vector bundle morphism
ϕ : S(E ′)→ E and so, in particular, a vector bundle morphism ϕ0 : E ′ → E which
consist of a sequence of vector bundle morphisms ϕ0,• : E ′• → E•.

Remark 2.2.18. We can restrict equation (2.12) to terms of arity 0 and apply theorem
2.2.15 to see that Q(0) and Q′(0) correspond to d and d′ respectively. Then equation (2.12)
states that ϕ0 (from remark 2.2.17) is a chain map between the linear parts of the Lie
∞-algebroids (E ′, Q′) and (E,Q) respectively,

· · · E ′−3 E ′−2 E ′−1 TM ′

· · · E−3 E−2 E−1 TM

d′ d′

ϕ0,−3

d′

ϕ0,−2

ρ′

ϕ0,−1 ϕ∗

d d d ρ

Consider a C∞(M)-linear map Φ : E → E ′ (not necessarily a Lie ∞-algebroid mor-
phism) then Φ is said to be of arity/degree k if it maps functions of arity l in E to
functions of arity k + l in E ′. By Φ(k) we denote the component of Φ that is of arity k,
i.e. Φ(k) : Γ(E∗)→ Γ

(
Sk+1(E ′∗)

)
. One can decompose any Ψ as above as

Φ =
∑
k∈Z

Φ(k). (2.13)

Note that by C∞(M)-linearity the arity k component Φ(k) comes from a bundle morphism
Φ(k) : E∗ → Sk+1(E ′∗). Now using that

HomC∞(M)
(
E∗, Sk+1(E ′∗)

) ∼= Sk+1(E ′∗)⊗C∞(M) E,

(see for instance [Lan05] XVI, §6 corollary 5.5) we see that Φ(k) gives rise to a section of
the bundle Sk+1(E ′∗)⊗E (we omit writing the ring over which these modules are defined)
that we denote by ϕk and we call it the k-th Taylor coefficient of Φ. By definition of
these Taylor coefficients, we have that for all α ∈ Γ(E∗)

Φ(k)(α) = 〈ϕk, α〉.
Hence together with the decomposition (2.13) we have that any Φ is uniquely determined
by it’s Taylor coefficients. Indeed we have that for all k, n ∈ N and α1, . . . , αk ∈ Γ(E∗)
the following holds

Φ(n)(α1 � · · · � αk) =
∑

i1+···+ik=n
Φ(i1)(α1)� · · · � Φ(ik)(αk).
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Remark 2.2.19. A more concrete interpretation of a Lie ∞-algebroid morphism can be
given by using definition 2.1.4. Let (E,Q) and (E ′, Q′) be two Lie ∞-algebroids over
the same base manifold M and Φ : (E ′, Q′) → (E,Q) a Lie ∞-algebroid morphism
between them. By dualizing the Taylor coefficients one obtains a collection of maps
Φk : Sk+1(E ′) → E. For these maps we can formulate some concrete conditions under
which they constitute a Lie ∞-algebroid morphism. The first one is a compatibility
relation with the anchor maps: ρ′ = ρ ◦ Φ0. Secondly, since Γ(E ′) and Γ(E) are L∞-
algebras, we require (Φk)k≥0 to be L∞-algebra morphisms in the sense of definition 2.1.4.
Remark 2.2.20. Note that the sequence of vector bundle morphisms ϕ0,• : E ′• → E• from
remark 2.2.17 come from the vector bundle morphism S1(E ′) → E which is exactly the
arity 0 component Φ(0).
Example 2.2.21. Let (A, [·, ·]A , ρA) and (B, [·, ·]B , ρB) be two Lie algebroids then in
example 2.2.13 we saw that we get two Lie ∞-algebroids (A [1] , QA) and (B [1] , QB). In
the literature a morphism between Lie algebroids is defined as a vector bundle morphism
µ : B → A (over the identity on M) such that ρA ◦ µ = ρB and µ ([x, y]B) = [µ(x), µ(y)]A
for elements x, y ∈ Γ(B). Writing out the definition of a morphism of Lie ∞-algebroids
(B [1] , QB)→ (A [1] , QA) now yields exactly the same result.

�

Let (E,Q) and (E ′, Q′) be two Lie ∞-algebroids over M with sheaves of functions E
and E ′ respectively. Define the following degree one operator on the space of linear maps
Lin(E , E ′) from E to E ′

QE,E ′ : Lin(E , E ′)→ Lin(E , E ′) : Ψ 7→ Q′ ◦Ψ− (−1)|Ψ|Ψ ◦Q.

Here |Ψ| denotes the degree of the algebra map Ψ : E → E ′. Note that for all Ψ ∈ Lin(E , E ′)
one has

Q2
E,E ′(Ψ) = Q′ ◦QE,E ′(Ψ)− (−1)|Ψ|QE,E ′(Ψ) ◦Q

= Q′ ◦
(
Q′ ◦Ψ− (−1)|Ψ|Ψ ◦Q

)
− (−1)|QE,E′ (Ψ)| (Q′ ◦Ψ− (−1)|Ψ|Ψ ◦Q

)
◦Q

= Q′2 ◦Ψ− (−1)|Ψ|Q′ ◦Ψ ◦Q− (−1)|Ψ|+1Q′ ◦Ψ ◦Q− (−1)2|Ψ|+1Ψ ◦Q2

= 0.

Here we used that for the homological vector field Q we have that Q2 = Q′2 = 0, that
QE,E ′ is a degree +1 map and finally that by linearity of Ψ we have that Ψ ◦ Q2 = 0.
This means that QE,E ′ defines a degree +1 differential for which we thus have a notion of
cocycle which in turn can be used to find a condition for a graded commutative algebra
morphism to be a Lie ∞-algebroid morphism. This is contained in the following lemma.
Lemma 2.2.22 (Lemma 3.47 in [LGLS20]). Let (E,Q) and (E ′, Q′) be Lie ∞-algebroids,
a graded algebra morphism Φ : E → E ′ is a Lie ∞-algebroid morphism if and only if it is
degree zero QE,E ′-cocycle.
Proof. We already know that a morphism between N -manifolds necessarily has degree
0. Now note that Φ is a QE,E ′-cocycle exactly when QE,E ′(Ψ) = 0 which, by definition of
QE,E ′ and taking into account that Ψ has degree zero, precisely states that

Q′ ◦ Φ− Φ ◦Q = 0,

i.e. Φ is a Lie ∞-algebroid morphism.
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Definition 2.2.23 (Definition 3.48 in [LGLS20]). For every graded algebra morphism
Φ : E → E ′, a homogeneous map W : E → E ′ of degree k that satisfies

W (F �G) = W (F )� Φ(G) + (−1)k|F |Φ(F )�W (G),

for all homogeneous elements F,G ∈ E is called a Φ-derivation of degree k. We denote
the space of Φ-derivations by X(E Φ−→ E ′) and its restriction to C∞(M)-linear ones by
Xvert(E Φ−→ E ′).

Example 2.2.24. When Φ : E → E ′ is a degree k graded algebra morphism then QE,E ′(Φ)
is a Φ-derivation k + 1. For details see lemma 3.49 in [LGLS20].

�

Note that a Φ-derivation does not need to be a morphism of algebras. However, it is
still completely determined (in a unique way) by its Taylor coefficients wi ∈ Γ(Si+1(E ′∗)⊗
E) where now i ≥ −1;

W (n)(α1 � · · · � αk) =
k∑
j=1

∑
i1+···+ik=n

εjΦ(i1)(α1)� · · · � 〈wij , αj〉 � · · · � Φ(ik)(αk), (2.14)

where
εj = (−1)|W |(|α1|+···+|αj−1|).

And again for all α ∈ Γ(E∗) we define 〈wk, α〉 = W (k)(α). Conversely, starting from a
graded algebra morphism Φ : E → E ′ and a given section w ∈ Γ(S•(E ′∗) ⊗ E), there is
a unique Φ-derivation that we denote wΦ whose arity n component satisfies (2.14). For
this we let wk be the restriction of w to Γ(Sk+1(E ′∗)⊗ E).

Note that when Φ : (E ′, Q′) → (E,Q) is a Lie ∞-algebroid morphism then example
2.2.24 immediately yields the following lemma .

Lemma 2.2.25 (Lemma 3.50 in [LGLS20]). For every Lie ∞-algebroid morphism Φ :
(E ′, Q′)→ (E,Q) the graded space X(E Φ−→ E ′) equipped with QE,E ′ becomes a complex.

Proof. As explained earlier QE,E ′ is a degree +1 operator on the graded space of Φ-
derivations and we already showed that QE,E ′ squares to zero.

Homotopies

In this section we will follow section 3.4.3 in [LGLS20] from which we also take all defini-
tions. The following will be used in the definition of a homotopy between Lie∞-algebroid
morphisms.

Definition 2.2.26 ([LGLS20]). Let B → M be a vector bundle, a piecewise smooth
path in Γ(B) is a map ψ : M × I → B such that, for all fixed t ∈ I = [0, 1], the map
m 7→ ψ(m, t) is a section of B and there is a subdivision 0 = t0 < · · · < tk = 1 of I such
that the map ψ : M × (ti, ti+1)→ B is a smooth map.

Definition 2.2.27 (Definition 3.51 in [LGLS20]). Let (E,Q) and (E ′, Q′) be two Lie
∞-algebroids over M . A path t 7→ Φt valued in Lie∞-algebroid morphisms from E ′ to E
(i.e. Φt is a Lie ∞-algebroid morphism from E ′ to E for all t) is said to be continuous
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piecewise-C∞ when for all k ∈ N, its Taylor coefficients t 7→ ϕk(t) of arity k is a
piecewise-C∞ path valued in Γ

(
Sk+1(E ′∗)⊗ E

)
(in the sense of definition 2.2.26), which

is also continuous-even at the junction points. Given such a piecewise-C∞ path t 7→ Φt

valued in Lie∞-algebroid morphisms from (E ′, Q′) to (E,Q), we say that a path t 7→ Ht,
with Ht a Φt derivation, is piecewise smooth if its Taylor coefficients t 7→ hk(t) of arity
k is are piecewise-smooth paths valued in Γ

(
Sk+1(E ′∗)⊗ E

)
for all k.

Remark 2.2.28. Note that the partition of I for which ϕk(t) is a piecewise-C∞ path valued
in Γ(Sk+1(E ′∗⊗E) may depend on k. The derivative dΦt

dt
is well-defined for all t ∈ I which

do not delimit these subdivisions. Note that these special points form a countable set.
When considering Lie n-algebroids we can take this subdivision to be the same for all
k ≥ 0. Indeed the Taylor coefficients ϕk can be identified with degree 0 elements in
Γ(S(E ′∗) ⊗ E)). Now note that ϕk : Γ(Sk(E ′∗)) → Γ(E) is a degree 0 morphism that
takes k inputs, hence using that E = E−1 ⊕ · · · ⊕E−n we see that the maximal degree of
an element in Γ(E) must be −n, so for degree reasons ϕk must vanish for k big enough.
Said differently this means that the arity k components of the degree 0 part of the bundle
S(E ′∗) ⊗ E vanish for k big enough. Hence we can take the subdivision to be the same
for k sufficiently big.

One can show that dΦt

dt
is a degree zero Φt-derivation for all t for which it is well-

defined. Furthermore it satisfies that QE,E ′
(
dΦt

dt

)
= 0, i.e. it a cocycle in the complex from

lemma 2.2.25. This inspires the following definition behind which the rough idea is to let
homotopies be curves of Lie ∞-algebroid morphisms whose derivatives are coboundaries
for the complex of Φ-derivations.

Definition 2.2.29 (Definition 3.53 in [LGLS20]). Let Φ,Ψ : (E ′, Q′) → (E,Q) be two
Lie∞-algebroid morphisms over the identity. A homotopy between Φ and Ψ is a pair
(Φt, Ht) consisting of the following data:

1. a continuous piecewise-C∞ path t 7→ Φt valued in Lie ∞-algebroid morphisms be-
tween E ′ and E for which

Φ0 = Φ and Φ1 = Ψ,

2. a piecewise smooth path t 7→ Ht valued in Φt-derivations of degree −1 such that
the following equation is satisfied, for all t ∈ I for which it is well-defined

dΦt

dt
= QE,E ′(Ht). (2.15)

Remark 2.2.30. A more precise statement of equation (2.15) is to say that the following
equality holds for all k ∈ N and t ∈ I for which it is well-defined

dΦ(k)
t

dt
= (QE,E ′(Ht))(k) =

k∑
i=0

(
(Q′)(i) ◦H(k−i)

t +H
(k−i)
t ◦Q(i)

)
. (2.16)

We now prove the following proposition.

Proposition 2.2.31. Homotopy of Lie∞-algebroid morphisms is an equivalence relation,
denoted by ∼, that is compatible with composition.
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Proof. We first show that ∼ indeed defines an equivalence relation.
• reflexivity: clearly Φ ∼ Φ by taking Φt = Φ and Ht = 0 for all t ∈ I.

• symmetry: once we have Φ ∼ Ψ by a homotopy (Φt, Ht) one can take the homotopy
(Φ1−t,−H1−t) from which it also follows that Ψ ∼ Φ.

• transitivity: suppose we have two homotopies Φ ∼ Ψ and Ψ ∼ Ξ by the ho-
motopies (Θt, Ft) and (Πt, Gt) respectively. Now can ‘glue’ these two homotopies
together by rescaling the time parameter: in general this will not give a differentiable
path at t = 1/2 but it is continuous at this point (which is all we need).

Now for the compatibility with composition; let Φ,Ψ : E → E ′ be homotopic Lie ∞-
algebroid morphisms from (E ′, Q′) to (E,Q), by the homotopy (Φt, Ht), and Φ′,Ψ′ :
E ′ → E ′′ be homotopic Lie ∞-algebroid morphisms between (E ′′, Q′′) and (E ′, Q′) by the
homotopy (Φ′t, H ′t). Now we can form the homotopy (Φ′t ◦ Φt, H

′
t ◦ Φt + Φ′t ◦Ht) between

the morphisms Φ′ ◦ Φ and Ψ′ ◦Ψ.

Remark 2.2.32. Altough the definition of this kind of homotopy is quite complicated, every
homotopy of Lie ∞-algebroids gives a chain homotopy between the linear parts. Indeed,
when considering the same setting as in definition 2.2.29 equation (2.16) for k = 0 yields
that

dΦ(0)
t

dt
= Q′(0) ◦H(0)

t +H
(0)
t ◦Q(0).

Now integrating this equation gives us that∫ 1

0

dΦ(0)
t

dt
dt =

∫ 1

0

(
Q′(0) ◦H(0)

t +H
(0)
t ◦Q(0)

)
= Q′(0) ◦

(∫ 1

0
H

(0)
t dt

)
+
(∫ 1

0
H

(0)
t dt

)
◦Q(0).

By the fundamental theorem of calculus we have∫ 1

0

dΦ(0)
t

dt
dt = Φ(0)

1 − Φ(0)
0 = Ψ(0) − Φ(0).

Now define the map
H(0) :=

∫ 1

0
H

(0)
t dt. (2.17)

So combining these observations we see that

Ψ(0) − Φ(0) = Q′(0) ◦H(0) +H(0) ◦Q(0). (2.18)

As already noted in remark 2.2.20 the arity zero components Ψ(0) and Φ(0) induce the chain
maps between the linear maps. Combined with equation (2.18) this gives the following
commutative diagram.

· · · Γ(E∗−3) Γ(E∗−2) Γ(E∗−1)

· · · Γ(E ′∗−3) Γ(E ′∗−2) Γ(E ′∗−1)

Q(0)

H(0)

Q(0)

H(0)

Q(0)

H(0)

Q′(0)

Φ(0)Ψ(0)

Q′(0)

Φ(0)Ψ(0)

Q′(0)

Φ(0)Ψ(0)
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Since Ht is a Φt-derivation for all t we have that H(0) from (2.17) is a C∞(M)-linear
map (integrating does not change this property) and all other maps involved are also
C∞(M)-linear so we can form the following diagram between vector bundles.

· · · E∗−3 E∗−2 E∗−1

· · · E ′∗−3 E ′∗−2 E ′∗−1

Q(0)

H(0)

Q(0)

H(0)

Q(0)

H(0)

Q′(0)

Φ(0)Ψ(0)

Q′(0)

Φ(0)Ψ(0)

Q′(0)

Φ(0)Ψ(0)

In this diagram we can dualize all maps and differentials: by remark 2.2.20 we have that
(Ψ(0))∗ = ψ0,•, (Φ(0))∗ = ϕ0,• and (H(0))∗ = h•; furthermore by theorem 2.2.15 we have
that the dual of Q(0) is the differential d and similarly for Q′(0). Hence we get the following
diagram

· · · E−3 E−2 E−1

· · · E ′−3 E ′−2 E ′−1

d(3)

ϕ0,−3ψ0,−3
h−3

d(2)

ϕ0,−2ψ0,−2
h−2

ϕ0,−1ψ0,−1
h−1

d′(3) d′(2)

From equation (2.18) we get that, by dualizing,

ψ0,• − ϕ0,• = (Ψ(0))∗ − (Φ(0))∗ =
(
Q′(0) ◦H(0)

)∗
+
(
H(0) ◦Q(0)

)∗
= h• ◦ d′ + d ◦ h•.

This exactly means that h• is a chain homotopy between the chain maps ψ0,• and ϕ0,•.



Chapter 3

Universal Lie ∞-algebroid of a
Singular Foliation

In this chapter we will state the main results of [LGLS20]. These results consist of
two theorems: an existence result and a uniqueness result. We will give a ‘non-technical’
description of the proof of the existence result. For this we build on the notions developed
in earlier chapters.

3.1 Main Results
Definition 3.1.1 (Definition 2.6 in [LGLS20]). Let F be a singular foliation on a manifold
M . We call a Lie ∞-algebroid (E,Q) over M a universal Lie ∞-algebroid of F if the
linear part of (E,Q) is a geometric resolution1 of F .

Using this definition we can state one of the main results of [LGLS20].

Theorem 3.1.2 (Theorem 2.7 in [LGLS20]). Let F be a singular foliation on a manifold
M which admits a geometric resolution (E, d, ρ). Then there exists a universal Lie ∞-
algebroid of F the linear part of which is the geometric resolution.

The following theorem and its corollary show that there is also some sense of uniqueness
to this universal Lie ∞-algebroid.

Theorem 3.1.3 (Theorem 2.8 in [LGLS20]). Let (E,Q) be a universal Lie∞-algebroid of
a singular foliation F on a smooth manifold. For every Lie∞-algebroid (E ′, Q′) defining a
sub-singular foliation2 of F . There is a Lie∞-algebroid morphism from (E ′, Q′) to (E,Q)
over the identity on M and any two such Lie ∞-algebroid morphisms are homotopic.

Corollary 3.1.4 (Corollary 2.9 in [LGLS20]). Two universal Lie ∞-algebroids of the
singular foliation F are homotopy equivalent and two such homotopy equivalences are
homotopic.

Remark 3.1.5. Theorem 3.1.3 and corollary 3.1.4 also imply the following very useful
result: once you have found any Lie ∞-algebroid structure on the geometric resolution

1See definition 1.2.40.
2This means that ρ′

(
Γ(E′−1)

)
⊂ F .
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of a foliation, you are automatically sure this is the universal one. This essentially allows
one to ‘guess’ (in some sense) a Lie ∞-algebroid structure and then conclude this is the
universal one.

We can also rephrase these observations in a categorical language: consider a category
where objects are Lie ∞-algebroids whose induced singular foliation is a sub-singular
foliation of F and where morphisms are homotopy classes of morphisms of Lie∞-algebroid
morphisms. Then theorem 3.1.3 implies that any universal Lie ∞-algebroid over F is a
final object in this category. This also provides inspiration for corollary 3.1.4; indeed, any
two final objects in a category are unique up to a unique isomorphism, see for instance
proposition 5.5 in [Alu09].

3.1.1 Proof of Theorem 3.1.2
Instead of explaining the whole proof of theorem 3.1.2 we will explain the main idea, this
because the whole proof is of a quite technical nature. For this we follow [LGLS20] section
3.5.

Throughout this section we will assume that F is a singular foliation on a smooth manifold
M (but the ideas used in the proof can also be used on a neighborhood when considering
analytic or holomorphic manifolds). Of course, we also need to assume that F admits a
geometric resolution (E, d, ρ) for otherwise there would be nothing to show.

By the first part of theorem 2.2.15 we see that a complex of vector bundles

· · · d−→ E−3
d−→ E−2

d−→ E−1, (3.1)

is in a one-to-one correspondence with an NQ-manifold with the homological vector field
Q(0) of arity 0, dual to the differential d. We will now use a deformation of such an
NQ-manifold to expand Q(0) to a homological vector field Q. With this we mean that,
given Q(0), we want to search for arity k ≥ 1 degree +1 vector fields Q(k) such that in the
end we can form the vector field

Q =
∑
k≥0

Q(k). (3.2)

Of course, we want the degree +1 vector field that we obtain in this way to be homological
i.e., we want that [Q,Q] = 0. Using the expansion (3.2) we can rewrite this condition as
a system of equations. We first expand the left-hand side of the following equation∑

k≥0

∑
l≥0

[
Q(k), Q(l)

]
= 0. (3.3)

Which gives the following result[
Q(0), Q(0)

]
+
[
Q(0), Q(1)

]
+
[
Q(0), Q(2)

]
+
[
Q(0), Q(3)

]
+ · · ·[

Q(1), Q(0)
]
+
[
Q(1), Q(1)

]
+
[
Q(1), Q(2)

]
+
[
Q(1), Q(3)

]
+ · · ·[

Q(2), Q(0)
]
+
[
Q(3), Q(0)

]
+
[
Q(2), Q(2)

]
+
[
Q(2), Q(3)

]
+ · · ·[

Q(3), Q(0)
]
+
[
Q(3), Q(1)

]
+
[
Q(3), Q(2)

]
+
[
Q(3), Q(3)

]
+ · · ·

+ · · · + · · · + · · · + · · · + · · · = 0

(3.4)
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Now grouping the terms in (3.4) by arity (see the colors) and using that
[
Q(k), Q(l)

]
=[

Q(l), Q(k)
]

we get the following system of equations[
Q(0), Q(0)

]
= 0, (3.5)[

Q(0), Q(1)
]

= 0, (3.6)[
Q(0), Q(n)

]
= −1

2
∑

1≤i,j≤n−1
i+j=n

[
Q(i), Q(j)

]
. (3.7)

Equation (3.5) is satisfied by assumption because d2 = 0 and d∗ = Q(0) = Q. We already
explained above that from a homological vector field we get an anchor map ρ : E−1 → TM .
Furthermore from equation (3.6) and theorem 2.2.15 we have that Q(1) gives a family of
binary brackets for which the Leibniz identity is satisfied and such that d is a derivation
of these brackets.

A particular way of looking at deformation problems is by looking at a differential
graded Lie algebra (DGLA); these are defined in the following way.

Definition 3.1.6 ([FM07]). A differential graded Lie algebra (DGLA) is a Z-graded
vector space L = ⊕i∈ZLi together with a bilinear bracket [·, ·] : L × L → L and a linear
map d : L→ L that satisfies the following conditions:

1. the bracket [·, ·] is homogeneous skew-symmetric, i.e. [Li, Lj] ⊂ Li+j and for all
homogeneous a, b ∈ L

[a, b] = −(−1)|a||b| [b, a] ,

2. for all homogeneous a, b, c ∈ L the graded Jacobi identity holds

[a, [b, c]] = [[a, b] , c] + (−1)|a||b| [b, [a, c]] ,

3. d is a degree 1 differential and is a derivation of the bracket; i.e. d(Li) ⊂ Li+1,
d2 = 0 and

d [a, b] = [da, b] + (−1)|a| [a, db] .

In the case of the deformation problem of the NQ-manifold we can look at the DGLA3(
X(E), [·, ·] ,

[
Q(0), ·

])
.

Note that we have the following consequence from the graded Jacobi identity[
Q(0),

[
Q(0), Q(n)

]]
+
[
Q(n),

[
Q(0), Q(0)

]]
+
[
Q(0),

[
Q(n), Q(0)

]]
= 0.

Hence using equation (3.5) we see that
[
Q(0),

[
Q(0), Q(n)

]]
= 0. In particular this means

that
[
Q(0), ·

]
squares to zero which allows us to talk about cohomology. Furthermore

this observation implies that the right-hand side of equation (3.7) is a
[
Q(0), ·

]
-closed

term. Now suppose for the sake of argument that the right hand side of equation (3.7)
is also a

[
Q(0), ·

]
-exact term. Then given Q(0), Q(1), . . . , Q(n−1) we are able to define an

3A bit lower on this page we show that
[
Q(0), ·

]
is indeed a differential.
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arity n component Q(n). This allows us to construct the homological vector field Q in
an inductive manner. Indeed, if the right-hand side of (3.7) is exact with respect to the
given differential this means that there exists a degree +1 element, denoted Qn such that

[
Q(0), Qn

]
= −1

2
∑

1≤i,j≤n−1
i+j=n

[
Q(i), Q(j)

]
.

Furthermore since the bracket [·, ·] is additive with respect to the arity4 we have that the
arity of the right hand side is n and so Qn has to have arity n also. Hence, we can write
Qn = Q(n).

When considering the DGLA
(
X(E), [·, ·] ,

[
Q(0), ·

])
we have an induced complex

X1(E)
[Q(0),·]
−−−−→ X2(E)

[Q(0),·]
−−−−→ X3(E)

[Q(0),·]
−−−−→ · · · .

Thus combing the explanation above with this complex we see that the obstruction for
finding Q(n) lives in H2

(
X(E),

[
Q(0), ·

])
which is defined as

H2
(
X(E),

[
Q(0), ·

])
=
{X ∈ X2(E) |

[
Q(0), X

]
}

{[Q(0), Y ] | Y ∈ X1(E)}

If we are able to show that H2
(
X(E),

[
Q(0), ·

])
= 0 we are done and can extend the

homological vector field.
It is exactly the vanishing of the second cohomology group that is used in [LGLS20].

However there the authors chose to consider a particular Lie subalgebra of (X(E), [·, ·])
that is more practical to consider in the case of NQ-manifolds. For this we first need
some new terminology.

Definition 3.1.7 ([LGLS20]). A vertical vector field on an NQ-manifold (E,Q) over
a manifold M with sheaf of functions E is a C∞(M)-linear derivation of E .

From now on we consider the following differential graded Lie subalgebra(
Xvert(E), [·, ·] ,

[
Q(0), ·

])
.

By theorem 2.2.15 it can be seen that all of the Q(n) are vertical vector fields except for
Q(1), the component defining the binary bracket and anchor. However the Lie bracket
between Q(1) and Q(n) is vertical for n ≥ 2. Hence all of the obstruction classes for
n > 2 live in H2

(
Xvert(E),

[
Q(0), ·

])
. We can specify a bit more: again, using that the

Lie bracket adds the arity and that the right hand side of equation (3.7) has arity n, the
obstruction lies in

H2
(
X

(n)
vert(E),

[
Q(0), ·

])
, n > 2. (3.8)

Here X
(n)
vert(E) denotes the vertical vector fields of arity n. As is evident from this dis-

cussion the case n = 2 needs special care. Note that requirement (3.7) for n = 2 reads
4By this we mean that the arity of

[
Q(i), Q(j)] is i + j. This is not hard to see given the definition

of arity; it essentially follows from the fact that the degree of the product of two polynomials is also
additive.
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[
Q(0), Q(2)

]
= 1

2

[
Q(1), Q(1)

]
. The right hand side of this equation is vertical and so one

also needs [
Q(1), Q(1)

]
∈ Xvert(E). (3.9)

If this condition is met than its class in H2
(
X

(n)
vert(E),

[
Q(0), ·

])
is defined and so needs to

vanish.

Now we proceed by outlining the rest of the proof where we do not always give the
details and just provide the main steps.

Cohomology of vertical vector fields for geometric resolutions

Here we follow subsection 3.5.2 in [LGLS20]. By X
(n)
vert(E)k we denote the space of ver-

tical vector fields on E of arity n and degree k. Since vector fields of arity n can be seen as
C∞(M)-linear maps E∗ → S(n+1)(E∗) we have that X(n)

vert(E)• ∼= Γ
(
Hom•C∞(M)(E∗, Sn+1(E∗)

)
.

We have already seen that there is an isomorphism

Γ
(
Hom•C∞(M)(E∗, Sn+1(E∗)

) ∼= Γ
(
Sn+1(E∗)⊗ E

)
•
.

Hence there also is a natural isomorphism

X
(n)
vert(E)• ∼= Γ

(
Sn+1(E∗)⊗ E

)
•
.

We now define the following map.

Definition 3.1.8 ([LGLS20]). We define the root map as

rt : X(n)
vert(E)• → Γ

(
Sn+1(E∗)

)
•
⊗C∞(M) F [−1] ,

obtained by applying the map 1 ⊗ ρ to the component of a vertical vector field in
Sn+1(E∗)• ⊗ E−1.

Remark 3.1.9. Note the shift in degree for the elements in F . This is needed to make rt
into a degree 0 map.
Remark 3.1.10. We can also characterize the root map as follows: let f ∈ C∞(M),
ddRf ∈ Γ(T ∗M) the differential of f and ρ∗ the dual of the anchor. Note that when
x ∈ Γ(E−1) one has 〈x, ρ∗ddRf〉 = ρ(x) [f ] and so also for every vertical vector field

W (ρ∗ddRf) = rt(W ) [f ] . (3.10)

Before stating the following proposition we recall a definition from homological algebra.

Definition 3.1.11 ([Eis95]). Let (A•, dA) and (B•, dB) be two cochain complexes. A
cochain map f : A• → B• is called a quasi-isomorphism when the induced morphism
on cohomology is an isomorphism. That is

Hn (A•, dA)
∼=−→ Hn (B•, dB) .

The authors in [LGLS20] now proceed by stating and proving the following proposition.
We will only state it since we are only interested in its corollary.
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Proposition 3.1.12 (Proposition 3.64 in [LGLS20]). If (E, d, ρ) is a geometric resolution
of F , then

rt :
(
X

(n)
vert(E)•,

[
Q(0), ·

])
→
(
Γ(Sn+1(E∗))• ⊗C∞(M) F [−1] , Q(0) ⊗ 1

)
,

is a quasi-isomorphism.
The proof of this proposition is quite technical and for this we refer to section 3.5.2 in

[LGLS20]. We now state a lemma from [LGLS20] that is used in the proof of proposition
3.1.12 and the corollary that we are interested in.
Lemma 3.1.13 (Lemma 3.66 in [LGLS20]). Let (E, d, ρ) be a geometric resolution of F
and R a vertical vector field of degree i and arity n which is Q(0)-closed and rt(R) = 0.
Then R =

[
Q(0),W

]
for some vertical vector field W of arity n which has no component

in Γ (Sn+1(E∗)i ⊗ E−1).
The proof of this lemma is of a technical nature but it uses one main observation.

From the geometric resolution (E, d, ρ) we get an exact sequence on the level of sections

· · · d−→ Γ(E−2) d−→ Γ(E−1) ρ−→ F → 0. (3.11)

Since Sn+1(E∗)k is a vector bundle over M we have that Γ (Sn+1(E∗)k) is a projective
C∞(M)-module (see for instance theorem 12.32 in [Nes20]). In particular projective
modules are flat modules. This means that we can tensor the exact sequence (3.11) with
Γ (Sn+1(E∗)k) such that the resulting sequence is still exact. In this way we obtain the
following exact sequence

· · · 1⊗d−−→ Γ
(
Sn+1(E∗)k

)
⊗C∞(M)Γ(E−2) 1⊗d−−→ Γ

(
Sn+1(E∗)k

)
⊗C∞(M) Γ(E−1)

1⊗ρ−−→ Γ
(
Sn+1(E∗)k

)
⊗C∞(M) F → 0.

Which can be rewritten as the exact sequence5

· · · 1⊗ρ−−→ Γ
(
Sn+1(E∗)k ⊗ E−2

)
1⊗ρ−−→ Γ

(
Sn+1(E∗)k ⊗ E−1

)
1⊗ρ−−→ Γ

(
Sn+1(E∗)k

)
⊗C∞(M) F → 0.

It is the exactness of the above sequence that is key to proving lemma 3.1.13.
Corollary 3.1.14 (Corollary 3.67 in [LGLS20]). If (E, d, ρ) is a geometric resolution of
a foliation F we have the following:

1. Hk
(
X

(n)
vert(E),

[
Q(0), ·

]) ∼= Hk+1
(
Γ(Sn+1(E))⊗C∞(M) F , Q(0) ⊗ 1

)
,

2. H2
(
X

(n)
vert(E),

[
Q(0), ·

])
= 0 when n ≥ 3.

Proof. 1. When dropping the degree shift in F [−1] the degree of the complex shifts
up by one and so proposition 3.1.12 immediately gives the result.

2. Note that when we apply the first result with k = 2 we get that

H2
(
X

(n)
vert(E),

[
Q(0), ·

])
= H3

(
Γ(Sn+1(E))⊗C∞(M) F , Q(0) ⊗ 1

)
Remark that when n ≥ 3 elements of degree 3 in Γ(Sn+1(E∗)) vanish and so the
result immediately follows.

5This is due to the fact that Γ(·) is a strong monoidal functor.
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Extension of an almost Lie algebroid to a graded almost Lie algebroid on a
geometric resolution

In this part we will follow 3.5.3 in [LGLS20]. The main focus will be on the following
problem: given a geometric resolution (E, d, ρ) we automatically get E and Q(0) (as de-
scribed in the deformation problem above). We now want to search for a

[
Q(0), ·

]
-closed

Q(1) that induces our given ρ.

Coming back to the geometric resolution (E, d, ρ); we know that by definition of a
geometric resolution we have that ρ(Γ(E−1)) = F . Hence from proposition 1.2.39 we see
that E−1 can be equipped with an almost-Lie algebroid structure. This means we have an
anchor map and a binary bracket on the sections of E−1 that satisfies the Leibniz identity.
This corresponds precisely to a degree +1 vector field of arity one, denoted Q

(1)
E−1 . This

does not yet define an almost-Lie algebroid structure; the second condition is still missing
(the algebra morphism). It can be shown that equation (1.2) is satisfied if and only if
(see appendix A) [

Q
(1)
E−1 , Q

(1)
E−1

]
∈ Xvert(E−1). (3.12)

So, to start our deformation problem we need to extend Q
(1)
E−1 on E−1 to a vector

field Q(1) on the whole bundle E such that
[
Q(0), Q(1)

]
= 0 (we say Q(1) needs to be

Q(0)-closed). By means of a connection it is possible to lift Q(1)
E−1 to a vector field Q(1)

E on
E6. It may be tempting to set Q(1) = Q

(1)
E but it is not guaranteed that our choice of lift

indeed satisfies the Q(0)-closed condition. To remediate this problem, we define

Q(1) = Q
(1)
E + V, (3.13)

where V is a vertical vector field in ⊕i≥2Γ (S2(E∗)i+1 ⊗ E−i). This thus means that we
choose some V to define Q(1). Hence we also get a collection of Q(1)’s that depend on
different choices of V . We will now continue by showing that there is some particular
choice of V for which the corresponding Q(1) has the right properties we will describe
below. So an important property to keep in mind is that the vector field Q(1) depends on
the choice of V (this is not immediately clear from the notation).

Note that by (3.12)
[
Q

(1)
E , Q

(1)
E

]
∈ Xvert(E) and so[

Q(1), Q(1)
]

=
[
Q

(1)
E + V,Q

(1)
E + V

]
=
[
Q

(1)
E , Q

(1)
E

]
+

�
����

[
Q

(1)
E , V

]
+

���
��[

V,Q
(1)
E

]
+ [V, V ] .

Hence Q(1) satisfies the condition (3.9). Now we show that one can always choose V in
such a way as to make Q(1) a Q(0)-closed element. In this way we obtain a structure on
E, given by Q(0) +Q(1), that is called a graded almost Lie algebroid.

Definition 3.1.15 (Definition 3.68 in [LGLS20]). A graded almost Lie algebroid is
a complex of vector bundles in the sense of equation (3.1) equipped with a bracket

[·, ·] : Γ(E−i)× Γ(E−j)→ Γ(E−i−j+1),
6We do not provide details as to why this is possible.
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satisfying the following three axioms

[x, fy] = f [x, y] + ρ(x) [f ] y, (3.14)
d [x, y] = [d(x), y] + (−1)i [x, d(y)] , (3.15)
ρ([x, y]) = [ρ(x), ρ(y)] , (3.16)

for all x ∈ Γ(E−i), y ∈ Γ(E−j) and f ∈ C∞(M). As usual it is understood that ρ(x) = 0
when x ∈ Γ(E−i) and i ≥ 2.

We will now prove the following proposition.

Proposition 3.1.16 (Proposition 3.69 in [LGLS20]). Every geometric resolution (E, d, ρ)
and every almost Lie algebroid structure on E−1 ⊂ E can be extended to a graded almost
Lie algebroid structure on E.

The proof uses three lemmas.

Lemma 3.1.17 (Lemma 3.70 in [LGLS20]). A graded almost Lie algebroid structure is
in one-to-one correspondence with a graded manifold E equipped with a degree one vector
field Q = Q(0) + Q(1) of arity at most one such that equations (3.5), (3.6) and (3.9) are
satisfied.

Proof. The proof of this lemma is not provided in [LGLS20]. We will only describe the
very rough idea. It revolves mainly about using theorem 2.2.15. Given a graded manifold
E with vector field Q = Q(0) + Q(1) one can dualize Q(0) to obtain the map d. Equation
(3.5) then states that d2 = 0, i.e. d is a differential and so (E, d) becomes a complex
of vector bundles. From Q(1) we obtain an anchor map ρ : E−1 → TM and a binary
bracket. Equation (3.6) states that d is a derivation of the bracket which is equation
(3.15). Equation (3.14) comes free in this construction. Finally from (3.9) we get that[
Q(1), Q(1)

]
∈ Xvert(E) and so ρ defines an algebra morphism (again see appendix A) with

respect to the bracket which is (3.16).

Lemma 3.1.18 (Lemma 3.71 in [LGLS20]). The vector field
[
Q(0), Q(1)

]
with Q(1) as in

(3.13) defines an element in H2
(
X

(1)
vert(E),

[
Q(0), ·

])
.

Proof. As we already explained in the part right after example 2.2.14 we have that Q(1)f =
ρ∗ (ddRf) for f ∈ C∞(M). Hence we have[

Q(0, Q(1)
]

(f) =
(
d(2)

)∗
◦ ρ∗ (ddRf)

=
(
ρ ◦ d(2)

)∗
(ddRf) .

Now because of the definition of a geometric resolution one has ρ ◦ d(2) = 0 and so[
Q(0), Q(1)

]
∈ Xvert.

Lemma 3.1.19 (Lemma 3.72 in [LGLS20]). For every choice of V in (3.13) one has
rt
([
Q(0), Q(1)

])
= 0.
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Proof. We already calculated that
[
Q(1), Q(1)

]
∈ Xvert(E). Hence

[
Q(0),

[
Q(1), Q(1)

]]
is

also a vertical vector field. Now let f ∈ C∞(M) then using the Jacobi identity

0 = 1
2
[
Q(0),

[
Q(1), Q(1)

]]
(f)

=
[[
Q(0), Q(1)

]
, Q(1)

]
(f)

=
[
Q(0), Q(1)

]
(ρ∗ (ddRf)) .

Using the useful characterization of the root map (3.10) we see that rt
([
Q(0), Q(1)

])
[f ] = 0

for arbitrary f ∈ C∞(M) and so we conclude the lemma.

We are now ready to prove proposition 3.1.16 based on the proof of proposition 3.69
in [LGLS20].

Proof of proposition 3.1.16. For every choice of V in equation (3.13), lemma 3.1.18 implies
that

[
Q(0), Q(1)

]
is a vertical vector field. By lemma 3.1.19 we have rt

([
Q(0), Q(1)

])
= 0

and so by lemma 3.1.13 there exists some vertical vector field W with no component in
Γ(S2(E∗−1)⊗ E−1) for which [

Q(0), Q(1)
]

=
[
Q(0),W

]
. (3.17)

Recall that our Q(1) inherently depends on the choice of V . Hence we can define some
new Q(1) (that we may also denote by the same symbol) by replacing V by V −W . Note
that we clearly have

[
Q(0), Q(0)

]
= 0. Now from equations (3.13) and (3.17) we have that
[
Q(0), Q

(1)
E + V −W

]
= 0.

Taking inspiration from this equation we define Q(1) := Q
(1)
E + V − W . Then clearly[

Q(1), Q(1)
]
∈ Xvert(E) because all involved vector fields are vertical and

[
Q(0), Q(1)

]
= 0

by construction. This means we have shown that all equations mentioned in lemma 3.1.17
are met and so E together with Q = Q(0) + Q(1) defines a graded almost Lie algebroid
structure.

Extension of an almost Lie algebroid to a Lie ∞-algebroid structure on a
geometric resolution

In this final part everything will come together to show the following proposition.

Proposition 3.1.20 (Proposition 3.76 in [LGLS20]). Every graded almost Lie algebroid
(E,Q(0) +Q(1)) over a geometric resolution (E, d, ρ) can be extended to a Lie ∞-algebroid
structure on E.

Before giving the proof we show the following lemma.

Lemma 3.1.21 (Lemma 3.77 in [LGLS20]). For the arity one part Q(1) of the odd vector
field characterizing a graded almost Lie algebroid as in lemma 3.1.17, one has

rt
([
Q(1), Q(1)

])
= 0. (3.18)
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Proof. It is easy to see that the Jacobi identity implies
[[
Q(1), Q(1)

]
, Q(1)

]
= 0. Now using

that
[
Q(1), Q(1)

]
is vertical we can do the following calculation where f ∈ C∞(M):

0 =
[[
Q(1), Q(1)

]
, Q(1)

]
(f)

=
[
Q(1), Q(1)

] (
Q(1)

)
(f) +Q(1)

([
Q(1), Q(1)

]
(f)

)
=
[
Q(1), Q(1)

] (
Q(1)

)
(f) +Q(1)(0)

=
[
Q(1), Q(1)

]
(ρ∗(ddRf)) .

Thus comparing with equation (3.10) we have rt
([
Q(1), Q(1)

])
= 0.

With this lemma we are ready to prove proposition 3.1.20 following the proof outlined
in [LGLS20]

Proof of proposition 3.1.20. We are given a graded manifold E and vector field Q(0) +Q(1)

that together constitute a graded almost Lie algebroid. This thus means that Q(0) and Q(1)

satisfy the equations (3.5), (3.6)7 and (3.9) by lemma 3.1.17. These are also the equations
needed for the deformation problem we described. To solve the extension problem, we
need the equations (3.7) to have solutions: a necessary and sufficient condition for this is
for the cohomology classes (3.8) to vanish for all n ≥ 2. Using corollary 3.1.14 we have
for n ≥ 3 that

H2
(
X

(n)
vert(E),

[
Q(0), ·

])
= 0.

Thus, the only case left to study is the n = 2 case. By proposition 3.1.16
[
Q(1), Q(1)

]
∈

Xvert(E) and Q(0)-closed. In this setting it may happen that H2
(
X

(2)
vert(E),

[
Q(0), ·

])
is

non-trivial. However, note that it would also be sufficient for the cohomology class of[
Q(1), Q(1)

]
to vanish. By lemma 3.1.21 together with the quasi-isomorphism from propo-

sition 3.1.12 we have that the cohomology class of
[
Q(1), Q(1)

]
indeed vanishes.

So, to recap: we have shown that the deformation problem initially outlined can be
solved. Indeed starting with the graded almost-Lie algebroid (E,Q(0) + Q(1)) that one
gets from the gemetric resolution we can define, inductively, arity n components of degree
+1 denoted by Q(n) that satisfy the equations outlined for our deformation problem. This
allows us to define the homological vector field Q of degree +1 as

Q =
∑
n≥0

Q(n).

Hence, we have a Lie∞-algebroid structure on E by theorem 2.2.15. This means we have
shown the following corollary to proposition 3.1.20.

Corollary 3.1.22 (Corollary 3.79 in [LGLS20]). Every geometric resolution (E, d, ρ) and
every almost Lie algebroid structure on E−1 ⊂ E can be extended to a Lie ∞-algebroid
structure on E.

7Here we already assume that Q(1) is chosen to be
[
Q(0), ·

]
-closed. We showed this was possible in

the proof of proposition 3.1.16
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Adding in proposition 1.2.39 which states that for a geometric resolution (E, d, ρ) of
a singular foliation F the bundle E−1 ⊂ E can be equipped with an almost Lie algebroid
structure we have the following corollary.

Corollary 3.1.23 (Corollary 3.80 in [LGLS20]). Every geometric resolution (E, d, ρ) of
a singular foliation F admits a Lie ∞-algebroid structure over it.

Notice that this is exactly the content of theorem 3.1.2.

3.2 Examples of Universal Lie ∞-algebroids
Example 3.2.1 (Example 3.101 in [LGLS20]). In example 1.2.14 a geometric resolution
for the singular foliation Fϕ was described. We can define brackets to get a universal Lie
∞-algebroid of Fϕ. First some notation: we let I = (i1, . . . , ij) denote a multi-index, I is
denotes the multi-index I where we dropped is, • denotes concatenation of multi-indices,
ε(i1, . . . , ik) denotes the sign of the permutation needed to bring i1, . . . , ik up to the front
in I1 • · · · • Ik in that given order and finally ∂I denotes ∂

∂xi1
∧ · · · ∧ ∂

∂xij
. Now one can

define brackets as follows

{∂I1 , . . . , ∂Ik
}k =

∑
i1∈I1,...,ik∈Ik

ε(i1, . . . , ik)
∂kϕ

∂xi1 · · · ∂xik
∂
I

i1
1 •···•I

ik
k

.

For example, we can calculate the 2-ary bracket{
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
,
∂

∂x4
∧ ∂

∂x5
∧ ∂

∂x6

}
2
.

For short notation we write the first entry as ∂123 and the second one as ∂456. Now note
that both of these trivector fields are actually degree −2 elements. Indeed E−2 = ∧2TCn

so Γ(E−2) = X3. Now for k = 2 one can show that ε(i, j) = (−1)i+j−1 and so the RHS of
the formula above becomes

∑
i=1,2,3
j=4,5,6

(−1)i+j−1 ∂2ϕ

∂xi∂xj
∂{1,2,3}i•{4,5,6}j .

So now we can calculate the complete 2-ary bracket but as this would become quite a long
formula that would not bring much more insight, we focus on for example the i = 1, j = 4
term:

∂2ϕ

∂x1∂x4

(
∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x5
∧ ∂

∂x6

)
.

Now as {·, ·}2 is a degree +1 bracket we have that deg{∂I , ∂J}2 = deg ∂I +deg ∂J +1 so in
this case we have that deg{∂123, ∂456}2 = −2− 2 + 1 = −3. And indeed, the term above
is a four vector field and by definition of the geometric resolution this corresponds to a
degree −3 element.

�

Example 3.2.2 (Example 3.97 in [LGLS20]). In example 1.2.58 we displayed a geometric
resolution for the singular foliation arising from the action of sl2(R) on R2. We now



56 CHAPTER 3. UNIVERSAL LIE ∞-ALGEBROID OF A SINGULAR FOLIATION

give a Lie ∞-algebroid structure on the given geometric resolution. Then we may also
immediately conclude that this is the universal one. Since we saw that E−1 ∼= sl2(R) [1]
we can define the bracket between two elements in E−1 to just be the Lie bracket of the
corresponding elements in sl2(R) and then adjust the degree. This procedure gives a way
to compute the bracket between constant sections of E−1 and by the Leibniz identity we
can extend this to the whole bundle. Now we define a bracket between elements of E−1
and E−2 for which we first note that

{ẽ, ds} = xy{ẽ, h̃}+ ρ(ẽ)(xy)h̃+ ρ(ẽ)(y2)ẽ− x2{ẽ, f̃} = 0.

Indeed by the definition of the differential d we have that ds = xyh̃ + y2ẽ − x2f̃ and so
we also have that, by the Leibniz identity,

{ẽ, xyh̃+ y2ẽ− x2f̃} = xy{ẽ, h̃}+ ρ(ẽ)(xy)h̃
+ y2{ẽ, ẽ}+ ρ(ẽ)(y2)ẽ
− x2{ẽ, f̃} − ρ(ẽ)(x2)f̃ .

Now we use that ρ(ẽ) = e = x ∂
∂y

and so ρ(ẽ)(x2) = 0 and also {ẽ, ẽ} = 0 because, when
we consider ẽ as an element of sl2 its bracket with itself vanishes.

Since the map d is injective on a dense open subset and is a derivation of the bracket
{·, ·}, this implies that {ẽ, s} = 0. A completely similar reasoning can then be used to
also recover {f̃ , s} = 0 and {h̃, s} = 0. Since this is a bracket defined only on constant
sections, we need to extend it to a bracket between sections of E−1 and E−2 by the Leibniz
property. There is no k-ary bracket for k ≥ 3.

Note that this foliation F is given by a Lie algebra action and so there also is a
transformation Lie algebroid A = R2× sl2(R). In example 2.2.13 it was shown that a Lie
algebroid can be seen as a Lie∞-algebroid denoted (A,Q), and so by theorem 3.1.3 there
exists a Lie ∞-algebroid morphism Φ : (A,QA) → (E,Q) which in this case can be seen
to be the inclusion 1⊕ 0 : A→ E = E−1 ⊕ E−2. �



Chapter 4

Geometry of Singular Foliations

In this chapter we will exploit the universal Lie∞-algebroids associated to singular folia-
tions F to get information about the geometry of F . We will do this by means of several
cohomologies that can be associated to the Lie ∞-algebroids.

4.1 Universal Foliated Cohomology
A first example of a cohomology associated to a singular foliation is the so-called universal
foliated cohomology.

Lemma 4.1.1 (Lemma 4.1 in [LGLS20]). Let F be a singular foliation on M . Let (E,Q)
and (E ′, Q′) be two universal Lie ∞-algebroids of F with sheaves of functions E and E ′
respectively. The cohomologies of (E .Q) and (E ′, Q′) are canonically isomorphic as graded
commutative algebras.

Proof. In chapter 3 we noted that there exist two Lie ∞-algebroid morphisms ϕ : E ′ → E
and ψ : E → E ′ such that ϕ ◦ ψ ∼ 1E and ψ ◦ ϕ ∼ 1E ′ (here ∼ denotes homotopy
equivalence of morphisms of Lie ∞-algebroids). So in particular Φ := ϕ ◦ ψ and Ψ :=
1E are homotopic and by proposition 3.57 in [LGLS20] they are inverses on the level
of cohomology. Moreover this does not depend on the choice of ϕ since another map
ϕ̃ : E ′ → E and ϕ are homotopic and so would define the same isomorphism on the level
of cohomology.

This lemma ensures that the following is well-defined.

Definition 4.1.2 (Definition 4.2 in [LGLS20]). Let F be a singular foliation on M that
admits a geometric resolution. We call the cohomology of (E , Q), where E is the sheaf of
functions of any universal Lie∞-algebroid (E,Q) of the given foliation F , the universal
foliated cohomology of F and denote it by HU(F).

For the 0-th cohomology there is a nice interpretation that we will explain now. For
the higher cohomologies this becomes more difficult. Note that by definition

H0
U(F) = ker (Q : E0 → E1)

im (Q : E−1 → E0) ,

and by definition E−1 = {0} so im (Q : E−1 → E0) = {0}. Hence it remains that

H0
U(F) = ker (Q : E0 → E1) .

57
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Now as noted above we know that E0 = C∞(M) so pick an f ∈ C∞(M) then Qf ∈ Γ(E∗−1)
(also noted earlier). Now if f ∈ H0

U(F) we need Qf to be the zero section in E∗−1. Clearly
this is the case when for all x ∈ Γ(E−1) we have that 〈Qf, x〉 = 0. But as we remarked ear-
lier we have that for all x ∈ Γ(E−1) and f ∈ C∞(M) the following holds 〈Qf, x〉 = ρ(x)f
so using this we see that 〈Qf, x〉 = 0 if and only if ρ(x)f = 0 for all x ∈ Γ(E−1). So, since
ρ (Γ(E−1)) = F it follows that this is equivalent to f being constant along the leaves of
F . By this we conclude that H0

U(F) consists of those f ∈ C∞(M) that are constant along
the leaves of F .

There also is another cohomology that will be of interest. Define the following space

Ω(F) :=
⊕
k≥0

HomO
(
∧kOF ,O

)
.

We will call this the space of longitudinal forms that we equip with the following
differential (here the hat means that that specific entry is left out)

dL(α)(X0, . . . , Xk) =
k∑
i=0

(−1)iXi

(
α(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jα
(
[Xi, Xj] , X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
,

where α ∈ Ωk(F) and X0, . . . , Xk ∈ F . Equipped with this differential we can define the
cohomology of the complex (Ω(F), dL) and call it the longitudinal cohomology of F
and denote it by H•(F).
Remark 4.1.3. Note that each α ∈ Ωk(F) induces a k-form on the regular leaves of F .
Indeed, if m ∈ M is a regular point of the foliation then it is contained in a regular leaf
Lm and an α ∈ Ωk(F) induces the unique k-form αLm defined as

α(X1, . . . , Xk)|m = αLm(X1(m), . . . , Xk(m)).

This need not to be true for the singular points of the foliation: consider F = 〈x ∂
∂x
〉 and

define α ∈ Ω1(F) as
α : ∧1

OF → O : Fx ∂
∂x
7→ F.

Then the singular leaf {0} has dimension 0 and so it does not permit a 1-form satisfying
the above.

By definition of the universal Lie ∞-algebroid of F we have that ρ (Γ(E−1)) = F and
so it makes sense to define the following map

ρ∗ : Ω(F)→ E : ρ∗α(x1, . . . , xk) 7→ α(ρ(x1), . . . , ρ(xk)). (4.1)

Here we have x1, . . . , xk ∈ Γ(E−1) and ρ∗α ∈ Γ(E∗−1).
Although the universal foliated cohomology and the longitudinal cohomology do not seem
to be related to one another at first sight the following lemma states otherwise. For the
proof we refer to [LGLS20]

Lemma 4.1.4 (Lemma 4.5 in [LGLS20]). Let F be a singular foliation on M that admits a
universal Lie ∞-algebroid. There is a canonical algebra morphism ρ∗ : H•(F)→ H•U(F).
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4.2 Isotropy Lie ∞-algebra
Androulidakis and Skandalis defined a rather simple invariant of a singular foliation in
the isotropy Lie algebra at a point m ∈ M on a manifold that has a singular foliation
F . It is defined as the quotient F(m)/ImF . Here F(m) denotes the sections of F that
vanish at m and Im ⊂ C∞(M) the functions vanishing at m. Note that ImF forms a
Lie ideal and so the quotient indeed is a Lie algebra. In this section we will provide a
generalization of this notion by defining the (homotopy) isotropy functor by which we get,
associated to each point m ∈M , an L∞-algebra that we will call the isotropy L∞-algebra
of F at m ∈M . The isotropy Lie algebra as defined by Androulidakis and Skandalis will
be recovered from this L∞-algebra.

We begin by fixing some notation: let V → M be some vector bundle then by imV
we will denote the fiber of V above m. If ϕ : V → V ′ is a morphism of vector bundles
over M then imϕ denotes the restriction of ϕ to the fibers. Now let (E, d, ρ) be a geometric
resolution of a singular foliation F on M . Then the complex

· · · imd(4)
−−−→ imE−3

imd(3)
−−−→ imE−2

imd(2)
−−−→ ker (imρ)→ 0, (4.2)

may have cohomology as the following example illustrates.

Example 4.2.1. Recall the geometric resolution from example 1.2.58. Over the origin
0 ∈ R2 we can form the following sequence

i0R [2] i0d(2)
−−−→ ker (i0ρ)→ 0. (4.3)

By definition of the anchor map as ρ(ẽ) = e, ρ(f̃) = f and ρ(h̃) = h it is not hard to see
that i0ρ vanishes and hence that also ker (i0ρ) = sl2 [1]. Similarly by definition of d(2) one
can see that i0d

(2) = 0 and hence the sequence (4.3) has cohomology.
�

Remark 4.2.2. Note that example 4.2.1 also illustrates that the geometric resolution from
example 1.2.58 is minimal at the origin.

This means we can define the following graded vector space

H•(F ,m) =
⊕
i≥1

H−i(F ,m). (4.4)

Here H−i(F ,m) denotes the degree −i cohomology of the complex (4.2). At first sight
it is not immediately clear why this construction is independent of the chosen geometric
resolution. To show this we have the following lemma.

Lemma 4.2.3 (Lemma 4.8 in [LGLS20]). Let F be a singular foliation that admits geo-
metric resolutions in the neighborhood of a point m ∈M . Then the following holds

1. the cohomology of the complex (4.2) is independent of the choice of geometric reso-
lution for F ,

2. For every geometric resolution (E, d, ρ) of F which is minimal at m and every
i ≥ 2, the vector space H−i(F ,m) is canonically isomorphic to imE−i. Furthermore
H−1(F ,m) is canonically isomorphic to the kernel of imρ : imE−1 → TmM .
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Proof. 1. An immediate consequence of lemma 1.2.55 is that two geometric resolutions
(E, d, ρ) and (E ′, d′, ρ′) are homotopy equivalent. All the maps that are involved in this ho-
motopy equivalence are C∞(M)-linear and so they restrict nicely to the fibers where they
give a homotopy equivalence between the complexes (imE, imd, imρ) and (imE ′, imd′, imρ′)
which immediately gives the result.

2. Let (E, d, ρ) be a geometric resolution of F which is minimal at m ∈ M . By def-
inition of minimality we have that for all i ≥ 2 the maps imd(i) : imE−i → imE−i+1 vanish
and so ker

(
imd

(i)
)

= imE−i and im
(
imd

(i+1)
)

= {0} by which it immediately follows that
H−i(F ,m) and imE−i are isomorphic. The statement for i = 1 is obvious.

Proposition 4.2.4 (Proposition 4.10 in [LGLS20]). Let F be a singular foliation that
admits geometric resolutions on the neighborhood of some m ∈ M . Then the following
are equivalent:

1. There is a neighborhood of m ∈M on which F is a Debord foliation,

2. H−i(F , x) = 0 for all i ≥ 2 and for all x in a neighborhood of m,

3. H−2(F ,m) = 0.

Proof. 1⇒ 2 In the smooth case F is a Debord foliation if and only if it is a projective
C∞(M)-module. Hence it admits a geometric resolution of length 11. Hence we certainly
have that H−i(F , y) = 0 for all i ≥ 2 and y in a neighborhood of m since iyE−i = 0 for
all i ≥ 2.

2⇒ 3 This is quite obvious.
3⇒ 1 Assume that H−2(F ,m) = 0 then by definition we have that ker imd(2) =

im imd
(3). Now use the following result from linear algebra: perturbing the elements of a

matrix does not decrease the rank of the matrix (see appendix B for a small proof of this
fact). Using this we see that there exists some neighborhood U of m ∈M such that:

1. the dimension of the image of ixd(3) at every x ∈ U has to be greater than or equal
to its dimension at m,

2. the dimension of ker ixd(2) at every x ∈ U has to be lower than or equal to its
dimension at m.

But notice that, by definition of a complex, we always have that im ixd
(3) ⊂ ker ixd(2)

and so we always have dim im ixd
(3) ≤ dim ker ixd(2) for all x ∈ U . Now note that from

our observations above it also follows that dim im ixd
(3) ≥ im imd

(3) = dim ker imd(2) ≥
dim ker ixd(2) which can only hold when ker ixd(2) = im ixd

(3) for all x ∈ U . From this it
immediately follows that H−2(F , x) = 0 for all x ∈ U . This implies that the map d(2)|U :
E−2|U → E−1|U has constant rank and so d(2)(E−2|U) ⊂ E−1|U as subbundles. From this
it follows that E ′−1 :=

(
E−1/d

(2)(E−1)
)
|U is a vector bundle and because ρ ◦ d(2) = 0 the

anchor restricts to E ′−1 to define a morphism of C∞(M)-modules ρ(E ′−1) → F which,
by construction, is an isomorphism. Because Γ(E ′−1) is projective it follows that F is
projective and hence Debord on U .

1As explained above, a geometric resolution of the C∞(M)-module F can be thought of as finding a
projective resolution for F in the category of C∞(M)-modules (but again note it is not exactly the same
as not all projective modules come from vector bundle sections).
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Intermezzo: Isotropy Functor

Let M be a smooth manifold then for all k ∈ N∪{∞} the Lie k-algebroids together with
the Lie ∞-algebroid morphisms form a category that we denote by Lie− k− algoidM
(one can also consider the category where we mod out the arrows by homotopy equiva-
lences to get the category hLie− k− algoidM of homotopy equivalent Lie∞-algebroids).
When M is a point we recover L∞-algebras which themselves form a category that
we denote by Lie− k− alg (here there also is the homotopy equivalent counterpart
hLie− k− alg). Our aim is to define the isotropy functor at a point m ∈M

hJm : hLie− k− algoidM → hLie− k− alg. (4.5)

We proceed by defining this functor on objects and then on arrows in the category without
worrying about homotopy equivalences for now.

• On objects: let (F,QF ) be a Lie k-algebroid over M with anchor ρ. According to
the axioms of Lie k-algebroids the k-ary bracket restricts to the graded vector space

K•(F,m) = ker imρ⊕
⊕
i≥2

imF−i.

Here we use ker imρ to ensure that the 2-ary bracket between elements in K•(F ,m)
is well-defined. This has to do with the chosen extension to a local section of an
element in imE−1. When restricting to ker imρ the Leibniz identity ensures that the
bracket is independent of the chosen extension.

• On arrows: let Φ : Γ(S(F ∗))) → Γ(S(E∗))) be an arbitrary Lie k-algebroid mor-
phism from (E,QE) to (F,QF ). By C∞(M)-linearity this restricts to a morphism

imΦ : S(imF ∗)→ S(imE∗).

Considering only the linear part of Φ we see that this linear part must be a chain map
(because it must commute with Q(0)

E and Q(0)
F and they are dual to the differentials

in the complex) so we get a graded algebra morphism

Jm(Φ) : S(K•(F,m)∗)→ S(K•(E,m)∗),

which, by definition, is a Lie k-algebra morphism.

In this way we have completely defined the functor Jm. We now pass to the categories
hLie− k− algoidM and hLie− k− alg to define the isotropy functor. For this we need
the following lemma.

Lemma 4.2.5. Let Φ,Ψ : (E,Q) → (E ′, Q′) be two homotopic Lie ∞-algebroid mor-
phisms over M . For every point m ∈ M , Jm(Φ), Jm(Ψ) : Jm(E,Q) → Jm(E ′, Q′) are
homotopic L∞-algebra morphisms.

Using lemma 4.2.5 it is clear that Jm passes to the category of homotopy equivalent
Lie ∞-algebroids

hJm : hLie− k− algoidM → hLie− k− alg.
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Back to the isotropy Lie ∞-algebra

We will now use the isotropy functor to define the isotropy L∞-algebra of a singular
foliation at a point m ∈ M . Let F be a foliation on a manifold M with universal Lie
∞-algebroid (E,Q) then we may apply Jm to (E,Q) and get a L∞-algebra structure on
the complex

· · · imd(4)
−−−→ imE−3

imd(3)
−−−→ imE−2

imd(2)
−−−→ ker (imρ)→ 0. (4.6)

Because Jm maps homotopy equivalences of Lie∞-algebroids to homotopy equivalences of
L∞-algebras, we may restrict to ‘looking up to homotopy’. All universal Lie∞-algebroids
of F are unique up to homotopy so, after applying the isotropy functor, any other choice
of universal Lie ∞-algebroid results in a homotopy equivalent L∞-algebra. By this ob-
servation, combined with lemma 4.2.3 we have that we may choose the universal Lie
∞-algebroid in a particular way as to induce an L∞-algebra structure on the cohomology
of (4.6) i.e. choosing the Lie ∞-algebroid to be minimal at m ∈ M (this is (locally)
always possible).

Definition 4.2.6 (Definition 4.11 in [LGLS20]). Let (E,Q) be a universal Lie∞-algebroid
of F which is minimal at m ∈ M . Then hJm(E,Q) is an L∞-algebra structure on
H•(F ,m), which we denote by (H•(F ,m), Qm) and call the isotropy L∞-algebra of F
at m.

At first sight this isotropy L∞-algebra seems to depend on the choice of universal Lie
∞-algebroid of F but the following proposition ensures this is not the case.

Proposition 4.2.7 (Proposition 4.12 in [LGLS20]). Any two isotropy Lie∞-algebras at m
of F , constructed out of two universal Lie∞-algebroids of F minimal at m, are isomorphic
through an isomorphism whose linear part is the identity on H•(F ,m). Furthermore the
restricted 2-ary bracket is a graded Lie algebra bracket on H•(F ,m) which does not depend
on any choices made in the construction.

Before proving this proposition, we show a lemma which will be helpful in the proof
but for which the proof in [LGLS20] is very brief and without details. It concerns L∞-
algebras whose 1-ary bracket vanishes which is the case for an isotropy L∞-algebra as
defined above. This follows from minimality of the universal Lie∞-algebroid. Indeed the
1-ary bracket on the isotropy L∞-algebra is dual to the map imd. Since the universal Lie
∞-algebroid is minimal at m ∈ M the maps imd vanish and so the 1-ary bracket also
does.

Lemma 4.2.8 (Lemma 4.13 in [LGLS20]). Let (V,Q) and (V ′, Q′) be two L∞-algebras
whose 1-ary bracket is equal to zero. Then the following holds:

1. its 2-ary bracket is a graded Lie algebra bracket,

2. the linear part of any L∞-algebra morphism from (V,Q) to (V ′, Q′) is a graded Lie
algebra morphism of the 2-ary bracket,

3. the L∞-algebras (V,Q) and (V ′, Q′) are isomorphic to one another if and only if
they are homotopy equivalent.
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Proof. 1. Since we are actually working with an L∞ [1]-algebra we want to show that the
space (V [−1] , [·, ·]) is a graded Lie algebra. Here the bracket [·, ·] is the one we get from
the binary bracket {·, ·}2 on V (from now on we will denote this binary bracket without
the subscript 2); in the following way

[v1, v2] = (−1)|v1|{x1, x2} = (−1)|x1|+1{x1, x2}.

Here v1 and v2 are representatives of the elements x1, x2 ∈ V in V [−1] respectively.
Showing that the bracket [·, ·] is a graded Lie algebra bracket amounts to showing that
the following equation is satisfied for all v1, v2, v3 ∈ V [−1]

[v1, [v2, v3]] = [[v1, v2] , v3] + (−1)|v1||v2| [v2, [v1, v3]] . (4.7)

We will now do the following steps: first we show a Jacobi-like identity for the binary
bracket {·, ·} and secondly we will show that equation (4.7) induces the identity found
in the first step, showing by computation that the found identity and (4.7) are actually
equivalent.

Consider the n = 3 higher Jacobi identity∑
σ∈S(2,1)

ε(σ){{xσ(1), xσ(2)}, xσ(3)} = 0. (4.8)

It is easy to compute that S(2, 1) = {e, (23), (123)} and so we can write out (4.8) out in
full with the corresponding Koszul signs

{{x1, x2}, x3}+ (−1)|x1||x2|{{x1, x3}, x2}+ (−1)|x1||x2|+|x1||x3|{{x2, x3}, x1} = 0. (4.9)

Note that {{x1, x3}, x2} = (−1)|x1||x2|{{x3, x1}, x2} so replacing this term in (4.9) and
multiplying everything by (−1)|x1||x3| we get that

(−1)|x1||x3|{{x1, x2}, x3}+ (−1)|x2||x3|{{x3, x1}, x2}+ (−1)|x1||x2|{{x2, x3}, x1} = 0.
(4.10)

On the other hand, we have that

[v1, [v2, v3]] =
[
v1,−(−1)|x2|{x2, x3}

]
= −(−1)|x2| · −(−1)|x1|{x1, {x2, x3}}
= (−1)|x1|+|x2|+|x1||x2|+|x1||x3|+|x1|{{x2.x3}, x1}.

[[v1, v2] , v3] =
[
−(−1)|x1|{x1, x2}, v3

]
= (−1)|x1| · (−1)|x1|+|x2|+1{{x1, x2}, x3}
= −(−1)|x2|{{x1, x2}, x3}.

(−1)(|x1|+1)(|x2|+1) [v2, [v1, v3]] = (−1)|x1||x2|+|x1|+|x2|
[
v2,−(−1)|x1|{x1, x3}

]
= −(−1)|x1| · −(−1)|x2|(−1)|x1||x2|+|x1|+|x2|{x2, {x1, x3}}
= (−1)|x1|+|x2|(−1)|x1||x2|+|x1|+|x2|(−1)|x2|(|x1|+|x3|+1){{x1, x3}, x2}
= (−1)|x2||x3|+|x2|+|x1||x3|{{x3, x1}, x2}.
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Now we apply (4.7) and replace all terms with the [·, ·]-bracket by its {·, ·}-bracket
counterpart. This gives us the following identity

(−1)|x1|+|x2|+|x1||x2|+|x1||x3|+|x1|{{x2.x3}, x1} =− (−1)|x2|{{x1, x2}, x3}
+ (−1)|x2||x3|+|x2|+|x1||x3|{{x3, x1}, x2}.

(4.11)

We now multiply equation (4.11) by (−1)−|x2|−|x1||x3| and after canceling some terms in
the exponents it is not hard to see that we recover equation (4.10). So to conclude: we
have shown that equation (4.7) implies equation (4.10); of course one could do the process
above in reverse to show that equation (4.10) implies equation (4.7). So we see that these
two equations are exactly the same but written down with elements in different vector
spaces. Since we derived equation (4.10) from the higher Jacobi identity we finally have
that [·, ·] indeed satisfies the graded Jacobi identity (4.7) and so (V, [·, ·]) forms a graded
Lie algebra which is what we wanted to show.

2. This follows immediately from the definition of an L∞-algebra morphism together
with the observation that the 1-ary brackets are zero. Indeed, writing out the definition
2.1.4 for k = 2 and n = 2 we have the following (where µk denotes the k-ary bracket on
V and µ′k the k-ary bracket on V ′)∑

σ∈S(2,0)
ε(σ)f1

(
µ2 ⊗ 1

⊗0
) (
xσ(I)

)

=
∑

σ∈S(k1,...,kj)
k1+···+kj=2

j=1,2

ε(σ)
j! µ′j

(
fk1 ⊗ · · · ⊗ fkj

)
(xσ(I)). (4.12)

Hence using S(2, 0) = {1} and S(1, 1) = S2 = {1, σ} this yields

f1(µ2)(xI) = µ′1(f2)(xI) + 1
2µ
′
2(f1 ⊗ f1)(xI) + 1

2(−1)|x1||x2|µ′2(f1 ⊗ f1)(xσ(I))

Using that µ′1 ≡ 0 now yields that

f1(µ2)(xI) = 1
2µ
′
2(f1 ⊗ f1)(xI) + 1

2(−1)|x1||x2|µ′2(f1 ⊗ f1)(xσ(I)).

Now using that f1 : V → V ′ is a degree 0 map we see that |x1| = |f1(x1)| and the same
for |x2|. This allows us to write

f1(µ2)(xI) = 1
2µ
′
2(f1 ⊗ f1)(xI) + 1

2(−1)|f1(x1)||f1(x2)|µ′2(f1 ⊗ f1)(xσ(I)).

Using graded symmetry of the binary bracket µ′2 we have

µ′2(f1 ⊗ f1)(xI) = (−1)|f1(x1)||f1(x2)|µ′2(f1 ⊗ f1)(xσ(I)),

and so
f1(µ2)(xI) = µ′2(f1 ⊗ f1)(xI).
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I.e. we recover that
f1(µ2(x1, x2)) = µ′2(f1(x1), f1(x2)),

This last equation exactly states that the linear part f1 : V → V ′ is a graded Lie algebra
homomorphism.

3. Let Φ : S(V ′∗)→ S(V ∗) be an L∞-algebra morphism. This is a morphism between
the spaces of functions on V ′ and V respectively. Just like in the smooth manifold case
one can show that a morphism between the spaces of functions is invertible if and only
if the underlying/induced smooth map between the manifolds is invertible. Hence one
can show that Φ is invertible if and only if the linear part ϕ : V → V ′ is invertible.
Clearly, when Φ : (V,Q) → (V ′, Q′) is a part of a homotopy equivalence, the linear part
ϕ : V → V ′ is also part of a homotopy equivalence. Because the 1-ary brackets correspond
to the differentials in the complexes V and V ′ these differentials are zero. A homotopy
equivalence between complexes with the zero differential clearly has to be invertible.

Proof of proposition 4.2.7. By the functorial properties of the isotropy functor hJm two
isotropy L∞-algebras at some point m ∈ M of the foliation F and which are minimal at
m are homotopy equivalent. By (3) of lemma 4.2.8 they are isomorphic and {·, ·}2 yields
a graded Lie algebra structure by (1) of lemma 4.2.8.

So after all we are left with a graded Lie algebra (H•(F ,m), {·, ·}2). In particular this
bracket restricts to H−1(F ,m); indeed {·, ·}2 has degree +1 and so when x, y ∈ H−1(F ,m)
we have

deg ({x, y}2) = deg(x) + deg(y) + 1 = −1.

This makes (H−1(F ,m), {·, ·}2) into an ordinary Lie algebra. As the name of the isotropy
L∞-algebra already hinted, the isotropy Lie algebra from Androulidakis and Skandalis
can indeed be recovered from this L∞-algebra as the following proposition states.

Proposition 4.2.9 (Proposition 4.14 in [LGLS20]). The isotropy Lie algebra of F at
m ∈ M is isomorphic to the degree −1 component of the isotropy L∞-algebra H•(F ,m)
of F at m.

Proof. We are going to construct a Lie algebra (iso)morphism τ : H−1(F ,m)→ gm where
gm = F(m)/ImF is the isotropy Lie algebra as defined by Androulidakis and Skandalis.
To start pick an element e ∈ ker imρ ⊂ imE−1 and let ẽ be a (local) extension of e to a
section of E−1 i.e. ẽ(m) = e. By definition of a geometric resolution ρ (Γ(E−1)) = F and
it easy to see that ρ(ẽ) ∈ F(m). The element ρ(ẽ) has an equivalence class in F(m)/ImF
that we denote by τ(e). This is also how we define the map τ . We now check that this is
indeed a well-defined map. For this let ê denote another extension of e to Γ(E−1). Then
clearly we must have that

ẽ = ê+ (section vanishing at m),

but one can also show that ImΓ(E−1) = {X ∈ Γ(E−1) | X(m) = 0} and so ẽ and ê
can only differ by an element in ImΓ(E−1). Now using that the anchor is C∞(M)-linear
together with ρ (Γ(E−1) = F we see that ρ (ImΓ(E−1)) = ImF and so ρ(ẽ) and ρ(ẽ) differ
by an element in ImF which exactly means that they define the same element τ(e) ∈ gm.
We now proceed by showing that τ is a bijection.
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• Surjectivity: again, the crucial observation to be made here is that ρ (Γ(E−1)) = F .
Let X ∈ gm and X a lift of X to F(m) which you can clearly take (at least locally)
to be of the form ρ(ẽ) where ẽ is again an extension of element e ∈ ker imρ to Γ(E−1).

• Injectivity: pcik an element e ∈ imE−1 and let ẽ ∈ Γ(E−1) again be a local extension
of e. Note that τ(e) = ρ(ẽ) ∈ gm and so τ(e) = 0 if and only if ρ(ẽ) ∈ ImF . This
precisely means that

ρ(ẽ) =
k∑
i=1

fiXi, fi ∈ Im and Xi ∈ F .

Again, we use that ρ (Γ(E−1)) = F so we can choose sections ẽi ∈ Γ(E−1) such that
ρ(ẽi) = Xi for all i = 1, . . . , k. Hence, we have that

ρ(ẽ) =
k∑
i=1

fiXi ⇔ ρ

(
ẽ−

k∑
i=1

fiẽi

)
= 0.

Because the complex (E, d, ρ) is a geometric resolution we have that im d(2) = ker ρ
. The equation above implies that there exists an element h ∈ Γ(E−1) such that

ẽ−
k∑
i=1

fiẽi = d(2)h.

Evaluating this expression at m ∈M gives that

ẽ(m) =
k∑
i=1

fi(m)ẽi(m) +
(
imd

(2)
)

(h(m)),

and since fi ∈ Im we have fi(m) = 0 for all i = 1, . . . , k. Because the geometric
resolution was chosen to be minimal at m ∈M we also have that imd(2) ≡ 0 showing
that e = ẽ(m) = 0. This shows τ is injective.

Examples of Isotropy L∞-algebras
We will now display some examples of isotropy L∞-algebras.

Example 4.2.10 (Example 4.20 in [LGLS20]). Let F be a regular foliation on a manifold
M . We know by Frobenius’s theorem that F can be seen as F = Γc(TF ) for TF the
associated tangent distribution. Hence we can form the minimal geometric resolution
E−1 := T [1]F ⊂ T [1]M , E−i = 0 for all i > 1 and the anchor map just the inclusion
map. In particular we have that around every point m ∈ M one has H•(F ,m) = 0.
Note that this also implies that the isotropy Lie algebra gm is zero for regular foliations,
a fact that was already shown in lemma 1.1 in [AZ13]. We can also use exactly the same
argument to show that for a regular point m ∈ M of a singular foliation the isotropy
L∞-algebra is identically zero.

�
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Example 4.2.11 (Example 4.22 in [LGLS20]). Consider the foliation given by the action
of sl2(R) on R2 as discussed earlier in examples 1.2.58 and 3.2.2. Using the universal Lie
∞-algebroid structure found in example 3.2.2 we can use the definition of the isotropy
L∞-algebra to compute it. From example 4.2.1 we see that the we get an isotropy Lie
2-algebra

H•(F , 0) = R [2]⊕ sl2(R) [1] .
We have a bracket on H−1(F , 0) ∼= sl2(R) [1] and for degree reasons all other brackets
vanish.

�

Example 4.2.12 (Example 4.26 in [LGLS20]). We have encountered the foliation Fϕ
earlier; in example 3.2.1 we gave a universal Lie ∞-algebroid for Fϕ which we will now
use to get an isotropy L∞-algebra at the origin. All (first order) partial derivatives of ϕ
vanish at the origin. So the geometric resolution from example 1.2.60 becomes minimal at
the origin. From this it also immediately follows, by definition of the geometric resolution,
that H−k(Fϕ, 0) = ∧k+1Cn and that for all k ≥ 2 the k-ary brackets are the restrictions
of the ones in example 3.2.1 in the following way

{∂I1 , . . . , ∂Ik
}k =

∑
i1∈I1,...,ik∈Ik

ε(i1, . . . , ik)
∂kϕ

∂xi1 · · · ∂xik
(0)∂

I
i1
1 •···•I

ik
k

. (4.13)

�

4.3 Minimal Rank Lie algebroids Defining a Foliation
Above we saw that Lie algebroids account for a large class of examples of singular foli-
ations. In this section we will exploit the isotropy L∞-algebra to answer the following
question: does there always exist a Lie algebroid of minimal rank which locally induces
the foliation F? Before proceeding with explaining these notions we do some preparatory
work. The following proposition mentions Chevalley-Eilenberg cohomology, a very brief
introduction to this formalism can be found in appendix C.

Proposition 4.3.1 (Proposition 4.27 in [LGLS20]). Let F be a singular foliation that
admits a geometric resolution of finite length in a neighborhood of m ∈ M . Equip
H•(F ,m) = ⊕i≥1H

−i(F ,m) with the isotropy L∞-algebra brackets ({· · · }k)k≥2 constructed
out of some universal Lie ∞-algebroid (E,Q) minimal at m. Then the following holds:

1. The restriction of {·, ·}2 in the following way

{·, ·}2 : H−1(F ,m)⊗H−2(F ,m)→ H−2(F ,m).

gives a Lie algebra representation of the Lie algebra H−1(F ,m) on the vector space
H−2(F ,m) which does not depend on the choice of (E,Q).

2. The restriction of the 3-ary bracket

{·, ·, ·}3 : ∧3H−1(F ,m)→ H−2(F ,m)

is a 3-cocycle for the Chevalley-Eilenberg complex of H−1(F ,m) valued in the rep-
resentation on H−2(F ,m).
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3. The cohomology class of this cocycle does not depend on the choice of (E,Q).

Proof. 1. This is an immediate consequence of proposition 4.2.7.

2. To show this we can do the following calculation. Let η = {·, ·, ·}3 then we want
to show that

(dCEl3) (x1, x2, x3, x4) =
4∑
i=1
{xi, η(x1, . . . , x̂i, . . . , x4)}2

+
∑

1≤i,j≤4
(−1)i+jη ({xi, xj}2, x1, . . . , x̂i, . . . , x̂j, . . . , x4) = 0,

for arbitrary elements x1, x2, x3, x4 ∈ H−1(F ,m). Writing out this whole expression
amounts to showing that

− {x1, {x2, x3, x4}3}2 + {x2, {x1, x3, x4}3}2 − {x3, {x1, x2, x4}3}2

+ {x4, {x1, x2, x3}3}2 − {{x1, x2}2, x3, x4}3 + {{x1, x3}2, x2, x4}3

− {{x1, x4}2, x2, x3}3 − {{x2, x3}2, x1, x4}3 + {{x2, x4}2, x1, x3}3

− {{x3, x4}2, x1, x2}3 = 0.

On the other hand, we have the n = 4 higher Jacobi identity which we can apply to the
same elements i.e.

4∑
i=1

∑
σ∈S(i,4−i)

ε(σ){{xσ(1), . . . , xσ(i)}i, xσ(i+1), . . . , xσ(n)}4−i+1 = 0.

Because {·}1 = 0 the only terms that remain from this equation are
∑

σ∈S(2,2)
ε(σ){{xσ(1), xσ(2)}2, xσ(3), xσ(4)}2 +

∑
σ∈S(3,1)

ε(σ){{xσ(1), xσ(2), xσ(3)}3, xσ(4)}2 = 0.

Now using that
S(2, 2) = {1, (23), (243), (123), (1243), (13)(24)},

and
S(3, 1) = {1, (34), (234), (1234)},

it is not too hard to see that this higher Jacobi identity exactly gives that (dCEη) (x1, x2, x3, x4) =
0 for all x1, . . . , x4 ∈ H−1(F ,m). This proves that l3 indeed is a 3-cocycle for the
Chevalley-Eilenberg differential with values in the representation {·, ·}2 : H−1(F ,m) ⊗
H−2(F ,m)→ H−2(F ,m).

3. Again, this requires some calculation. Note that an L∞-algebra morphism Φ :
(V,Q) → (V ′, Q′) consists of a collection of maps Φk : Sk(V ) → V ′. In particular the
map Φ2 : S2(V ) → V has a component θ : S2 (H−1(F ,m)) → H−2(F ,m). Applying the
definition of an L∞-algebra morphism applied to elements x1, x2, x3 ∈ H−1(F ,m) gives
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us the following equation∑
σ∈S(1,2)

ε(σ)Φ3
(
l1 ⊗ 1

⊗2
)

(xσ(1), xσ(2), xσ(3))+
∑

σ∈S(2,1)
ε(σ)Φ2 (l2 ⊗ 1) (xσ(1), xσ(2), xσ(3))

+
∑

σ∈S(3,0)
ε(σ)Φ1 (l3) (xσ(1), xσ(2), xσ(3))

=
∑

σ∈S(3)
ε(σ)l′1

(
Φ3(xσ(1), xσ(2), xσ(3))

)
+

∑
σ∈S(1,2)

ε(σ)
2 l′2

(
Φ1 ⊗ Φ2(xσ(1), xσ(2), xσ(3))

)

+
∑

σ∈S(1,1,1)

ε(σ)
6 l′3

(
Φ⊗3

1 (xσ(1), xσ(2), xσ(3))
)

The different Koszul signs are calculated easily and one then obtains the following equation
which holds for all homogeneous elements x1, x2, x3 ∈ H−1(F ,m)

Φ3 (l1(x1), x2, x3)− Φ3 (l1(x2), x1, x3) + Φ3 (l1(x3), x1, x2)
+ Φ2 (l1(x1, x2), x3)− Φ2 (l2(x1, x3), x2) + Φ2 (l2(x2, x3), x1)
+ Φ1 (l3(x1, x2, x3)) = l′1 (Φ1(x1, x2, x3))

+ 1
2
[
l′2 (Φ1(x1),Φ2(x2, x3))− l′2 (Φ1(x2),Φ2(x1, x3)) + l′2 (Φ1(x3),Φ2(x1, x2))

]
+ 1

6 l
′
3 (Φ1(x1),Φ1(x2),Φ1(x3))

(4.14)

Now remark that the map Φ1 : H−1(F ,m) → H ′−1(F ,m) is the identity map by propo-
sition 4.2.7 and this combined with lemma 4.2.8 gives that l2 = l′2 (i.e. the 2-ary brackets
coincide). Lastly, we also have that the differential is zero so l1 = l′1 = 0. Combined with
equation (4.14) above this give an expression for the difference between the 3-ary brackets

l3(x1, x2, x3)− 1
6 l
′
3(x1, x2, x3) =1

2
[
l2 (x1,Φ2(x2, x3))− l2 (x2,Φ2(x1, x3)) + l2 (x3,Φ2(x1, x2))

]
− Φ2 (l2(x1, x2), x3) + Φ2 (l2(x1, x3), x2)− Φ2 (l2(x2, x3), x1) .

(4.15)

On the other hand, computing the Chevalley-Eilenberg differential of Φ2 : S2 (H−1(F ,m))→
H−2(F ,m) with values in the representation l2 = {·, ·}2 : H−1(F ,m) ⊗ H−2(F ,m) →
H−2(F ,m) gives us that

(dCEΦ2) (x1, x2, x3) =l2 (x1,Φ2(x2, x3))− l2 (x2,Φ2(x1, x3)) + l2 (x3,Φ2(x1, x2))
− Φ2 (l2(x1, x2), x3) + Φ2 (l2(x1, x3), x2)− Φ2 (l2(x2, x3), x1) .

(4.16)

Comparing equations (4.15) and (4.16) it is not too hard to see that

l3 − l′3 = α · dCEθ, α ∈ R, (4.17)

where we have used that on S2(H−1(F ,m)), the maps Φ2 and θ coincide and we chose
x1, x2, x3 ∈ H−1(F ,m). Equation (4.17) now gives us exactly that the cohomology classes
of l3 and l′3 are the same (since they differ by an exact term).
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We are now ready to use the developed theory to prove a result regarding the existence
of a Lie algebroid inducing a given singular foliation F . However, we require something
more of the Lie algebroid: it must have minimal rank2, i.e. the same rank as the foliation
F at a point m (this is defined as the minimal number of generators for F in a neighbor-
hood of m). In general, so without further assumptions, this is still an open question as
remarked earlier.

The following definition is the main object of interest to determine if a minimal rank
Lie algebroid inducing F exists and so is named appropriately.
Definition 4.3.2 (Definition 4.28 in [LGLS20]). The 3-cohomology class from proposition
4.3.1 is called the No-Minimal-Rank-Lie-Algebroid class or NMRLA class.

We will now show the following proposition.
Proposition 4.3.3 (Proposition 4.29 in [LGLS20]). Let F be a singular foliation on a
manifold M that admits a geometric resolution of finite length, let r be the rank of F
at m. If the NMRLA 3-class does not vanish, it is not possible to find a Lie algebroid
(A, [·, ·] , ρA) defined in a neighborhood Um of m satisfying the following two conditions:

1. the rank of the vector bundle A is r,

2. ρ(Γ(A)) = F|Um.

Before proceeding to the proof of proposition 4.3.3 we need some preparatory results.
Lemma 4.3.4 (Lemma 4.31 in [LGLS20]). For every geometric resolution (E, d, ρ) of F
which is minimal at m, the rank of the vector bundle E−1 is equal to the rank r of F at
m.
Proof. Let rE = rkE−1 and r the rank of F atm. One can now choose a local trivialization
of E−1 that we denote e1, . . . , erE

. By the definition of a geometric resolution we have
that ρ(Γ(E−1)) = F and so the collection (ρ(ei))i=1,...,rE

generates F as a C∞(M)-module,
clearly this implies that r ≤ rE. Now we show this inequality is, in fact, an equality. For
this suppose r < rE then we must have that one of the generators ρ(ei) is a C∞(M)-linear
combination of the other ones. After a possible renumbering we may assume that this is
ρ(e1) so there exist smooth functions f2, . . . , frE

∈ C∞(M) such that

ρ(e1) =
rE∑
i=1

fiρ(ei).

Completely similar to the proof of proposition 4.2.9 it now follows that this linear depen-
dence implies the existence of a section g ∈ Γ(E−2) such that

e1 =
rE∑
i=2

fiei + d(2)g.

Minimality of the geometric resolution at m now means that evaluating this equation at
the point m implies

e1(m) =
rE∑
i=2

fi(m)ei(m).

Clearly this contradicts that e1, . . . , erE
is a local trivialization of the bundle E−1 and

hence we conclude r = rE.
2Recall that the rank of a Lie algebroid is defined to be the rank of the underlying vector bundle.
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We are now ready to start the proof of proposition 4.3.3, during the proof we will need
one more lemma which is stated and proven after the following proof.

Proof of proposition 4.3.3. Assume that there exists a Lie algebroid (A, [·, ·] , ρA) satis-
fying ρ(Γ(A)) = F . Let (E,Q) be the universal Lie ∞-algebroid of F in a neighbor-
hood of m that is constructed out of a geometric resolution minimal at m. By the-
orem 3.1.3 , combined with example 2.2.13 there exists a Lie ∞-algebroid morphism
Φ : (A [1] , QA) → (E,Q). Recall remark 2.2.19 which gives a concrete explanation of
what a Lie ∞-algebroid morphism looks like. It states that it is given as a collection
of maps (Φk)k≥1 that give L∞-algebra morphisms on the sections Γ(A [1]) and Γ(E) and
such that ρA = ρ ◦ Φ0. In particular we have the linear component Φ0 : A [1] → E.
Remark that A [1] is concentrated in degree −1 and that Φ is a degree 0 morphism so
more specifically we have that Φ0 : A [1]→ E−1.

Recall that r is the rank of F at m. Now assume the vector bundle A to have rank
r, then by lemma 4.3.4 we have rkA = rkE−1. By lemma 4.3.5 the restriction imΦ0 :
imA [1] → imE−1 becomes a surjective map and combined with rk imA = rk imA [1] =
rk imE−1 this means imΦ0 becomes a bijection. Note that we also have two other maps
Φ1 : S2(A [1]) → E−2 and Φ2 : S3(A [1]) → E−3 (again the codomain can be seen by a
simple degree count). Some general remarks:

• in example 2.2.13 we denoted the bracket on Γ(A [1]) as {·, ·}. We shall do the same
here being careful not to confuse this bracket with the 2-ary bracket {·, ·}2 on Γ(E),

• the Lie∞-algebroid (A [1] , QA) only has a binary bracket (the one from the previous
point) and all the others are zero,

• recall that the 1-ary bracket on Γ(E) corresponds to the differentials (d(i))i≥2.

Using remark 2.2.19 we may now do a computation completely similar to the one done
in the proof of proposition 4.3.1 to obtain that the components Φ0,Φ1 and Φ2 satisfy the
following equation for all a, b, c ∈ Γ(A [1]) (keeping in mind the list above)

− 1
2 [{Φ0(a),Φ1(b, c)}2 − {Φ0(b),Φ1(a, c)}2 + {Φ0(c),Φ1(a, b)}2]

+ Φ1 ({a, b}, c)− Φ1 ({a, c}, b) + Φ1 ({b, c}, a)

= d(2)Φ2(a, b, c) + 1
6{Φ0(a),Φ0(b),Φ0(c)}3.

(4.18)

We now proceed by evaluating equation (4.18) at the point m and invoking a couple of ear-
lier results. First note that by minimality the first term on the right-hand side of equation
(4.18) vanishes by definition. Moreover, by the bijective correspondence between imA [1]
and imE−1 we may assume that imΦ0 is the identity map. Now recall the construction of
the isotropy L∞-algebra at m: it was constructed as ker imρ⊕

⊕
i≥2 imE−i and so choosing

a, b, c ∈ Γ(A [1]) such that ima, imb, imc ∈ ker imρ (after an application of Φ0 = 1) we
recover the 3-cohomology class from proposition 4.3.1 on the right hand side of equation
(4.18). Also note that when working in the restriction to m, by the same reasons as in
the proof of proposition 4.3.1 the binary brackets coincide and so the left hand side of
equation (4.18) yields exactly the expression for the Chevalley-Eilenberg differential of
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Φ1(·, ·) with values in the representation determined by {·, ·} (up to a constant multiple).
Hence it is shown that the NMRLA 3-class is a Chevalley-Eilenberg coboundary.

The following lemma was used in the proof above.

Lemma 4.3.5 (Lemma 4.31 in [LGLS20]). Restricting the vector bundle morphism Φ0 :
A [1]→ E−1 to the fiber at m yields a surjective linear map.

Proof. Pick an arbitrary element e ∈ imE−1 and let ẽ ∈ Γ(E−1) be an extension of e to
a section. We assumed ρA(Γ(A)) = F and by the definition of a geometric resolution
ρ(Γ(E−1)) = F so, modulo a degree shift, there exists an element a ∈ Γ(A [1]) such
that ρA(a) = ρ(ẽ). Hence by the Lie ∞-algebroid morphism property we have that
ρ(ẽ) = ρ (Φ0(a)) i.e. ρ(ẽ − Φ0(a)) = 0. As we already saw a couple of times this implies
that there exists a g ∈ Γ(E−2) such that ẽ−Φ1(a) = d(2)g. Because (E, d, ρ) was chosen to
be minimal at m this implies that e = imΦ0(a(m)) which means imΦ0 : imA [1] → imE−1
is surjective.

We will now display two examples that have non-trivial NMRLA 3-class, thus showing
the following corollary to proposition 4.3.3.

Corollary 4.3.6 (Proposition 4.33 in [LGLS20]). There exist singular foliations of rank
r that, even locally, cannot be induced by a Lie algebroid of rank r.

As we already remarked we will now illustrate corollary 4.3.6 by two examples. The
first one is taken from [LGLS20], the second one takes inspiration from the first one but
is original.

Example 4.3.7 (Example 4.32 in [LGLS20]). This example looks at the foliation Fϕ that
we already saw in examples 1.2.36 and 1.2.60. It can be shown that this foliation has rank
n(n−1)/2. In example 4.2.12 we displayed the k-ary brackets on the isotropy L∞-algebra
of Fϕ at the origin 0. We now consider n ≥ 4 and the homogeneous polynomial

ϕ : Cn → C : (x1, . . . , xn) 7→
n∑
i=1

x3
i .

Remark that this polynomial certainly satisfies the conditions that we set earlier: it is
homogeneous and so certainly weight-homogeneous and it has an isolated singularity at
the origin. According to equation (4.13), which defines the brackets, the 2-ary bracket
vanishes, indeed ∂2ϕ

∂xi∂xj
(0) = 0 for all i, j = 1, . . . , n. Combining this with proposition

4.3.1 one sees that the representation of H−1(Fϕ, 0) on H−2(Fϕ, 0) is trivial. Also a small
calculation, using (4.13) shows that{

∂

∂x1
∧ ∂

∂x2
,
∂

∂x1
∧ ∂

∂x3
,
∂

∂x1
∧ ∂

∂x4

}
3

= ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
.

This shows that the NMRLA 3-class does not vanish and so the foliation Fϕ is not induced
by a rank n(n− 1)/2 Lie algebroid in a neighborhood of the origin.

�

The following example was found by using inspiration from example 4.3.7.
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Example 4.3.8. All the things we discussed earlier about Fϕ were under the assumption
that the polynomial ϕ is a weight-homogeneous polynomial with an isolated singularity at
the origin. Up until now all explicit descriptions of ϕ where homogeneous polynomials. In
this example we give an example where ϕ is weight-homogeneous but not homogeneous.
Because this polynomial is quite specific, we let n = 4. Consider the following polynomial

ϕ : C4 → C : (x1, x2, x3, x4) 7→ x3
1 + x5

2 + x7
3 + x11

4 .

This is a weight homogeneous polynomial with weights w1 = 385, w2 = 231, w3 = 165 and
w4 = 105. It also clearly has a singularity at the origin since

(3x2
1, 5x4

2, 7x6
3, 11x10

4 ) = (0, 0, 0, 0)⇔ (x1, x2, x3, x4) = (0, 0, 0, 0).

It is also verified very easily that the representation {·, ·}2 : H−1(Fϕ, 0)⊗H−2(Fϕ, 0) →
H−2(Fϕ, 0) is the trivial one and that in exactly the same way as the previous example
we have, by equation (4.13){

∂

∂x1
∧ ∂

∂x2
,
∂

∂x1
∧ ∂

∂x3
,
∂

∂x1
∧ ∂

∂x4

}
3

= ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
. (4.19)

So again, we conclude that there does not exist a rank 6 Lie algebroid inducing the
foliation Fϕ in a neighborhood of the origin.

Actually, the procedure used for finding this polynomial with these specific properties
can be replicated for n > 4. One can take a polynomial of the following form

ϕ : Cn → C : (x1, . . . , xn) 7→
n∑
k=1

xikk , ∀k = 1, ..., n : ik ∈ N.

We now want to choose the weights w1, . . . , wn 6= 1 (we exclude this case because this
yields ordinary homogeneous polynomials) such that we have the following equations for
some w ∈ N 

w = w1i1
...

w = wnin

.

It is not hard to see that we want at least one k = 1, . . . , n for which ik = 3 (for otherwise
the 3-ary bracket and thus the NMRLA 3-class vanishes), without loss of generality we
may assume this is for k = 1. From w = 3w1 we now also see that w must be a multiple
of 3. We can now form w in the following way

w = 3p2 · · · pn,

for primes 3 < p2 < · · · < pn. If we now let ik = pk and wk = 3p2 · · · p̂k · · · pn for k ≥ 2 the
system of equations from above is satisfied (here the hat denotes we left out the prime pk).
In this way we made sure, by construction, that ϕ is a weight-homogeneous polynomial
and that it has an isolated singularity at the origin. Furthermore, we also have that the
representation of the isotropy Lie algebra on H−2(Fϕ, 0) is trivial and that equation (4.19)
still holds and so everything we said earlier applies to Fϕ.

�
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Conclusion

The aim of this thesis was to introduce the necessary concepts to understand the paper
[LGLS20] and use them to study singular foliations as was done in [LGLS20].

In chapter 1 we introduced some preliminary material on regular foliations. After
this we introduced singular foliations in the two ways they appear in the literature. In
particular we introduced the sheaf point of view as this is the way singular foliations are
defined in [LGLS20]. We illustrated these definitions by giving several examples. We
also illustrated that one cannot expect to get a Lie algebroid from a singular foliation,
but one does get an almost-Lie algebroid structure. This provided incentive to look for
‘higher structures’. In the last two subsections we introduced and illustrated geometric
resolutions. These are one of the main objects used in this thesis as they are the first
building block for the universal Lie ∞-algebroid. In this context we provided the details
to a proof concerning the existence of a geometric resolution for an algebraic singular
foliation of a Zariski open set.

In chapter 2 we introduced L∞-algebras and Lie ∞-algebroids. These are necessary
to understand the main results of [LGLS20] that we introduced in the next chapter. We
also explained the duality between Lie ∞-algebroids and NQ-manifolds. We did this to
introduce morphisms and homotopies between Lie ∞-algebroids as these are more con-
crete in the category of NQ-manifolds.

In chapter 3 we introduced the main results of [LGLS20]: the existence of a universal
Lie∞-algebroid for a singular foliation admitting a geometric resolution, and a uniqueness
result. We provided the main steps and some calculations in the proof of the existence
result. Finally, we illustrated the universal Lie ∞-algebroid by displaying explicit exam-
ples following [LGLS20].

Chapter 4 contains the material developed in section 4 of [LGLS20]. It studies the
geometry of singular foliations through their universal Lie ∞-algebroid. In this chapter
we also provided more detailed calculations and proofs than the ones in the original
publication. We ended with answering the question ‘can all rank r singular foliations
can be induced, locally, by a rank r Lie algebroid?’ and illustrated this by giving two
examples. The first of these examples comes from [LGLS20] while the second example is
heavily inspired by the first one but is original.

75
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Chapter 5

Appendices

5.1 Appendix A
In this appendix we will show that claim used in chapter 3, namely that ρ : E−1 → TM
is a morphism of the brackets if and only if[

Q
(1)
E−1 , Q

(1)
E−1

]
∈ Xvert(E−1).

To do the calculations we will make use of lemma 2.11 in [ZZ12]. This lemma describes
a correspondence between Lie algebroids and NQ-manifolds concentrated in degree 1,
based on the derived bracket construction from [KS04]. Given an NQ-manifold1 M =
(E−1 [1] , Q = Q

(1)
E−1) we have that the degree −1 vector fields on M are Γ(E−1) (see

lemma 2.6 [ZZ12]). Furthermore, we have the following expressions for the anchor and
bracket

[a, b]E−1
= [[Q, a] , b] , ρ(a)f = [[Q, a] , f ] , (5.1)

for a, b ∈ Γ(E−1) and f ∈ C∞(M). We will now apply this to get our desired result.

Let (xi) be a set of coordinates on the base M and ξj a set of degree +1 coordinates
on the vector bundle E−1. Note that

[
Q

(1)
E−1 , Q

(1)
E−1

]
is a degree +2 vector field and so it

can be written as
[
Q

(1)
E−1 , Q

(1)
E−1

]
=
∑
i,j,k

akij(x)ξiξj
∂

∂xk︸ ︷︷ ︸
horizontal part

+
∑
i,j,k,l

blijk(x)ξiξjξk
∂

∂ξl︸ ︷︷ ︸
vertical part

, (5.2)

for akij(x), blijk(x) ∈ C∞(M). Now let e1 = ∂
∂ξi

and e2 = ∂
∂ξj

then these are sections of the
vector bundle E−1 and so they can be viewed as degree −1 vector fields on the graded
manifold (E−1, Q = Q

(1)
E−1). Furthermore, they are part of the canonical local frame and

so it suffices to work with this type of sections .This allows us to compute the following

[[[Q,Q] , e1] , e2] =
∑
k

akij(x) ∂

∂xk
+
∑
l

blijk(x)ξk
∂

∂ξl
.

1Here E−1 →M is a vector bundle.
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Now pick a function f ∈ C∞(M) then using the above it is easy to see that

[[[[Q,Q] , e1] , e2] , f ] =
∑
k

akij(x) ∂f
∂xk

+
∑
k,l

blijk(x)ξk
∂f

∂ξl

=
∑
k

akij(x) ∂f
∂xk

.

So when we choose f = xk we have

[[[[Q,Q] , e1] , e2] , xk] = akij(x).

On the other hand we can do the following calculation for general f ∈ C∞(M) and
e1, e2 ∈ Γ(E−1). From the graded Jacobi identity, it is not hard to see that

[[Q,Q] , e1] = 2 [Q, [Q, e1]] . (5.3)

Hence we may write

[[[[Q,Q] , e1] , e2] , f ] = 2 [[[Q, [Q, e1]] , e2] , f ] .

Applying the graded Jacobi identity once more we have that

[[[Q,Q] , e1] , e2] = 2 ([Q, [[Q, e1] , e2]]− [[Q, e1] , [Q, e2]]) .

Now we apply the equations from (5.1) to conclude that

[Q, e1] = ρ(e1) + vertical part,
[Q, e2] = ρ(e2) + vertical part,

[Q, [[Q, e1] , e2]] = ρ
(
[e1, e2]E−1

)
+ vertical part.

Letting f ∈ C∞(M) as above we see that

[[[[Q,Q] , e1] , e2] , f ] = 2
(
ρ
(
[e1, e2]E−1

)
f − [ρ(e1), ρ(e2)]X(M) f

)
. (5.4)

Indeed, writing a bit informally, we have (vertical part)(f) = 0 because f does not depend
on the coordinates ξi. Now note that the right-hand side of equation (5.4) is zero if and
only if for all sections e1 and e2 of the form ∂

∂ξk
and all f ∈ C∞(M) the anchor ρ preserves

the brackets. On the other hand we have shown above that for this particular choice
of sections and f = xk we have that the left-hand side of equation (5.4) is zero if and
only if akij(x) = 0 for all i, j and k. By the Leibniz property of the bracket the choice
of coordinate functions suffices and so we conclude the following: the anchor preserves
brackets if and only if akij(x) = 0 for all i, j and k. Going back to equation (5.2) this
exactly means that the horizontal part vanishes and so [Q,Q] =

[
Q

(1)
E−1 , Q

(1)
E−1

]
is vertical.

This is exactly what we wanted to show.

5.2 Appendix B
Lemma 5.2.1. Let A : Rn → Rm be a linear transformation with rk(A) = k. Then any
small perturbation B of A satisfies that rk(B) ≥ k.



5.3. APPENDIX C 79

Proof. Since the determinant det : Mn×m(R) → R can be expressed as a polynomial
it is a continuous function. The linear map A having rank k is the same as saying its
representative matrix, also denoted A, has rank k. A matrix has rank k if and only if there
exists a k×k-submatrix with nonzero determinant. Now since det is continuous it is easy
to see that any small perturbation of the entries in A (and thus also the k×k-submatrix)
does not change the value of the determinant. Hence, we conclude the lemma.

5.3 Appendix C
Here we will expose very briefly the theory of Chevalley-Eilenberg cohomology or Lie
algebra cohomology. From standard sources on differential geometry like [Lee12], we see
that the de Rham cohomology is constructed on the space of differential forms

Ω•(M) =
∞⊕
k=0

Γ
(
∧kT ∗M

)
.

Taking inspiration from this we now define the Chevalley-Eilenberg differential on the
space

∧•g∗ =
∞⊕
k=0
∧kg∗.

Recall here that ∧kg∗ = {multilinear and antisymmetric maps g×· · ·×g→ R}. We now
define the Chevalley-Eilenberg differential to be the degree +1 map

dCE : ∧•g∗ → ∧•g∗,

defined for all η ∈ ∧•g∗ as

(dCEη)(v1, . . . , vk+1) :=
∑

1≤i<j≤k+1
(−1)i+jη ([vi, vj] , v1, . . . , v̂i, . . . , v̂j, . . . , vk+1) .

Note that with some small calculations one can show that for all η ∈ ∧1g∗ we have
dCE(dCE(η)) = 0 and that for all ζ ∈ ∧kg∗, ξ ∈ ∧lg∗

dCE(ζ ∧ ξ) = dCE(ζ) ∧ ξ + (−1)kζ ∧ dCE(ξ).

From this it can be seen that dCE ◦ dCE = 0 and so dCE indeed is a differential. We now
define the Chevalley-Eilenberg cohomology groups as

Hn
CE(g) := ker(dCE : ∧ng∗ → ∧n+1g∗)

im(dCE : ∧n−1g∗ → ∧ng∗) .

We now continue with Chevalley-Eilenberg cohomology with values in a Lie algebra rep-
resentation. For this let V denote some vector space and gl(V ) the linear endomorphisms
of V . A Lie algebra representation is now a Lie algebra homomorphism

ρ : g→ gl(V ).

Now define the following space

∧kg∗ ⊗ V = {antisymmetric maps g× · · · × g︸ ︷︷ ︸
k times

→ V }.
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We now define the Chevalley-Eilenberg differential with values in a representation ρ : g→
gl(V ) as follows for all η ∈ ∧kg∗ ⊗ V

(dgη)(v1, . . . , vk+1) :=
k+1∑
i=1

(−1)iρ(vi)η(v1, . . . , v̂i, . . . , vk+1)

+
∑

1≤i<j≤k+1
(−1)i+jη ([vi, vj] , v1, . . . , v̂i, . . . , v̂j, . . . , vk+1) .

This differential also has a resulting cohomology that we also denote by the Chevalley-
Eilenberg cohomology with values in the representation ρ : g→ gl(V ).
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[Lav16] Sylvain Lavau. Lie ∞-algébröıdes et Feuilletages Singuliers. PhD thesis, Uni-
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