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Summary

During the 1950s and 1960s the problem of integrating singular distributions on smooth
manifolds arose in control theory. From this research the concept of singular foliations
arose. Singular foliations are partitioning’s of manifolds into smoothly immersed con-
nected submanifolds that we call the leaves of the foliation. They appear naturally in
the study of differential geometry: Lie group actions, symplectic foliations on Poisson
manifolds,... An important difference with regular foliations is that the dimension of the
leaves may vary. A classic result from differential geometry is Frobenius’s theorem. It
states that when given a foliation, one can associate to it a constant rank distribution.
From this distribution one gets a submodule of the vectorfields on the manifold by taking
(global) compactly supported sections of the distribution. Furthermore Frobenius’s the-
orem ensures that the geometric point of view i.e., the partitioning into leaves, and the
algebraic point of view i.e., through the submodule of the vector fields, are equivalent. For
singular foliations the situation is more complicated. In the singular case the algebraic
point of view carries inherently more information. This is due to the fact that when given
a partitioning into leaves, there may be infinitely many choices of submodules that induce
this partitioning. In this context the problem of defining invariants to singular foliations
arose. In [AS09] Androulidakis and Skandalis gave two such invariants: the isotropy Lie
algebra (a more local invariant) and the holonomy groupoid (which can give more global
information). The aim of this thesis is to introduce the necessary concepts and results
to understand a recently discovered invariant by S. Lavau, C. Laurent-Gengoux and T.
Strobl in [LGLS20]. Throughout the whole thesis we will provide more detailed proofs
from the results in [LGLS20] than the ones found in the original publication. In their
work they constructed the universal Lie oo-algebroid of a singular foliation. This object
involves constructing a ‘higher structure’ on a so called geometric resolution of a singular
foliation. By this we mean constructing ‘higher brackets’ between sections of a particular
complex of vector bundles associated to the foliation, in such a way that these brackets
satisfy ‘higher Jacobi identities’ Our main focus will be on defining all the involved ob-
jects and necessary lemmas, propositions and theorems following, for the most part, our
main source [LGLS20]. Once we have defined all the necessary concepts we will shift our
focus to answering the following question: ‘can all rank r singular foliations be locally
induced by a rank r Lie algebroid?’. For this we again follow our main source [LGLS20].
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Introduction

Foliations

Regular foliations are classical objects of study in differential geometry. They are treated
in most introductory texts on differential geometry, see for instance [Leel2]. A foliation
F describes the partition of a smooth manifold M into smoothly immersed disjoint sub-
manifolds, called leaves, of the same dimension that satisfy the foliation property (that
is they fit together nicely like illustrated in figure 1). An important result in the study
of regular foliations is Frobenius’s theorem: it allows to couple a distribution D C T'M
to a foliation F and from this distribution we also get a submodule I'.(D) C X(M) that
completely describes the foliation F. All of these results will be described in the first
section of chapter 1 of this thesis.

Figure 1: Example of a regular foliation of R by hypersurfaces.

In the 1950s and 1960s a lot of work was done in the field of control theory. In par-
ticular the study of the solvability of first-order differential equations under the influence
of certain external parameters. It turned out that this can be modelled by considering
the flow of a family of vector fields on a smooth manifold. In his work from 1963 [Her63|
R. Hermann described a relation between control theory and differential geometry: he
worked on the problem of integrating a family of vector fields on a manifold M into a
singular foliation. A singular foliation is a partition of a manifold into leaves but unlike
the regular case we do not require the leaves to have a fixed dimension.

Over the years this sparked more research into integrability problems of families of vec-
tor fields and their associated generalized distributions (these are distributions D C T'M
for which dim D,, need not to be constant for all m € M). Some prominent figures in
the development of this research are Hermann, Nagano, Stefan and Sussmann. For a
description of the historical development of this research we refer the reader to [Lav18].
The main results of this research were some Frobenius like theorems which give conditions
under which a family of vector fields or a generalized distribution is integrable.

X



X Introduction

Nowadays singular foliations are objects studied purely in the setting of differential
geometry as they arise frequently: the action of a Lie group G on a smooth manifold M,
the symplectic foliation on a Poisson manifold,... Because of the dimension jump/drop
that may occur for singular foliations their description becomes quite complicated. For
regular foliations we can take a strictly geometric point of view or an equivalent algebraic
point of view by the module F = I'.(D), this is not possible for singular foliations. For
this class of foliations an algebraic description will carry more information than just the
geometric picture (see for instance [AS09]). In the second section of the thesis, we will
describe the two main definitions used in the literature today. Firstly, we will look at the
point of view [AS09], [AZ13] take (not an exhaustive list of works that use this definition).
There a singular foliation is considered as being a locally finitely generated involutive sub-
module F C X.(M). After this we will explore the point of view [LGLS20] takes; here a
singular foliation is considered as being a locally finitely generated involutive subsheaf of
X (the sheaf of vector fields on a manifold). We will also show that these two notions are
equivalent by following the arguments given in [Gar19].

Finally, we will also explain geometric resolutions of singular foliations. These are
important objects for the further development of the material. In this section we will
give a detailed proof of the first point in proposition 2.3 in [LGLS20]. The proof of this
particular point is given without details in [LGLS20]. For this purpose, we will give
a proof of Hilbert’s syzygy theorem following and adapting the argument in [Har97].
Furthermore, we will give a proof of lemma 3.19 in [LGLS20]. The proof of this lemma
is left out in the original publication but is used at several point throughout the paper

[LGLS20].

Higher Structures and the Universal Lie co-algebroid of a Singu-
lar Foliation

Throughout the years it became clear that singular foliations are not as well-behaved as
their regular counterparts. Hence the need to define certain invariants associated to them
arose. In their work [AS09] Androulidakis and Skandalis mentioned two first invariants:
the isotropy Lie algebra g,, and the holonomy groupoid. Both of these can give some
geometrical information of the foliation.

In this thesis we will explore a recently discovered invariant, the wuniversal Lie oo-
algebroid of a singular foliation, it was first proposed in Sylvain Lavau’s PhD thesis [Lav16]
and recently published by T. Strobl, S. Lavau and C. Laurent-Gengoux in [LGLS20]. Lie
oo-algebroids can be seen as a combination of two objects: a Lie algebroid and an L..-
algebra. Lie algebroids are quite familiar objects in differential geometry. A Lie algebroid
is a vector bundle A — M for which I'(A) is a Lie algebra together with an anchor map
p: A — TM that satisfies a Leibniz identity and hence also is a Lie algebra homomor-
phism. On the other hand L..-algebras where first studied in theoretical physics while
studying string theory, supergravity, quantum field theory,... see for instance: [Sta92],
[Zwi93], [KS06] and [L.S93]. These objects consist of a graded vector space E = ®;czE_;
and a family of skew-symmetric brackets ({-- - }x)r>1 called the k-ary brackets that satisfy
so-called ‘higher Jacobi identities’ Lie oo-algebroids are then a combination of these two
notions; both Lie oc-algebroids and L..-algebras will be introduced in chapter 2. Here we
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will also explain the duality between Lie oo-algebroids and objects from graded geometry
called N@-manifolds. Using this duality we may view Lie co-algebroids as N()-manifolds

(E, Q).

In chapter 3 we will then give one of the main results of [LGLS20] that is the following
theorem.

Theorem (Theorem 2.7 in [LGLS20]). Let F be a singular foliation on a manifold M
which admits a geometric resolution (E,d,p). Then there exists a universal Lie oco-
algebroid of F, the linear part of which is the geometric resolution.

Throughout this chapter we will provide some small details and calculations to prove
the statements. These where not always given completely in [LGLS20]. There also is a
‘uniqueness’ result proven in [LGLS20]. The most interesting consequence of this unique-
ness result is that any two universal Lie co-algebroids of a singular foliation F are homo-
topy equivalent and any two such homotopy equivalences are homotopic. This allows one
to essentially ‘guess’ a Lie oo-algebroid structure on any geometric resolution of F and
immediately conclude this is the universal one.

From the theorem above it also follows that we can only look at a special class of
singular foliations, namely the ones that admit geometric resolutions. In chapter 3 we
will also explain the main steps in the proof of the existence result which will be considered
as a deformation problem. We will leave out the very technical details and solely focus
on how one solves the associated deformation problem.

The geometry of singular foliations

In the final chapter we will then use the theory of universal Lie oco-algebroids to answer
the following question, following section 4 in [LGLS20]:

does there always exist a Lie algebroid of minimal rank which locally induces the
foliation F?

For this we exploit cohomologies that arise out of the universal Lie oco-algebroid.
In particular we will focus on the isotropy L..-algebra and show that the isotropy Lie
algebra g, from [AS09] can be recovered from this object. In this chapter we will provide
more detailed proofs of lemma 4.13, proposition 4.27 and proposition 4.29 in [LGLS20] by
providing the necessary calculations which are left out in the original publication. We will
end this chapter by giving an original example of a foliation which answers the question
above negatively.
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Chapter 1

Singular Foliations

In this chapter we will introduce the notion of a singular foliation. In the first section we
will briefly recall regular foliations. Our focus will be on ending with Frobenius’s theorem
which is an important result in the study of regular foliations.

In the second section we will introduce singular foliations. This kind of foliation allows
for the dimension of the leaves to jump. While for regular foliations a geometric point
of view and an algebraic point of view are equivalent it turns out an algebraic approach
is preferred for singular foliations. We will introduce singular foliations in the two main
ways they are used in the literature: as modules and as sheaves.

After laying the foundations through definitions we will then explain several associated
constructions that are necessary for the next chapters.

1.1 Regular Foliations

In this section we will first review some material about regular foliations. It is based on
Chapter 19 in Lee’s book [Leel2] to which we also refer for all results left without proof.

1.1.1 Distributions and Involutivity

Let M be a smooth manifold.

Definition 1.1.1 ([Leel2]). A distribution on M of rank £ is a rank & subbundle of
the tangent bundle T'M. It is called a smooth distribution if it is smooth subbundle.

Perhaps the most intuitive way to think about distributions is by specifying for each
point p € M a k-dimensional linear subspace D, C T,M and then letting D = Upcp D,.
From the local frame criterion for subbundles it then follows that D is a smooth distri-
bution if and only if each point p € M has a neighborhood U on which there are smooth
vector fields Xy,..., Xy : U — TM such that X(q),...,Xx(q) for a basis for D, for
each ¢ € U. We then say that the distribution D is locally spanned by the vector fields
X, Xg.

Definition 1.1.2 ([Leel2]). Assume that D C T'M is a smooth distribution. A nonempty
immersed submanifold N C M is called an integral manifold of D if T,N = D, at each
point p € N.
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Example 1.1.3. Consider M = R? with coordinates z, v, z. Now consider the distribution
D= (2, a%>' The integral manifolds to this distribution are the planes {z = constant} C
R3. ¢

The following example shows that not all distributions have integral manifolds.

Example 1.1.4. Consider again R? with coordinates z,y, z and the distribution spanned
by the following two vector fields

0 0 0
X = Ox +y82’ Y= oy
This distribution has no integral manifolds: suppose N is an integral manifold through
the origin, both X and Y are tangent to N and any integral curve of X and Y that starts
in NV has to stay in N for short time. Because the z-axis is an integral curve of X, the
integral manifold N has to contain a small part of it. Also, for sufficiently small z, it
contains an open subset of the line parallel to the y-axis and passing through the point
(x,0,0) because this corresponds to an integral curve of Y. Therefore, N contains an
open subset of the xy-plane. However, for any point p not on the z-axis the tangent plane
to the zy-plane at that point is not equal to D,. Therefore, no such integral manifold can
exist. ¢

We now continue with two definitions

Definition 1.1.5 ([Leel2]). Suppose D is a smooth distribution on M. We say that D is
involutive if the Lie bracket of two smooth local sections is again a smooth local section
of D.

If D is a smooth distribution on M then one can show that D is involutive if and only
if I'(D) is a Lie subalgebra of X(M).

Definition 1.1.6 ([Leel2]). A smooth distribution D on M is said to be integrable if
each point of M is contained in an integral manifold of D.

1.1.2 Frobenius’s Theorem

Definition 1.1.7 ([Leel2]). Given a rank-k distribution D C T'M we say that a coordi-
nate chart (U, ) on M is a flat chart for D if ¢(U) is a cube in R” and at points in U,
D is spanned by the first k coordinate vector fields 8%1’ ey 8%;6‘ In any such chart each
slice of the form xx 1 = cxu1, ..., Cq = ¢, for constants cgiq,. .., ¢, is an integral manifold

of D.

Note that the definition above captures the ‘nicest possible way’ for integral manifolds
to fit together: locally they all fit together like parallel subspaces of R”, this is illustrated
in figure 1.1.

Definition 1.1.8 ([Leel2]). Suppose D C T'M is a distribution then we call it com-
pletely integrable if there exists a flat chart for D in a neighborhood of each point of
M.
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Figure 1.1: Flat chart for a distribution (mind the slightly different notation compared
to definition 1.1.7), source [Leel2]

Note that we have the following sequence of implications
completely integrable = integrable = involutive.
The Frobenius’s theorem shows that these are in fact equivalences.

Theorem 1.1.9. (Frobenius’s Theorem) Every involutive distribution is completely inte-
grable.

For a proof see the proof of theorem 19.12 in [Leel2]

1.1.3 Foliations

We now come to the notion of a foliation; it captures the behavior of ‘dividing up’ a
smooth manifold into k-dimensional submanifolds that fit together in a nice way.

Definition 1.1.10 ([Leel2]). Let M be a smooth n-manifold and let F be any collection
of k-dimensional submanifolds of M. A smooth chart (U, ¢) for M is said to be flat for
F if ¢(U) is a cube in R™ and each submanifold in F intersects U in either the empty set
or a countable union of k-dimensional slices of the form zp,1 = cgi1,..., 2, = Cp.

This concept is illustrated nicely in figure 1.2, this figure uses different notation (X
corresponds to our ¢ and U is not necessarily mapped to a cube) but the idea is still clear.

Definition 1.1.11 ([Leel2]). We define a regular foliation of dimension k£ on M to
be a collection F of disjoint, connected, nonempty, immersed k-dimensional submanifolds
of M that we call the regular leaves of the foliation, whose union is M and such that
in a neighborhood of each point p € M there exists a flat chart for F.

In the above definition we emphasize the word regular so there does not arise any
confusion later when we will start to talk about foliations by which we will mean singular
foliations (to be defined in due course).

We will now provide some examples of regular foliations.
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.

Figure 1.2: Geometrical illustration of flat chart as defined in definition 1.1.10 (again
mind the different notation), source Wikipedia

Example 1.1.12 (Example 19.18 in [Leel2]). Let M and N be connected smooth mani-
folds then the collection F = {M x {q} | ¢ € N} forms a foliation of the product manifold
M x N. A particular example of this is when we consider the torus 72 = S! x S1. We
can now form two collections of submanifolds:

Fi={5"x{q} |qe 5"}
Fo={{p} xS'|pe s}

They form two different foliations of the torus as shown in figure 1.3, here F; corresponds
to picture (a) while F» corresponds to (b).

(@)
Figure 1.3: Foliations of the torus T? from example 1.1.12 , source [Leel2]

¢

Example 1.1.13 (Example 19.18(e) in [Leel2]). There is another interesting example
of a foliation on the torus with 1-dimensional leaves called the Kronecker foliation. It
consists of the images of all curves of the form

’}/g(t) _ (eit7 ei(at+9)) ,
as 0 ranges over R. If a € Q each leaf is an embedded circle, if & € R\ Q each leaf is
dense. An illustration of this is given in figure 1.4. ¢

The global Frobenius’s theorem now establishes a one-to-one correspondence between
involutive distributions on the one hand and foliations on the other.

Theorem 1.1.14 (Global Frobenius’s Theorem). Let D be an involutive distribution on
a smooth manifold M. The collection of all maximal connected integral manifolds of D
forms a foliation of M.

For a proof we refer to the proof of theorem 19.21 in [Leel2].
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| //;I l \\l g -\I\I;
\'\’/ J//

Figure 1.4: Foliation of the torus 72 from example 1.1.13, source [Leel2]

1.2 Singular Foliations

This section is based on the book by Dufour and Zung (see section 1.2 [DN05]), Alfonso
Garmendia’s PhD thesis [Gar19], the paper by Laurent-Gengoux, Lavau and Strobl (see
section 3.1 in [LGLS20]), the paper by Androulidakis and Zambon (see [AZ13]) and the
paper by Androulidakis and Skandalis (see [AS09]). It will contain the basic definitions
and examples of singular foliations which will be the central object of the thesis. There are
two main definitions in use for singular foliations and we will explain both of them: the
first one considers singular foliations as being finitely generated involutive submodules of
the compactly supported vector fields X.(M), the other one considers singular foliations
as sheaves. We will proceed by first explaining the first definition.

Throughout this section it will be assumed that M is a smooth (real) manifold unless
stated otherwise.

1.2.1 Singular Foliations Through Distributions and Submod-
ules

By a Stefan-Sussman singular foliation we mean a partition F = {F,}aca of a manifold
M into a disjoint union of smoothly immersed connected submanifolds, which we call the
leaves of the foliation, which satisfy the local foliation property at each point p € M. This
means that when we denote by J,, the leaf that contains p, by d the dimension of ,, and by

m the dimension of M then there is a smooth local chart of M with coordinates y1, ..., ymn
on a neighborhood U of p with U = {-e <y <e,—e<ys <¢,...,—e <y, <e}. In
such a way that the d-dimensional disk {y411 = -+ = ¥, = 0} coincides with the path

connected component of the intersection F, N U. Furthermore each d-dimensional disk
{Yar1 = Cas1s- -y Ym = Cm} (with the ¢; € R) is wholly contained in some leaf F, of F.
Like for regular foliations we begin by considering some type of distribution.

Definition 1.2.1 ([DN05]). A singular distribution on a manifold M is the assignment,
to each point x € M, of a vector subspace D, of the tangent space T, M. The dimension
of D, may depend on x.

Example 1.2.2. Let F be a Stefan-Sussman singular foliation like explained above then
it has a natural associated tangent distribution D”. This distribution is defined at each
r by taking the tangent space D7 to the leaf of F which contains z, at z. ¢
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Definition 1.2.3 ([DN05]). We call a singular distribution D smooth if for all p € M
and any X, € D,, there exists a smooth vector field X defined in a neighborhood U of p
which is tangent to the distribution: X(y) € D, for all y € U and it extends Xy in the
sense that X, = X(p). If the dimension of D, does not depend on p we say that D is a
smooth regular distribution

From now on when we talk about distributions on a manifold, we see them in the
sense of definition 1.2.3. As explained in section 1.2.1 of [Lav16] an equivalent way of
saying that a distribution is smooth is by saying that there exists (a possibly infinite)
family of vector fields { X }xer such that for all y € U we have that D, = span{Xy(y)}.
In [DLPR10] it is shown however that the generating family of vector fields can always be
chosen to be finite. An important remark to be made here is that this does not imply that
the C°°(M)-module of sections I'(D) is finitely generated. This is shown in section 5 of
[DLPR10] where they propose the following counterexample (there are technical details
involved for which we refer to the original publication):

Example 1.2.4. Define the vector field X = x(z)2 on M = R with the function x a

rapidly vanishing function in a neighborhood of the origin, for example

x(z) =

e~z forz >0
0 forx <0’

then the associated distribution D looks like

D — T.R forxz>0
‘o forz <0

One can show (see [DLPRI10] proposition 5.3) that I'(D) is not finitely generated in a
neighborhood of the origin.

¢

Definition 1.2.5 ([DNO05]). The distribution D is called locally finitely generated if
for every point p there exists a neighborhood U such that the C°°(U)-module I'y; (D) is
finitely generated.

Definition 1.2.6 ([DN05]). Given a distribution D on a manifold M an integral sub-
manifold is a connected immersed submanifold N of M such that for all y € N the
tangent space T, N is a subspace of D,. We call it a maximal integral submanifold when
it is not contained in any other integral submanifold. The maximum dimension of the
tangent space to y € N is exactly the dimension of D,,.

Notice the resemblance with the notion of integral manifold above. This time the
situation is more complicated because of the possibility that the dimension varies. When
we consider a smooth regular distribution as defined above we just recover the definition
from the previous section.

Definition 1.2.7 ([DN05]). A distribution D on M is called integrable when each p € M
is contained in a maximal integral manifold of maximum dimension of D.

The following example shows that when considering distributions that are possibly
singular, Frobenius’s theorem fails.
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Example 1.2.8. Define the following distribution on R? with coordinates x,y

D . T(p7q)R2 ifp > O,
D7) () if p < 0.

Sections of this distribution consist of vector fields of the form X = f 8% + ga% where

g(x,y) = 0 when x < 0. Now also consider ¥ = fa% + f]a% to be a section of D then the
Lie bracket between X and Y is given by

of .o of of i .09 05 g\ 0
X Y] = (‘ oz Y ay+gay>a (f ac Yoy ga)ay

Now clearly when ¢(z,y) = 0 and g(z,y) = 0 when z < 0. We also have that

05 09 01 oa
Ox Ox g&y g&y_’

when x < 0 so we get another section of D. This shows that D is an involutive distribution.
We now argue that it is not integrable. On the right halve plane z > 0 we have that the
integral submanifold is the open half-plane. For x < 0 we have that the leaves are
horizontal because their tangent space is spanned by a%' This still holds for z = 0 and so
the leaves are the horizontal rays. When we consider these rays as subspaces of R they
are not open (the right end is closed) and hence they are not submanifolds. ¢

The example above thus illustrates that we need some other extra conditions for a
singular distribution to be integrable. Important progress on this question was made by
Nagano (for the analytical case), Hermann, Lobry, Stefan, Sussmann and others. The
road to these results is quite a bumpy one and many (wrong) results were published. For
a chronological exposition and resume of important results in this domain we refer to
[Lav18]. The first proper result in the smooth case is due to Hermann and bears his name
today.

Theorem 1.2.9. (Hermann, 1962) Any finitely generated submodule of X(M) defines an
integrable distribution if it is involutive.

Remark 1.2.10. It deserves to be noted that the converse of Hermann’s theorem is false.
Indeed, consider the following counterexample due to Balan (it was contained in unpub-
lished notes, we refer to [Lav18] for this example). Consider M = R? and define the
vector fields

0

Y = (2? +y)

where the function ¢(z,y) is defined as

o ¢ T for (z,y) # (0,0),
w(z,y) {0 for (x,y) = (0,0).
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Let 7 = (X,Y)ce(a) then the distribution that D that F induces is given by

o _ ) TayR®  for (z,y) # (0,0)
= =0 for (z,y) = (0,0).

Obviously, this distribution is integrable: one maximal integral submanifold of dimen-
sion 2 i.e., the plane without the origin and the origin itself as 0-dimensional integral
submanifold. Now choose (z,y) # (0,0) then a small computation shows that

2
pley) 2y o
«T2+y2 I2+y2

(X, Y] (2,y) = 22

Now one can show that the function (z,y) — 21’%’;’3 is smooth at the origin (this is due
to the rapid vanishing of ¢ as (z,y) approaches the origin). However, when considering
the function (z,y) — f(z,y) == ;Tny we encounter some problems as

lim f(z,0) # lim £(0,3),

i.e. the limit as (x,y) — (0,0) of f(z,y) does not exist and so it is not a smooth function.
This also means that [X, Y] is not contained in F because it has non-smooth coefficients.
Of course that means that F induces and integrable distribution but is itself not involutive.

Theorem 1.2.9 leads us to the following definition of a singular foliation in terms of
submodules of the compactly supported vector fields X.(M).

Definition 1.2.11 ([Garl9]). A C°(M)-submodule F C X.(M) is finitely generated
if there exists a finite set of vector fields Y1, ...,Y, € X(M) such that

F=M,. ..,

Definition 1.2.12 ([Garl9]). A submodule F C X.(M) is locally finitely generated
if every point m € M has a neighborhood U C M such that

1t F = {X|p | X € F and supp(X) C U},
is finitely generated as a C'2°(U)-module.

Definition 1.2.13 ([AZ13], [AS09]). A singular foliation on a manifold M is a locally
finitely generated submodule F C X.(M) such that [F, F] C F.

One may wonder why we require the condition of the vector fields in the submodule
to have compact support. The reason for this is that want the map

{regular foliations} — {singular foliations},

that maps a regular distribution D to some submodule' of X(M), to be injective. This
means that when we consider a regular foliation F we want it to correspond to a singular
foliation in a unique way: there is only one submodule F C X.(M) such that it generates
the regular foliation. The following example shows that this does not need to be the case
when we consider the whole of X(M).

L Actually we map D to I'.(D) but this is what we want to explain.
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Example 1.2.14. Consider for example the foliation on R? described by the distribution

D = (Z) (the leaves thus look like horizontal lines in the plane). Now we can make two

choices of submodules of X(M) that both generate the given foliation, for example

F=1(0)= {0 | rec~@),
F = OE‘D(R%%-

¢

The following proposition, that can be found in [AZ16], shows that we can make the
map above injective if we let F = T'.(D).

Proposition 1.2.15. Let F be a singular foliation whose evaluation at points of M de-
livers a constant rank distribution D, then necessarily F = T'.(D).

Proof. The proof comes from [AZ16] lemma 1.7. Let k denote the rank of the distribution
D. Note that for all p € M there exists a subset Y = {Y1,..., Y} C F for which Y(p) is a
basis for D,, (here Y(p) denotes the evaluation of each element in Y at p). Let V' be an open
neighborhood of p € M on which the set Y is linearly independent. Now we can construct
an open cover {V,}aea where each V, is as V above. Fix an element X € I'.(D) then we
have to show that X € F. Since X has compact support supp(X) there are finitely many
Vi's covering it. Hence we may assume that our open cover {V,},ca is of such nature
that only finitely many V,,’s intersect supp(X) (this is a form of being locally finite and
we will denote it as that). Now let {¢,}aca be a partition of unity subordinate to the
open cover {V,}aca, i.6. Yacapa(p) =1 for all p € M and supp(p,) C V,. Since X
is supported on V,, for all @ € A there exist smooth functions k!, € C*°(M) for which
Yo = SF  hiY! e F. Hence by the locally finiteness property the sum X = 3 c4 0o X
is essentially a finite sum and so lies in F. O

1.2.2 Singular Foliations as Sheaves

In this section we will introduce singular foliations in the language of sheaves as this is
the point of view [LGLS20] takes. Before proceeding we will briefly recall the definition
of sheaves and related concepts, this information is mainly based on [Har97] and [Vak17].

Definition 1.2.16 ([Har97]). Let X be a topological space. A presheaf G with values
in a category C? is an assignment U ~ G(U) which associates to any open U in X an
object G(U) in C such that for every inclusion V' C U of open sets we get a restriction
morphism

Py G(U) = G(V),

in the category C. Furthermore, for every open U in X the morphism p{; must be the
identity and for a sequence of inclusions of open sets W C V' C U we have pY, = p}}; o p¥.

2We assume C to be a set-like category, which roughly speaking means that C has properties similar
to Set.
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Remark 1.2.17. We can make this definition more compact when using more category
theory. If X is a topological space we can attach a category Openy to it: objects are
just the open sets of X and if V' and U are objects in Openy then there exists a unique
morphism V' — U in Openy if V' C U and no morphism otherwise. Now let Open$®
denote the opposite category then a presheaf on X is a functor

G : Open}® — C.

Definition 1.2.18 ([Har97]). Let G be a presheaf on a topological space X then we say
that G is a sheaf if the following conditions are satisfied.

1. Let U be an open subset of X and let {U;|i € I} be an open cover of U. Let
fyg € G(U) then f = g if and only if the restrictions of f and g to the U; are equal
for all 2 € I.

2. Let U be an open subset of X and let {U;|i € I} be an open cover of U. Let
fi € G(U;) for every i € I and assume that the restrictions of f; and f; are equal on
U;NU, for all 4, j € I. Then there exists an element f € G(U) whose restriction is
equal to f; for every ¢ € I. By the first property this f must be unique.

3. The object G(0) is a final object in C.

Remark 1.2.19. Note that for most categories C the last condition follows from the first
two.

Example 1.2.20. A smooth manifold together has two natural sheaves: the sheaf of rings
C® i.e. the smooth functions and the sheaf of vector fields X that is also a C"*°-module.

Definition 1.2.21 ([Har97]). A subsheaf G’ of a sheaf G is a sheaf such that G'(U) C
G(U) is a sub object in C (e.g. subgroup, submodule,...).

As a final note we say that a sheaf of modules G on a manifold (M, C*) (i.e. a presheaf
that takes values in the category of C'*°-modules that is also a sheaf) is locally finitely
generated? if for all p € M there exists a neighborhood U such that there is some n > 0
and a surjective morphism of sheaves ¢ : (C*)" |y — G|y. Using this terminology, we
can define a singular foliation in the following way.

Definition 1.2.22 ([LGLS20]). A singular foliation is a subsheaf F : U — F(U) of
the sheaf of vector fields X that is locally finitely generated as a C"*°-module and is closed
with respect to the Lie bracket of vector fields.

The notions of singular foliations as a submodule and the one as sheaf seem very
different at first sight. We will now explain that these two definitions are indeed the same
thing. This is entirely based on section 1.5 of [Gar19]. More precisely we will have the
following theorem.

Theorem 1.2.23 (Theorem 1.5.1 in [Garl9]). For any smooth manifold M, we have the
following:

o there is a bijection between submodules of X.(M) and subsheaves of X,

30ne can define this concept for any ringed space but we will only need it for smooth manifolds.
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e the condition of being locally finitely generated is invariant under this bijection,
e the involutivity condition is invariant under this bijection.
It is useful to define the following object to proof theorem 1.2.23.

Definition 1.2.24 (Definition 4.1 in [ZA16] and Definition 1.5.2 in [Gar19]). Given a
submodule F C X.(M), the global hull of F is given by

F={XeXx(M)|fX eFNfeC M)}
Given a submodule S C X(M) one can define its compact elements
(S)e :=={X € S| supp(X) is compact} = (S)cee(ar).-

We can show the following important property of these objects.

Lemma 1.2.25 (Lemma 1.5.3 in [Garl9]). For a submodule F C X.(M) and a subsheaf
S of X and U C M open, we get the following equalities:

(F),=7F.
(BU))e) = S(U).

Proof. Tt is clear that the first equality holds by definition and that S(U) C ((@c) So,

we proceed by showing the other inclusion. Take X € ((S(U)).) and {¢; }ier a partition of
unity for U with functions that have compact support. There exists a cover {U;};ecs of U
such that the sum }; ¢; X is finite in each U;. Moreover we have that ¢; X € U. Therefore
Xy, = 20X |y, € S(U;). Now by the gluing property of sheaves (property 2 described
in definition 1.2.18) there exists an element Y € S(U) such that Y|y, = X|y, and by the
locality of sheaves (point 1 in definition 1.2.18) we conclude that X =Y € S(U). O

So when given a subsheaf S of X it is straightforward to define a submodule of X.(M):
define F := (S(M)),. We now show that the reverse can also be done, i.e. recovering a
subsheaf of X from a given submodule of X.(M). For this we first establish the notation
that when F C X.(M) and U C M open, we denote

' Fi={X|y | X € F, supp(X)CU}.

Lemma 1.2.26 (Lemma 1.5.4 in [Gar19]). Let S be a subsheaf of X. Denote F = (S(M))
then for any open set U C M we have (S(U)), = ti;'F and therefore also

C

S(U) = i\ F.

Proof. We will show that (S(U)), = ' F for all U C M open. From this the result
immediately follows by lemma 1.2.25. Take X € (S(U)),, then X € S(U) and U together
with M \ supp(X) are a cover of M. Since S is a sheaf we can use the gluing property
to conclude that there exists an element Y € S(M) = F for which Y|y = X and
Y |amsupp(x) = 0. Note that Y has compact support, then ¥ € F and supp(Y) C U.
Therefore we have by definition X = Y|y € ' F. Conversely, let X € ;' F then by
definition there exists a Y € F = (S(M)),. C S(M) such that Y|y = X and supp(Y') C U.
So, we conclude that X =Yy € (S(U))... O

Cc
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Lemma 1.2.26 provides us with a way to associate, to a given singular foliation F C
X.(M), a presheaf in the following manner:

ST(U) := ;' F. (1.1)
To conclude that the assignment
{subsheaf S of X} — {submodule F C X.(M)},

is invertible, i.e. to a singular foliation we can associate a subsheaf of X, it suffices to
show that the presheaf determined by equation (1.1) indeed gives a sheaf. This is done
in the following lemma.

Lemma 1.2.27 (Lemma 1.5.5. in [Garl9]). Given a submodule F C X.(M), the presheaf
S* as determined by equation (1.1) is a sheaf.

Proof. To prove this we need to check the conditions in definition 1.2.18. Because &7
is a sub-presheaf of the sheaf X the locality (point 1 in definition 1.2.18) is immediately
satisfied. We proceed by showing the gluing axiom. Let U C M be an open subset
and {U,;};e; an open cover of U for which U; C U for all i € I. Let X; € 87 (U;) such
that Xi\U,nt = Xj|u,nu;- Since X is a sheaf, there exists a vector field X € X(U) for
which X[y, = X;. It now suffices to show that X € S7(U). Take f € C>°(U) then
by compactness of supp(f) there exist finitely many U; in the family {U,};c; that cover
supp(f). After a possible renumbering we may assume that these are Uy, ..., U,. Now let
Up := U \ supp(f). There exists a partition of unity ¢, @1, ..., pr € C2(U) subordinate
to the cover Uy, Uy,...,Us. For all j > 0 the functions ¢; have compact support on Uj;,
then o, fX = ¢, fX; € 17’ F. Therefore, we immediately have that

FX =3¢ fX €' F.

7>0

—

Since f was chosen arbitrary we have that X € ;' F = S7(U). O
From lemma 1.2.27 we conclude that the correspondence
{subsheaf S of X} +— {submodule F C X.(M)},

is a bijection. This also shows the first point in theorem 1.2.23. For the second and third
point of theorem 1.2.23 we refer to lemma 1.5.8 and proposition 1.5.9 in [Gar19]

1.2.3 Examples of Singular Foliations

In this section we will provide some examples of singular foliations. Throughout we will
use definition 1.2.13 and definition 1.2.22 interchangeably.

Example 1.2.28. A first example of a singular foliation is a regular foliation. Let D be
the distribution corresponding to the regular foliation then let F = I'.(D). ¢

Example 1.2.29. Let GG be a Lie group acting on a smooth manifold M, i.e. we are given
a group homomorphism G' — Diff(M). Then from this group action we have an associated
infinitesimal action p : g — X(M) where g = Lie(G), the associated Lie algebra to G.
Now when vy, ...,v, is a basis for g we can take F to be the C'°(M)-module generated

by {p(vl)w"vp(vn)}' ’
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The above example is actually a particular instance of a more general object.

Definition 1.2.30 ([dSW99]). A Lie algebroid is a triple (A4,[-,:],,p) where A is a
vector bundle over M, [-, -], is a Lie bracket on I'(A) and p : A — T'M is a vector bundle
morphism over the identity on M, called the anchor, such that for all f € C*°(M) and
sections z,y € I'(A) we have that

Remark 1.2.31. From the identity [z, fy], = f [z, y]4 + (p(x)(f)) y it also follows that p
is a Lie algebra homomorphism between I'(A) and X(M). The full proof is quite a long
calculation but the main insight is using the following version of the Jacobi identity:

[x> [y’ fZ]A]A + [fZ, [x>y]A]A + [y> [fzax]A]A =0,

for z,y,z € I'(A) and f € C*(M). Now using the Leibniz identity to expand all of these
brackets and cancelling some terms gives that p is indeed a Lie algebra homomorphism.

Example 1.2.32. From a Lie algebroid (A, [-,-] 4, p) we get a singular foliation. By using
the sheaf point of view we let F(U) := p(I'(A|y)). We show that this indeed yields a
singular foliation. Let z; = p(ay) and x5 = p(az) for some ay,ay € A and U; and U,
two open neighborhoods of z; and xs respectively s.t. zi|p,nu, = T2lvinu,. Let fi, fo
be a partition of unity subordinate to U; and U, then a := fia; + feas € T (A|v,un,)-
Now consider p(a) = fip(ai) + fop(az). Now clearly for p € U; N Uy we have that
p(a)(p) = fi(p)zi(p) + fo(p)z2(p) = z1(P)(f1(p) + fo(p)) = z1(p) = w2(p). Similarly for
p € Uy \ (Uy NUs) we have that fo(p) = 0 and so p(a)(p) = z1(p). Completely similar
one can show that for p € Uy \ (U; NUy), p(a)(p) = z2(p). The only thing left to show
is that this F is indeed locally finitely generated. Given a point p € M we can find an
open neighborhood V' of p on which A is trivial. Let a4, ..., a, € I'(A]y) be a local frame.
Then every a € T'(A|y) is of the form a = Y fia; for f € C*°(M) hence we also have that
any x € p(['(A]y) can we written as © = Y fip(a;). ¢

Example 1.2.33. As noted above the example of a Lie group/algebra action on M can
be seen as the foliation arising from a Lie algebroid. From a Lie group action we get an
infinitesimal action ¢ : g — X(M). Now consider the vector bundle g x M then we will give
this the structure of a Lie algebroid. Define the anchor p: g x M — TM : (v,p) — p(v),.
For v,w € g let v, w denote the corresponding constant sections M — g. Now define

(v, w] == [v,w] .

Note that this bracket inherits the properties from the Lie bracket [-,-]  and so is a Lie
bracket itself. Finally, one can extend this bracket to non-constant sections by using the
Leibniz identity. For example when we let G = S and M = C we can let G act on M
by t -z := ez. When we write 2 = z + iy we have that the infinitesimal generator ¢ is
given by

Jy Yor
The resulting foliation is illustrated in figure 1.5, the regular leaves are concentric circles
while the singular leaf consists of the origin.

@:R—>%((C):v|—>v<x8— a).

¢
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Lo

SR C

Figure 1.5: Foliation given by the action (R, +) ~ C from example 1.2.33.

Example 1.2.34 (Taken from [LGLS20]). Consider M = R and the partition into leaves
(—00,0), {0} and (0,+00). In this case there are infinitely many modules that induce
this foliation, they are indexed by a k € Ny and have the form

0
k0
= <x 8m>cgo(M)'

This example illustrates that the definition using submodules or sheaves inherently carries
more information than the ‘geometric picture’ that comes from the partition into leaves
only, which is illustrated in figure 1.6. ¢

= S/k

Figure 1.6: Foliation F* from example 1.2.34

Example 1.2.35 (Example 3.12 in [LGLS20]). To a bivector 7 € X?(M) we can associate
amap 7 : QY (M) — TM : df — w(df A-). We say that 7 is foliated when 7* (Q'(M))
is closed under the Lie bracket. As an application of Dirac geometry we know that when
7 is a Poisson bivector, T*M gets a Lie algebroid structure with anchor 7*. We call the
resulting foliation of the Poisson manifold the symplectic foliation. This because when
7 is Poisson, the leaves inherit a non-degenerate Poisson structure which is inverse to a
symplectic structure. For more information on this we refer to section 1.3.4 in [LGPV13].

¢

Example 1.2.36 (Based on Example 3.36 in [LGLS20]). Consider the space C" and a
k-tuple of polynomials ¢ = (¢4, ..., @) where ¢, € Clzq,...,2,]. Let X,0(C") denote
the module of polynomial vector fields (the coefficients are polynomials in C [z1, ..., z,]).
Now consider all X € X,,(C") such that X¢ = 0. We argue that these vector fields form
a singular foliation. Let X,Y be such that X [p] = 0 and Y [¢] = 0 then [X,Y]p = 0,
indeed [X,Y]¢o = X(Y[¢]) — Y(X [¢]) = 0 and so this set of vector fields is closed
under the Lie bracket. If F denotes all X € X,,(C") for which X¢ = 0 then it can
easily be seen that F is a C[zy,...,x,]-submodule of X,,(C"). The only thing left to
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show is that F is finitely generated but this is a standard result in commutative algebra:
X,01(C™) is a finitely generated C[xy,...,x,]-module and C[zy,...,z,] is a Noetherian
ring (another standard result of commutative algebra), now X,,(C") is also a Noetherian
C|[zq,...,x,])-module and hence all submodules are finitely generated so in particular F
is finitely generated. We will use this example as an example at several point throughout
this thesis, for convenience we will denote it by F.

Note that one could replace C by R and all the results still remain true. Indeed
X,01(R™) is still a finitely generated R [z1, . . ., z,)-module and R [z, . .., x,] is still Noethe-
rian?. Hence X,,(R") is also a Noetherian R [z, ..., z,]-module and so all submodules
are finitely generated. In particular F is finitely generated.

Figure 1.7 gives an illustration of F, when we let ¢(x1,22) = x122. We see the blue
and green leaves as the 1-dimensional ones while the origin is the only 0-dimensional leaf.

Figure 1.7: Foliation F, for p(x1,22) = z122

1.2.4 Singular Foliations and (almost-)Lie algebroids

Examples 1.2.32; 1.2.33 and 1.2.35 form a large class of examples, it is natural to ask
whether all singular foliations arise, locally or globally, as the image of a Lie algebroid.
Note that this is indeed the case for regular foliations F for which we can take the vector
bundle to be D = T'F and use the Lie bracket [-,-] on X(M) to define a Lie bracket on
['(D) and the anchor is just the inclusion. It turns out that the answer to the question
when considered in a global setting is negative: for this see the next example which also

4In fact when R is a Noetherian ring we have that R[z1,...,2,] is Noetherian as an R-module.
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contains the definition of a first important invariant associated to a singular foliation at
a point. Later in the thesis we will discuss the local question using the tools that where
developed.

Example 1.2.37 (Based on Lemma 1.3 in [AZ13]). A first invariant of a singular folia-
tion as introduced by Androulidakis and Skandalis in [AS09] is called the isotropy Lie
algebra g, at some point x € M. It is defined as the quotient

_Fl) {XeF|X(z)=0}
8 =7 F IF

where I, = {f € C*(M) | f(x) = 0}. The vector space g, gets a Lie algebra structure
because I, F C F(x) is a Lie ideal. We now use this object to show that not all singular
foliations are induced (in the sense of example 1.2.32 meaning that F = p (I'(A4))), glob-
ally, by a Lie algebroid.

Let F be such a foliation coming from a Lie algebroid A. Consider the space ker p,
(called the isotropy of the Lie algebroid at ). Then there is a well-defined linear mapping
ker p, — g, that maps @ to (p(a)) where a € I'(A) is any extension of @. Remark that
this map is surjective: every element in g, is represented by an X € F that vanishes
at x; hence X = p(a) for some a € C*(A, M) with p,(a,) = 0. Hence we have that
dimg, <tk A for all x € M.

Now let k£ > 1 and consider the foliation F* of R? generated by
(z — k)ly]g (x — k)lng Vi, 7 > 0 for which i + j = k.
al’ ) 8y yJ =

Now take the foliation F generated by Uy>1prF * where ¢, is some fixed bump function on
R? with small support concentrated around (k, 0). Then one can show that g o) = R**2.
So the dimension of the spaces g ) grows linearly with k and so is certainly not bounded
above; so F cannot come from a Lie algebroid.

¢

We can also look at almost-Lie algebroids. They are very similar to Lie algebroids and
the only difference is that the bracket [-, -], need not to satisfy the Jacobi identity.

Definition 1.2.38 (As defined in [Hue05]). An almost-Lie algebroid over a manifold
M is a vector bundle A — M, equipped with a vector bundle morphism p : A — TM
called the anchor and skew-symmetric bracket [-, -], on I'(A). This bracket must satisfy
the Leibniz identity

Vo,y € ['(A), f € C*(M) [z, fyla = fla,yla + p(2) [f]y,

and the anchor must be an algebra morphism w.r.t. the bracket operation®

Ve,y e U(A)  p(lz,yla) = [p(2), p(y)] - (1.2)

®Note this is not a Lie algebra morphism as the Jacobi identity does not need to hold for the bracket

[’7’]14'
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The following proposition shows that from a singular foliation one can get an almost-
Lie algebroid. This also shows that the main failure point in getting a Lie algebroid from
a singular foliation is getting the Jacobi identity for the bracket on the sections.

Proposition 1.2.39 ([Lav16] and [LGLS20]). Let M be a smooth manifold and (A, p)
and anchored vector bundle®.

1. For every almost-Lie algebroid structure on A — M, the image of the anchor map
p:T(A) = X(M) is a singular foliation.

2. Fvery finitely generated foliation on M is the image under the anchor map of an
almost-Lie algebroid, defined on a trivial bundle.

3. Every anchored vector bundle (A, p) over M that covers a singular foliation F can
be equipped with an almost-Lie algebroid structure with anchor p.

4. A singular foliation is the image under the anchor of an almost-Lie algebroid if and
only if it is finitely generated.

Proof. 1. This follows immediately from the definition.

2. Let Xy,..., X, be generators of a singular foliation F. By definition F is closed
under the Lie bracket of vector fields and so there exist functions cfj € C*°(M) such
that

,
(X3, X5 => i Xe Vije{l,....r}
k=1
Now when cfj #+ —cfi we may replace cfj by % (cfj — cé“l) Now when gfj = % (cfj — c?l)
it is easy to see that gfj = —gﬁ. Remark that this replacing does not change any-
thing:

T T 1
X, X)) = ; b Xy~ ; 5 (el — ) Xi

= chile — *ZC-iXk
2k:1 ’ 2k:l ’
1 1

=3 (X, X5 — 5 (X, Xi]

= [Xiv Xj] .

Where we used the antisymmetry of the Lie bracket. We now define A = R" x M —
M and construct an almost-Lie algebroid structure on it. Denote its canonical global
sections as ey, ..., e, then define:

e the anchor map p(e;) = X; fori=1,...,r,

e the bracket using the structure functions cfj, le;, €] A= k=1 cfjek; this bracket

can then be extended to nonconstant sections using the Leibniz rule.

With this we have by definition p(I'(A)) = F.

6An anchored vector bundle is a vector bundle A — M together with an anchor map p: A — TM
over the identity on M.
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3. Let (U;);er denote a collection of open sets such that Ay, is trivial for all i € I. We
may then choose a partition of unity (¢;);cr subordinate to the open cover (U;)e;.
Just as we did in the previous we can find an anchor p and a collection of brackets
[, -]y, on T'(Aly;). Now we can glue these brackets together using the partition of

unity
['7 '}A = Z Pi ['7 ']Ui :

el

4. This follows immediately from the previous item.

1.2.5 Geometric Resolutions of Singular Foliations

Geometric resolutions of a singular foliations will become important when we define the
universal Lie oo-algebroid of a singular foliation.

Definition 1.2.40 (Definition 2.1 in [LGLS20]). Let F C X(M) be a singular foliation
on a manifold M. A geometric resolution of F is a triple (F,d, p) such that

1. E = ®;>1_; is a collection of vector bundles over M,
2. d is a family of vector bundle morphisms d® : E_; — E_; 1 over the identity on M,

3. p is a vector bundle morphism p : £y — T'M over the identity on M called the
anchor of the geometric resolution.

All such that the following sequence of C*°(M )-modules is exact”

e ) e (e S F 0.

When all E_; are trivial bundles we speak of a resolution by trivial bundles. A geometric
resolution is called minimal at m € M if for all © > 2 the linear maps dg,? B il —
E_i+1|m vanish.

By the Serre-Swan theorem, see for instance theorem 12.32 in [Nes20], we know that
the C°°(M)-module of sections of a vector bundle is a projective C°°(M )-module. This
means that geometric resolutions can be seen as projective resolutions of the module F. It
is a standard result in commutative algebra (see for instance part XX §1 in [Lan05]) that
every module admits a free resolution and hence also a projective resolution. This however
does not mean that all singular foliations admit geometric resolutions®. Indeed there do
exists counterexamples on R (in the smooth case). However the following theorem, which
is part of proposition 2.3 in [LGLS20], gives a class of foliations for which we do have an
existence result.

Theorem 1.2.41. Fvery algebraic singular foliation on a Zariski open subset of C™ admits
a geometric resolution of length less than or equal to n + 1.

"Remark that we used the same notation d(¥) for the maps between vector bundles and the induced
map on the module of sections.

8Not every projective module arises as the module of sections of a vector bundle over M. Indeed,
they need not to be finitely generated which is a necessary condition for the converse of the Serre-Swan
theorem.
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To show theorem 1.2.41 we will make use of Hilbert’s syzygy theorem (see for instance
[Eis95], corollary 19.7). The proof we give here is an adaptation of the proof originally
given by Cartan and Eilenberg as discussed in section 19.1 of [Eis95]. We give an adap-
tation of their proof because they originally gave it in the setting of local rings. We will
need it for the case of graded rings and so some adaptations of necessary lemmas and
the statements of some propositions are needed. Before giving the proof we need some
preliminary results.

Lemma 1.2.42 (Graded Nakayama Lemma). Let R = @®,>0R, be a graded ring with the
degree 0 component a field k. Let M be a finitely generated graded R-module and I <4 R
a graded homogeneous ideal such that I C Ry = @,~oR, and IM = M. Then we have
M = 0.

Proof. Since M is a graded module, we can write M = ®,czM,. Since M is assumed
to be finitely generated we can write M = (z1,...,x;)r for some homogeneous elements
x1,...,2. Let d :==min;_; _;degz; then My # 0 (there is some element of degree d that
generates M) but My_,, = 0 for all m > 1 (there are no elements of degree < d that
generate M). Note that R does not contain any elements of negative degree and I C R
so in I M the minimal degree of elements in I M must be d+ 1 which of course also means
that My is not contained in IM which clearly contradicts IM = M. In this way we
conclude that there does not exist an integer d for which My # 0 hence M = 0. O

Remark 1.2.43. A classic application of Nakayama’s lemma is to make sense of a minimal
generating set for M (i.e. no smaller subset generates M) . For arbitrary finitely generated
modules over arbitrary rings this does not need to be a well-defined notion. In our case,
by using Nakayama’s lemma, it will be well-defined. Note that since Ry = k is a field
we have that R/R, = k. Hence M/R M is a k-vector space. This means it has a basis
(Z1,...,T,) where x; € M and 7; is it representative in M/R, M. For a basis of a k-
vector space V we do have a well-defined notion of minimal generating sets. One needs
exactly dimy V' linearly independent elements to generate V. Now consider the submodule
N :=(zy,...,2,). By construction of the submodule N we have that M/N = R, (M/N).
Now applying the graded Nakayama lemma 1.2.42 with I = R, we get M /N = 0. Hence
we must have M = (z1,...,x,). Le. we have lifted a basis of a vector space to a generating
set of M and the minimal number of generators is well-defined.

Definition 1.2.44 ([Eis95]). A graded free resolution of an R-module M is a complex
F: oo F, 2. . 52 Fp—-M—0, (1.3)

where R = ®4>0R, is graded ring and all the F; are graded free modules, that is F; =
PgerRq for I some index set. Furthermore, the maps are homogeneous of degree zero.
We call the resolution finite of length n if F,,,; =0 and F; # 0 for 0 <1 < n.

Definition 1.2.45 ([Eis95]). A complex
F: - F, 2 F, — -,

of graded modules over a graded ring R = @©g>0l2q is called minimal if the maps in the
complex F ® R/R. are all 0. That is im ¢,, C R, F,,_;.
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Lemma 1.2.46 ([Eis95]). A graded free resolution
F: - -5 F, 2 F,_ 44— -2 F

over a (positively) graded ring R is a minimal complex if and only if for each n, a basis
of F,,_1 maps onto a minimal generating set of coker ¢,,.

Proof. Let R, be as above and let ¢y denote the natural map Fy — coker ;. For any
n > 0 consider the surjective map of vector spaces given by

F,_ ker ¢,
1 _, _cokery

R.F, 1  Rycokery,

By the graded Nakayama lemma 1.2.42 a basis for coker ¢,,/ R coker ¢, can be lifted to
a minimal set of generators for coker ¢,,, see remark 1.2.43. Thus we have that a basis of
F,,_1 is mapped onto a minimal generating set for coker ¢, if and only if the surjective map
from above is in fact an isomorphism which happens exactly when imp,, C Ry F,, ;. 0O

The following result will be the key result in proving Hilbert’s syzygy theorem. Before
proceeding note that by pd M we denote the projective dimension of M which is the
minimal length of projective resolutions of M, gldim R is the supremum of the projective
dimensions of all R-modules. Also recall that the functor Tor(—, N) can be computed
as the left derived functors of the functors — ®pz V.

Proposition 1.2.47 ([Eis95]). Let R be a positively graded ring with Ry = k a field
and M a finitely generated nonzero graded R-module. In this case pd M 1is the length

of any minimal free resolution. Furthermore, pdM is the smallest integer © for which
Torf ,(k, M) = 0 and thus pd k = gldim R.

Proof. As remarked earlier Torﬁl(k:, M) can be computed as the left derived functor of
— ®r M which means it is the 7 + 1-th homology of a projective resolution of M tensored
with k. Thus if n = pd M by definition the projective modules P;,; for ¢ > n in the
projective resolution are zero. From this it immediately follows that also Tor}" , (k, M) = 0.
Now assume that

Fiooom 0= F, 25 Foq = 25 By,

is a graded free resolution of M of length n. Let ¢ > 0 be the smallest integer for which
Torf | (k, M) = 0 then we immediately have that n > pd M > i. When F is a minimal free
graded resolution the differentials in the complex R/R, ®F are zero and since R/R, =k
we have that the differentials in the complex k& ® F are zero which immediately implies

Torf  (k, M) =k ® Fi4;.

Hence Tor,',(k, M) = 0 if and only if F;;; = 0 and so i = n. From theorem 10.94
in [Rot08] it follows that we can also compute Tor’ | (k, M) starting from a projective
resolution of k. Clearly Torﬁl(k, M) =0 for all i > pd k and so combined with the above
we have that pd M < pdk. Indeed, if 7 = pdk and n = pd M and assume j < n then
we would have Torﬁl(k, M) = 0 for i > j but we have just shown that n is the smallest
integer for which Torf,(k, M) = 0 for i > n which clearly contradicts. So, we conclude
pd M < pd k and combined with Auslander’s theorem (a classical result, see theorem 19.1
in [Eis95]) this gives gldim R = pd k. O
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We give the following definition in the setting where R is a commutative ring and F'
is a free R-module with basis {ey,...,es}.

Definition 1.2.48 ([Eis95]). A regular sequence is a sequence 71, ...,7q € R such that
r; is not a zero-divisor in R/(ry,...,r;—1)Rfori=1,...,dand R/(r1,...,7q)R # 0.

The following definition is an adaptation of definition of a Koszul complex in [Rot08]
on page 1004. The notion of a Koszul complex will also come up later in examples 1.2.59
and 1.2.60.

Definition 1.2.49 ([Eis95]). Let x = (z1,...,x4) be a sequence in R then the Koszul
complex of x is defined as

K@) = NF 2 Al s 2R g

where the differentials d,, are defined as

S
dp (eil Ao /\eip) — Z(_l)rflxreil A /\éz.: A - /\eip;
r=0

and especially dy(37_; cie;) = i, ¢y

We now use (without proof) that the ideal R, of positively graded elements in R is
generated by a regular sequence x = (z1,...,x,) and by corollary 19.3 in [Eis95] the
Koszul complex K (z)® forms a minimal graded free resolution of length n of k = R/R.

Theorem 1.2.50 (Hilbert’s syzygy theorem). If k is a field, then every finitely generated
graded module over k [xq,...,x,] has a graded free resolution of length < n.

Proof. Using that K (x)® forms a minimal free resolution of length n for £ we can combine
this with proposition 1.2.47 to conclude that n = pd k is equal to the global dimension of
R which means that the length of graded free resolutions are bounded above by n. O]

Now that we have theorem 1.2.50 we are almost done. Our singular foliation F is a
finitely generated module over the ring of functions on Zariski open subsets of C"* which
of course is the ring R = C|xy,...,z,|. We think that in general there is no way to
make certain that F is generated by homogeneous elements and so we need to proof the
following, quite surprising, corollary of Hilbert’s syzygy theorem which gets rid of the
graded condition and works for arbitrary finitely generated modules over k [xy, ..., z,].
Once we have this result, we will give the proof of theorem 1.2.41.

Corollary 1.2.51 ([Eis95]). Every finitely generated module over k[xy,...,x,] has a
finite free resolution.

The proof is taken from corollary 19.8 in [Eis95].

Proof. Let S = k|xy,...,2,] and M a finitely generated S-module. It is a standard result
from commutative algebra that any module admits a free presentation so we choose a free
presentation F % G — M — 0. We can choose a basis such that ¢ : F — G is
represented by a matrix with polynomial coefficients. By introducing a new variable
ro we can homogenize all entries in this matrix: let d denote the maximal degree of a
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polynomial in this matrix, next multiply all entries by the appropriate power of x( to
take the degree of the entry up to d. In this way we start working over the polynomial
ring T' = k [zg, x1,. .., 2,] and get a new matrix @ with entries consisting of homogeneous
polynomials of degree d. Note that S = T/(1 — xy) where (1 — xy) denotes the ideal
generated by 1 — xg in 7. This makes S into a T-module and with this structure it is
clear that ¢ = ¢ @7 S (indeed this just says that replacing zo by 1 in ¢ just gives ).
Now define M := coker ¢ for which we thus have M @7 S = M. By Hilbert’s syzygy
theorem 1.2.50 there exists a free resolution F of M. We now finish the proof by showing
that F ®r S gives a free resolution for M. This holds in particular when F ®7 S has no
homology (except the 0-th homology) which in turn means that Tor] (M , S) = 0 for all

i > 1 (by construction of the Tor-functor). We can compute the modules Tor] (]\7[ : S)
starting from the following free resolution for S

0T X7 585 0.

We tensor this free resolution with M over T to get the complex from which we can
compute the Tor modules. This gives us the following sequence

0— M 2% M — M — 0,

and this sequence has no homology (except again at the 0-th step) when the part 0 —

M =% M is an exact sequence. This thus means that ker(1 — x) = {0} i.e. 1 — g
is not a zero divisor on M. This however is clear since any element m € M can be
written as m = m, + (degree greater than e¢) where degm, = e and so (1 — zg)m =
m, + (degree greater than e) which proves what we wanted to show.

O
We are now ready to give a proof of theorem 1.2.41:

Proof of theorem 1.2.41. We have that F C X,,(C") is an involutive submodule. Since
X,01(C") is a finitely generated module over the Noetherian ring S = Clxy,...,z,] we
have that X,,(C") is a Noetherian S-module. Hence since F is a submodule of the
Noetherian module X,,;(C") we have that F is finitely generated. By corollary 1.2.51 we
have that a finite free resolution of F exists and hence also a projective resolution. Note
that by definition this implies that pd F < oco. In fact, by examining the proof of corollary
1.2.51, we even have that pd F < n+1. We will now show that we are able to construct a
projective resolution in which all the projective modules are finitely generated S-modules.

Since F is finitely generated we have that F = (Xy,..., X;)s. Now consider the free
module Py, = @fng with basis denoted eq,...,e;. Then there is a unique surjection’
mapping the e; to the X;

Py 2% F—0.

Note that this Fy is clearly finitely generated as an S-module. Hence F, is a Noetherian
S-module. Now define M, := ker ¢y, then My C P, as an S-submodule and so M, is
finitely generated. One can now do the same steps with M, to obtain the next projective

9 Any module can be written uniquely as the quotient of a free module. In particular finitely generated
modules are exactly the ones that are isomorphic to a quotient of a finite rank free module.



1.2. SINGULAR FOLIATIONS 23

module P; in the projective resolution which will again be finitely generated by the same
arguments. This process can be continued to obtain the complete projective resolution.
Indeed, this process stops because pd F < n + 1 (as observed above) and so there can at
most be n + 1 projective modules P;.

We have now shown that when
P& P2 2P AP F 0, [<n+l,

is a projective resolution of F, all modules P; are finitely generated. Since all Zariski open
sets U C C™ are connected, the Serre-Swan theorem asserts that all the P; arise as the
module of sections of some vector bundle F_; hence obtaining a geometric resolution of
length at most n + 1.

O

Remark 1.2.52. In this particular case we are able to construct a projective resolutions
with finitely generated projective modules. The key property to do this is that the poly-
nomial ring is Noetherian. This fails in the smooth case: C*°(M) is not Noetherian when
dim M > 0. Hence in the smooth case a geometric resolution may not always exist (as
we already remarked earlier).

1.2.6 Relations Between Geometric Resolutions

In this part we will examine the relation between two geometric resolutions. An object
that provides a relaxation of the conditions in the definition of a geometric resolution and
thus also gives some slightly more general results is defined in the following definition.
Note that all vector bundle morphisms involved are considered to be over the identity on
M.

Definition 1.2.53 (Definition 3.16 in [LGLS20]). A complex of vector bundles (E, d, p)
over a singular foliation F is a collection F of vector bundles (E_;);>; over M, a collec-

tion d of vector bundle morphisms d® : E_; — E_;.1 and a vector bundle morphism
p:E_y — TM such that d~Y od® =0 for all i >3, pod® =0 and p(I'(E_,)) C F.

Remark that in particular every geometric resolution is a complex of vector bundles
over F and that every complex of vector bundles over F is a geometric resolution if and
only if it is exact on the level of sections and p (I'(E_;)) = F. The following definition
captures the notion of morphisms and homotopy of morphisms for complexes of vector
bundles over F.

Definition 1.2.54 (Definition 3.17 in [LGLS20]). e A morphism ¢ between two com-
plexes of vector bundles (E, d, p) and (E’,d’, p’) over F is a collection of vector bun-
dle morphisms ¢; : E_; — E’; (over the identity map on M) making the following
diagram commutative

RN B L AN N N S S o V)
}03 l@Q l@l J]l
e, Yy, g Ty
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e two morphisms ¢, v : (E,d,p) — (E',d', p') are said to be homotopic if there exists
a collection of vector bundle morphisms h; : E_; — E’, | such that ¢, = ; +
d' o by + h;_1 0od® for all i > 2 and ¢ = ¢4 + d'® o hy. That is the following
diagram commutes

d®) d2) p
E_3 E_ o E,—TM
P3| |3 ST | |2 Y| |1 1
hs ha ha
> v v
/ / /
. _—

_3 —® E", —@ E", p TM

e two complexes of vector bundles (E,d,p) and (E',d',p’) over F are said to be
homotopy equivalent if there exist chain maps ¢ : (E,d,p) — (E',d,p') and ¥ :
(E',d,p') — (E,d,p) such that ¢ o1 and ¥ o ¢ are homotopic to the respective
identity morphism of complexes of vector bundles.

An important lemma that is used at several points in the paper [LGLS20] but is left
without proof is the following one.

Lemma 1.2.55 (Lemma 3.19 in [LGLS20]). Let (E,d, p) be a geometric resolution of a
singular foliation F. For every complex of vector bundles (E',d', p') over F, there exists
a morphism of complexes of vector bundles over F from (E' d',p') to (E,d,p) and any
two such morphisms are homotopy equivalent.

Proof. Define the C*°(M)-modules P; := I'(E_;) and @Q; := ['(E”;). Then both of these
are projective modules and furthermore the complex P, (consisting of the modules P; and
the differentials d* : Py, — P,)) is a projective resolution of the module F. Furthermore
when we define ' := p (F(Ell)) then we know, since (E',d’, p’) is a complex of vector

bundles over F, F' C F as submodules. So we have a natural map (the inclusion)
f: F' — F and the following diagram where the bottom row is exact:

i Q2 ¢ Q1 —L— F 0
lf
¢ .p L ,p L F 0

We now show that there exists a sequence of maps f, : Q,, — P, such that all the formed
squares commute. We do this by induction on n > 1. First let n = 1 then we have the
following diagram

@

Lfl Jfop/
p -5 F 0

and the projectivity of the module @)y together with the fact that p is surjective (from
exactness) implies the existence of a morphism of modules f; : ¢ — P, such that
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po fi = fop. Now for the inductive step consider

d/nfl

d/’ﬂ
Qn—H Qn Qn—l

an me :

dan dn—l
Pn+1 Pn Pn—l

If we can now show that f, o d™ C im d" then we have the diagram

QnJrl

T lfnod’" )
J\‘.d"
P,y —— imd" —— 0

and so the projectivity of @),,41 would give us a map f,41: Qni1 — Poi1. The inclusion
can be shown as follows: from exactness of the bottom row we get im d" = ker d"~! and
so it suffices to show that d"~ ! o f, o d™ = 0. But this follows immediately from the
commutativity of the square formed by f,, fn_1,d™ ! and d"~! together with the fact
that the top row is a complex and so d™ ! o d™ = 0. So this shows the existence of all
the module homomorphisms f, : @, — P,, we denote this chain map by f, : Qe — P4.
Now suppose that ge : Qs — P, is another chain map that satisfies the conditions (i.e.
makes diagrams commute and p o g; = f o p'). Then we now construct the terms of a
homotopy s, : @, — P,41 inductively. Define d, := f, — go then ; = f; — ¢g;. Note that
pody = fop — fop =0 andsoim(d;) C ker(p). The map P, — ker(p) induced by
d' : P, — P, is surjective by exactness and so we get a commutative diagram

G

Jo

L
P, —%— ker(p) —— 0

and projectivity of Q; gives us a map s; : Q1 — P, such that d' o s; = §;. Now to
construct s, : Q2 — P3, note that

dlo(dg—slod'l):dlofg—dlogQ—dloslodll
:flc’Ul/l—91<3d/1—31<3d/1
=(fi—g1—d' os))od"
=(d'os; —d" os)od?

and so im(dy — s; o d'') C ker(d') and again the differential d? : P; — P induces a
surjective map P3 — ker(d') and so we get the following diagram

Q

J{ég—slod’l

Ps BN ker(d') —— 0
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and again projectivity of Qs gives us a map s, : Qo — P; for which d? 0 sy = 6 — s 0 d"
which is exactly the homotopy between f5 and go. One can continue this proces inductively
to get a chain homotopy between f, and g,. As all the maps in the construction are
C°°(M)-module homomorphisms they are in particular C*°(M)-linear and so come from
vector bundle morphisms for which the homotopy property is preserved. This shows that
there is a morphism of complexes of vector bundles over F from (E',d’,p’) to (E,d, p)

and that two such morphisms are homotopic.
O

An immediate consequence of this lemma is the following one.

Corollary 1.2.56 (Lemma 3.20 in [LGLS20]). Any two geometric resolutions of a singular
foliation F are homotopy equivalent.

Examples of Geometric Resolutions

We now give some examples of geometric resolutions.

Example 1.2.57 (Example 3.29 in [LGLS20]). Let F be a regular foliation then E_; :=
TF, E_; =0 for all 1 > 2 together with p : TF — TM is a geometric resolution.
¢

Example 1.2.58 (Example 3.31 in [LGLS20]). Consider the Lie algebra sly(R) with its
three generators denoted h, e, f that satisfy the following relations:

[h,e] =2e, [h,fl==2f, e f]=nh.
We let sl5(R) act on R? in the following way:

0 0 0 0
il i—y%'

We now let F = (h, e, f)ceo(an). The resulting partitioning of R? is displayed in figure 1.8,
it consists of a 2-dimensional leaf R? \ {0} (the blue leaf) and a 0-dimensional leaf {0}
(the red leaf).

The vector fields h, e, f are not linearly independent over C*(R?) but it can be shown
that every relation between them is a multiple of

zyh +y’e —2*f = 0.

We will now describe a geometric resolution for this foliation. Define E_; to be the trivial
bundle of rank 3 generated by the sections e, f, h. Define an anchor p: £y — TM by
fixing the images of the generating sections

pe)=e, p(f)=f ph)=h

Note that F_; = R2 x R3[1] & R? x sl,(R) [1]. Define E_5 to be the trivial bundle of rank
1 generated by a section denoted s and define a vector bundle morphism

d?(s) = zyh + y’e — 2% f.



1.2. SINGULAR FOLIATIONS 27

Figure 1.8: Foliation given by the action sly(R) on R? as given in example 1.2.58

Note that E_, = R? x R[2]. Finally for i > 3 define £_; = 0 and d®) = 0. Then the triple
(E,d, p) provides a geometric resolution of F. Indeed we need to check exactness of the
sequence

R (2] 2% sly(R) [1] & F — 0.

Clearly we have that p (sly(R)[1]) = F, furthermore we have that p o d® = 0 by con-
struction. Because also every relation between the vector fields h,e, f is multiple of
xhh + y’e — 2° f = 0 we also immediately have im d® C ker p proving exactness.

¢

Example 1.2.59 (Example 3.33 in [LGLS20]). Let ¢ be a polynomial function on V' = C"
then if ¢4, denotes the contraction by dy we get a complex of trivial vector bundles over
v

Lo NSTV 5 ATV 5 TV 5

Here TV is the notation for the trivial bundle V' x W. Let X' = T'(A‘TV) be the sheaf of
t-multivector fields on V' then taking sections of the complex above gives

Loy g3 1oy x2 ey xt 19 0oo(V). (1.4)

This is also a complex since g, © 14, = 0. This is because when X; A --- A X}, € X* and
ay,...,0 € Q! then

X1 A A Xp(ag, ..., ap) = det [ai(Xj)]l-c

ij=1"

From this it can easily be seen that contracting with dy twice yields two row-equivalent
rows and so by the properties of the determinant this becomes zero. We call this the
Koszul complex associated to ¢. Note than when x4, ..., x, are coordinates on V' we have

that X! is generated by the sections 6%1, cee %. Hence by contracting all of these section

by dyp we get that the image of X! — C>°(V/) is generated by the functions %DT’ e 6% It

can be shown that when ¢ is a weight-homogeneous polynomial that admits an isolated
singularity at the origin, the Koszul complex of ¢ actually is an exact sequence. Now
consider the following complex of vector bundles

Ld¢®ld d<p® dtp® dep(gnd

LS NTV RV L ATV RV 2 TVRY 4 CoV V. (15)
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Then on the level of sections we have T’ (/\kTV ® K) for which T(AFTV®V) = T(AFTV)®ce
(V). Now I'(V) is a free C*°-module because I'(V) = @7 ,C* hence X* @ce I'(V) =
XF @ (B7,C®) = @, Xk, From this it also follows that on the level of sections the
complex (1.5) is exact. Now consider the sequence

ST (MTV V) HT(IVeV) S F -0,
then this sequence is exact at F if and only if imd* = F. So using that NTV®V)=

I(TV) @ T'(TV) and we assume I'(T'V') to be generated by the section 87, ce ai then
we find for oy, 3; € C(V),

(Be)e (o)) e (802)- (502

=S () 21 (51

M:

.5}

Q
&

N 03 2P O

_Zalﬁja ®8$]
8

_Z Zﬁj@ 8

i\j
Where we used that g—i € C®(V) for all i = 1,...,n. Hence we see that when we let F

‘}‘CL’Z

then we obtain a geometric resolution for this foliation.

¢

Example 1.2.60 (Example 3.36 in [LGLS20]). The following example will be an impor-
tant example throughout the rest of the thesis. Let ¢ be a function on V' = C” such
that ( S ,...,%";) is a regular sequence. By a theorem of Koszul (see theorem 16.5(i)
[Mat87]) this implies that the sequence (1.4) is an exact sequence. Consider the singular
foliation consisting of all vector fields X for which X [¢] = 0. Since (1.4) is exact it has

no cohomology in degree —1 which exactly means that
im (de L X2 — %) = ker (14, : X = C(V)).

Since X € ker (14, : X = C°(V)) exactly means that X [¢] = 0 this means that there
exists a bivector field T € X? of the form

P
Z " D 890, "o

x]

such that t4,(7) = X and so

o 9 8
Z”w (axza% - axax>
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From this we conclude that the foliation F, is generated as

o =

81‘2- a.’I)j (9.%]' 8:131

{a“‘) 0 %9 y1§z'<j§n}.

From the Koszul complex we also immediately get a geometric resolution by defining
E_; = NTTV and d := 14,.
¢

As we already discussed above not all smooth foliations admit geometric resolutions.
Therefore it might be interesting to give such an example. Before doing so we cite the
following result from [LGLS20] (for which the authors credit Marco Zambon).

Proposition 1.2.61 (Proposition 2.5 in [LGLS20]). If a singular foliation F on a con-
nected manifold M admits a geometric resolution of finite length in a neighborhood of all
points in M, then all its reqular leaves have the same dimension r. Moreover, for every
geometric resolution of finite length (E,d, p) of F over an open subset of M :

r=> (-1)""rk(E_;).

i>1
The following example from [LGLS20] is accredited to Jean-Louis Tu.

Example 1.2.62 (Example 3.38 in [LGLS20]). Let x be a smooth real-valued function
on M := R that vanishes identically on R~ and is strictly positive on R§. Consider the
singular foliation F generated by the vector field v defined as

d
vi=x(l)—=. 1.6
X% (16)
Now all points of R; and R{ are regular points. Therefore, there is an uncountable family
of O-dimensional leaves and a 1-dimensional leaf. If a finite geometric resolution where to
exist, this clearly contradicts proposition 1.2.61. So, we conclude there does not exists a
finite geometric resolution.

One can even show more: in the neighborhood of ¢ = 0 there does not even exist an
infinite geometric resolution for F. For the proof of this we refer to the aforementioned
example in [LGLS20]. In conclusion we have that this particular F does not admit any
smooth geometric resolutions.

¢
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Chapter 2

Lie oo-algebras & Lie oc-algebroids

In this chapter we will give the definitions of Lie oo-algebras (also called homotopy Lie
algebras, sh-Lie algebras or L.-algebras)! and Lie oo-algebroids. The concept of Lq.-
algebras as we present it in this text was first given by Stasheff and Lada (altough they
credit other authors, for more information see [nLal9]) in [Sta92] and [L.S93]. Their work
was inspired by work of Zwiebach in [Zwi93] which concerned closed string theory in
theoretical physics. The L..-algebra structure also comes up in other parts of theoretical
physics: supergravity, string field theory, perturbative quantum field theory,... which also
means a lot of examples can be found in these parts of physics. The second important
structure introduced here are Lie oo-algebroids will be the most important object in this
thesis. We will associate to singular foliations which admit a (finite) geometric resolution
a so-called universal Lie co-algebroid from which we will be able to deduce some geometric
properties of the foliation. Altough we will use it in a ‘pure mathematics’ setting these
objects also comes up in several domains of theoretical physics.

2.1 Lie oco-algebras

We will start by giving the definition of Lie co-algebras as we will use it later. First note
that when £ = @®;>; E_; is a graded vector space we call the elements of £/_; homogeneous
of degree —i. For a real vector space V' we denote by S™(V') the n-th symmetric product
of V' that is defined as

"V

S"(V) =
(V) <x1®---®$n—l’a(1)®"'®$a(n)|U€3n>

From this we can also construct the symmetric algebra of V as S(V) = @©,505™(V) where
we set S°(V) = R or any field over which V is defined®>. By S(i,n — i) we denote the
(7,n —i)-unshuffles, these are the o € S, for which o(1) < --- < o(i) and o(i+1) < --- <
o(n). Using this terminology, we can make the following definition.

Definition 2.1.1 (Definition 3.39 in [LGLS20]). A Lie oo-algebra is a graded vec-
tor space I} = @;>1F_; together with a family of graded-symmetric n-multilinear maps
(v :=={... }n)p>, of degree +1 that we call the n-ary brackets, which satisfy a set of

"'We will mainly use the last notational convention.
2The same can be done for modules M over a ring R and then we set the 0-th symmetric power to be
the ring over which M is defined as a (left/right) module.

31
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compatibility conditions that are called the general Jacobi identities. This means that
for all n > 2 and for every n-tuple of homogeneous elements z1, ..., z, € F the following
equation is satisfied

Z 6(0-){{x0'(1); s axa(i)}’ia Lo(it1)s -« -y La(n) }n—i+1 =0. (21)

i=1 0eS(i,n—1)
Here €(o) is the Koszul sign defined by
To1) @+ O Tom) = €(0)T1 O -+ O Ty,
We call a Lie co-algebra structure a Lie n-algebra when E_; =0 for all : > n + 1.

As is noted in [Lav16] an important remark needs to be made here: in, for example,
[LS93] and [LM95], a different convention is used to define an L.-algebra. In these afore-
mentioned works an L., structure on a graded vector space E is defined to be a collection
of skew symmetric linear maps (I, : ®"FE — E), ., of degree 2—n, i.e. a collection of maps
(ftn : A"E — E),_.,? of degree 2 —n such that they satisfy some higher Jacobi identities.
In this framework, what we call an L..-algebra is actually an L, [1]-algebra (a shift in
degrees of elements). This convention is somewhat easier to construct examples out of
(the examples below indeed use this convention) but will not be the preferable convention
for the further theory. Hence, we will only use it to display two examples and from there
on we use the definition 2.1.1. One can show through the so-called décalage isomorphism
that these two different notions of L., structures are indeed the same, symbolically this
isomorphism states that

s (e )= (A . (2

between spaces of linear maps this translates into the following isomorphism (where the
superscript denotes the degree of the considered maps)

Hom' (/n\ E, E) =~ Hom ™' (S™(E1]), E[1]).

From this isomorphism it can be seen immediately that degree 2—n maps p,, : A"E [—1] —
E [—1] correspond uniquely to degree +1 maps v, : S"(F) — E (which directly translates
to the brackets we are considering). In particular given a collection of n homogeneous
elements z1, ..., x, and their representatives in y1,...,y, € F[1] (remember that |y;| =
|z;] — 1) then the isomorphism between a graded skew-symmetric bracket [---] on E and
a graded symmetric bracket on E'[1] that we denote by {-- -}, is given by the following

equation . ‘
(21, ..., @], = (—=1)"@Hi 0wl gy, (2.3)

Example 2.1.2. When using the convention from, for example [LS93] and [LM95], an
Lo.-algebra with only /5 and [y nontrivial is a differential graded Lie algebra or DGLA
for short. The degree 1 map [; corresponds to the differential and the degree 0 map [,
corresponds to the bracket.

¢

3By skew symmetry of the [,, they factor through such maps fi,,.
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Example 2.1.3. In particular when F = E_; we recover an ordinary Lie algebra (again
working in the same setting as example 2.1.2).

¢

Of course, one can also talk about morphisms between L..-algebras. They are defined
in the following way.

Definition 2.1.4 (Definition 6 in [KS06]). Let (F, ux) and (E', u},) be two Ls-algebras
in the sense of definition 2.1.1. An L-algebra morphism is a collection of maps

fx: SME) = E'

for which
> o) fin (#kz ® ]l®l) (%(1))
oeS(k,l=n—k)
(o) ' 2.4
= Z fﬂ} (fk1®"'®fkj) (To(n)) (24)
oeS(ky,..k;)
key - tkj=n
Jj=1,...,n
Here we denote by €(o) the Koszul sign as above and for I = (i1,...,4,), Zs) denotes
To(iy) @+ © To(,) for homogenous elements w;,, ..., x;,.

Remark 2.1.5. In the notation in definition 2.1.4 we denote the degree +1 graded sym-
metric k-ary bracket from definition 2.1.1 by u, not to be confused with notation we used
to illustrate the difference between the graded skew-symmetric brackets and the graded
symmetric brackets from the paragraph after definition 2.1.1.

2.2 Lie oo-algebroids

Definition 2.2.1 (Definition 3.40 in [LGLS20]). Let M be a smooth manifold and E =
(E_i)1<;<s0 @ sequence of vector bundles over M. A Lie oo-algebroid structure on £
consists of a Lie oo-algebra structure on I'(E) and a vector bundle morphism? p: E_; —
TM, called the anchor, such that the brackets {...}, are C°°(M)-linear in each of their
n arguments except if n = 2 and at least one of the two entries has degree —1. Then the
2-ary bracket satisfies the following Leibniz identity

{z. fy}o = fw,y}e + p(2) [f]y,
forallz e I'(E_;), y € ['(E) and f € C*(M).

Remark 2.2.2. Like for Lie algebroids this Leibniz identity implies that p is a Lie algebra
homomorphism. Furthermore, it follows that po{-}1|g_, = 0. To make the notation a bit
more clear we write d := {-};. Now indeed if we let x1, 25 € I'(E) be degree homogeneous
elements then from the higher Jacobi identity (2.1) for n = 2 it follows that

d({l’l, ZEQ}Q) = {d[L‘l,ZEQ}Q + (—1)|I1|{ZE17 diL’Q}Q. (25)

4QOver the identity on M.




34 CHAPTER 2. LIE co-ALGEBRAS & LIE co-ALGEBROIDS

Now let e € ['(F_3), z € I'(F) and f € C*°(M). Then we have, by the Leibniz identity
for the 2-ary bracket, that

{de, fr}s = f{de,x}s + p(de) [f] . (2.6)

On the other hand, by C*°(M)-linearity, we have fd ({e,x}2) = d ({e, fz}). Furthermore,
by equation (2.5) and the Leibniz identity (2.6) one has

fd({e,x}2) = flde,x}s + fle,dx} (2.7)
= f{de,x}s + p(de) [f] f — p(de) [f]x + f{e,dx}s (2.8)
= {de, fx}s — p(de) [f]x + f{e,dx}s. 2.9

Now again by C*°(M)-linearity and equation (2.5) we have that

d({e, fx}s) = {de, fx}s+ fle,dx}s.

Using this result combined with equation (2.9) we recover that

Jfdlesths) = d({ecfThs) — fecdrts — p(de) [f]o + flesdr)s.

So we conclude that for arbitrary e € T'(F_5), x € T'(F) and f € C*°(M) one has that

p(de) [f]z = 0.

Hence, we have shown that po {-}1|g_, = 0.

Note that from the generalized Jacobi identity (2.1) it follows that for n = 1, for all
x € I'(E): {{z}1}1 = 0i.e. the unary bracket squares to zero. Since {-}, : I'(F) — I'(E)
is a multilinear map of degree +1 it consists of a family of C°°(M)-linear maps d® :
I'(E_;) — I'(E_i+1) which, by C°(M)-linearity, come from vector bundle morphisms
dV : E_; — E_;;; (see for instance lemma 10.29 in [Leel2]). As {-}? = 0 it also follows
that d¥ o d"=Y = 0 so we get a complex of vector bundles

Y NN 5 BN NN V8 (2.10)

We call (2.10) the linear part of the Lie co-algebra.

Example 2.2.3. When M = {x} we recover the definition of an L..-algebra.
¢

Example 2.2.4. Later in this chapter we will see that a Lie algebroid is a special instance
of a Lie co-algebroid. We include this example here without further details as to continue
the direction taken in examples 2.1.2 and 2.1.3 where we reviewed special ‘limiting’ cases
of L..-algebras.

¢
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2.2.1 N@-manifolds

In this section we will introduce N-manifolds and ()-manifolds, both of these are studied
in graded geometry which is the geometrical framework developed in the 1970s to study
supersymmetry in physics. The theory of Lie oc-algebroids as we explained above is
quite complicated to work with and in this part of the text we will explain the duality
between Lie oo-algebroids and N@-manifolds on which certain notions (e.g. morphisms,
homotopy, ...) are more easily accessible. For more background on graded geometry, we
refer to [FailT7].

Definition 2.2.5 ([LGLS20]). A sequence of finite rank vector bundles £ = (E_;);,
over M is called an N-manifold and we denote it £ — M.

Remark 2.2.6. Strictly speaking this is not the definition of an N-manifold but by Batch-
elor’s theorem we may, after a noncanonical choice of a so-called splitting, assume that a
general N-manifold (not defined here) is of the form presented in definition 2.2.5. For a
proof of this we refer to theorem 1 in [BP13].

We will now define the functions on the N-manifold: the sheaf of graded commutative
C*>-algebras of smooth sections of the graded symmetric algebra S(E*) will be denoted as
& and these are the functions on the N-manifold £ — M. Some remarks on the degrees
of elements: an element x € I'(E_;) is said to be of degree —i while an element of I'(E*,)
are said to be of degree +i and where E* = @;>, E* ;. Using this definition elements f € £
get ‘two gradings’. Namely the one from inside the graded vector bundle E* and the one
from the graded symmetric algebra S(E*). When ® denotes the graded-symmetric tensor
product (i.e. the product on the graded symmetric algebra) this boils down to sections of

@ Eiil@...@E*

i1+ tig=n

being of degree n and of arity k. We denote the collection of these elements as ).
For example, the degree 0 functions are just the smooth functions on the base manifold
M and the degree 1 functions are sections of E*,, degree 2 functions are sections of

B, © S?(EX).

Definition 2.2.7 ([LGLS20]). Graded derivations of £ are called vector fields on the
N-manifold E — M. A vector field @ is said to be of arity k if for all f € & of arity [
the arity of @ [f] is [ + k (degree of @ is defined completely similarly). A vector field @
of odd degree satisfying Q? := % (@, Q] = 0 is called homological (here [-, -] denotes the
commutator).

Remark 2.2.8. Graded manifolds equipped with a homological vector field are called Q-
manifolds, sometimes also denoted differential graded manifolds (or dg-manifolds) in the
literature.

Example 2.2.9 (Based on Example 4.1 in [LGLS20]). Let M be a smooth n-dimensional
manifold with tangent bundle TM. We can lift the degree of fiber elements to obtain
the suspended tangent bundle® T [1] M and obtain an N-manifold® E_; := T[1]M —

By this we mean the following: elements in 7'M are considered to be of degree 0, in the suspended
bundle T [1] M we view them as having degree —1.
6We have E_, = 0 for i > 2.
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M with functions defined as sections of the vector bundle S (7% [1] M) which, by the
décalage isomorphism, is isomorphic to AT*M. We of course recognize sections of the
bundle A T*M as being the sheaf of differential forms €2 on M. This means that the pair
Orpm = (T'[1] M, Q) forms an N-manifold. Just as on ordinary smooth manifolds we
can choose coordinates on an N-manifold. The big difference between them is that now
certain subsets of the coordinates may have nonzero degrees and are noncommutative
with respect to the other coordinates. We refer to [Fail7] for more information on this.
Let (x;)i=1..n denote coordinates on the base M (these are the degree 0 coordinates)

,,,,,, n on Oppy where the dx; are the degree
1 coordinates. Now we already know a nice example of a derivation on the differential
forms: the de Rham differential is a derivation of Q(V) for V. C M open. Locally it
is given as d = Zda:Z - and so it is an example of a vector field on O7p)y. For the
particular case of the de Rham differential it also holds, by construction, that deg(d) =1
and d* = 0 i.e. [d,d] = 0 and so it also is a homological vector field. We conclude that

(@Tm M d) is a Q-manifold.

.....

¢

Remark 2.2.10. If Q is a vector field on an N-manifold £ — M and Q®) denotes a vector
field of arity k then () can be written as

Q=3 Q¥
k>—1
Definition 2.2.11 (Definition 3.43 in [LGLS20]). An N@-manifold is a pair (£, Q)
where © — M is an N-manifold over some base M and where () is homological vector
field of degree +1.

Example 2.2.12. Of course the pair (@T[l] M d) from example 2.2.9 is an N(@Q-manifold.
¢

The following examples can be found in [Lav16] as examples 6 and 7 in chapter 1.

Example 2.2.13 (Example 6 in [Lav16]). This example was of great importance in the
historical development of the notion of Lie oo-algebroids as being ‘higher Lie algebroids’
by Voronov [Vorl0]. Let A — M be a Lie algebroid with bracket [-,-]. This bracket is
in particular a skew-symmetric bracket on I'(A). By equation (2.3) we can translate the
skew-symmetry of the bracket to a symmetric bracket on the vector space I' (A [1]). Note
again that elements of I'(A [1]) have degree —1 while they have degree 0 when considered
in I'(A) thus a direct application of (2.3) with n = 2 yields that for all z,y € I'(A[1])
with representatives z,y € ['(A) one has

{x,y} = [fag] :

As discussed the space of functions on A [1] is isomorphic to T'(S (A [1]7)), so it is sufficient
to define a vector field @ on C*(M) and I'(A[1]") and then extend by derivation. Note
that @ has degree +1 and so it maps C*°(M) to I' (A [1]") and in turn maps this module
to T'(S*(A[1]")). Now define the following relations for all f € C(M), a € T'(A[1]")
and for all z,y € I'(A[1]):

(QI[f],z) = p(z) [f]
(Qla),z 0 y) = p(x)(a,y) — p(y)(a,y) — (a,{z,y}).
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One can now extend @ to the whole of T'(S(A [1]*)) by the derivation property. Some small
computations reveal something very interesting: there is a one-to-one correspondence
between Lie algebroids and degree +1 (-manifold structures on A[1]. Indeed when f €
C>(M) we have that Q[f] € T'(A[1]") hence

1
@I, x®y>—p( NQ U y) = pw)(QLf],2) = QIS Az, y})
= p()p() lf] = p(w)p(2) [f] = p({z, y}) [f]
= ([p(x), p(w)] = p({z, y})) IS,

and using that @) is a degree +1 derivation one can show that also
Qo). ©y©2) = (o, {, g} 2} + {w. 22} + {0 ).

Hence requiring that Q? = 0 (i.e. requiring A [1] to be a @Q-manifold) exactly means that
p needs to be a Lie algebra homomorphism and that the bracket {-,-} on I'(A[1]) must
satisfy the Jacobi identity. All of this corresponds precisely to A [1] being a Lie algebroid.
This is also a first hint towards theorem 2.2.15 that we will state below.

¢

Example 2.2.14. Combining examples 1.2.35 and 2.2.13 we see that for a Poisson mani-
fold (M, ) one gets a Lie algebroid structure on 7*M which implies that we can associate,
to every Poisson manifold, a ()-manifold structure on 7*M [1].

¢

For a given N@Q-manifold (E, Q) with sheaf of functions £ we know that there is an
isomorphism of sheaves & = C*°. While as we remarked already & = I'(E* ) and since @
is a degree +1 derivation of £ we have a map @ : C*°(M) — ['(E*,) which is a derivation.
If (-,-) denotes the duality pairing then the map

C®(M)— C®(M) : f = (Qf,x), Yrel(E),

is a derivation of C*°(M). So to every z € I'(E*,) we get an associated vector field in
['(TM) (this is because vector fields on M can be characterized as being derivations of
the algebra of smooth functions on M). I.e. we have a map

T:(E_,) > T(TM).

Now since this 7 is C*°(M)-linear and F_; and T'M are both vector bundles over M we
have, by lemma 10.29 in [Leel2], that this 7 comes from a vector bundle morphism

p:E,1—>TM.

Note that this p satisfies that (Qf,z) = p(z)f, for all z € ['(E_;) and for all f € C>*(M).
One can show that for a degree 41 vector field we have that

Q=Y Q¥

k>0

The following theorem (originally discussed in[Vorl0], for a proof in the notation
from this thesis see [Lav16] theorem 1.1.11) will be of great importance as it describes
the duality between Lie oc-algebroids and N@-manifolds. This duality will help when
describing morphisms of Lie oo-algebroids as we can then consider them as being NQ-
manifolds and describe the morphisms in the category of N(@-manifolds.
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Theorem 2.2.15 (Theorem 3.44 in [LGLS20]). Let E = (E_;);>1 be a sequence of vector
bundles over a manifold M. There is a one-to-one correspondence between N (Q)-manifolds
and Lie oco-algebroid structures on E. The anchor p of both is defined like we described
above and furthermore we have that:

1. The differential d of the linear part of the Lie oco-algebroid structure is obtained by
dualizing the arity 0 component Q©) of Q, i.e. for all « € T(E*) and x € T'(E)

(QWa,z) = (=1)%&(q, d(x)). (2.11)
2. The 2-ary bracket {-,-}o and the arity one component QW) are related by

<Q(1)C¥, 0O y) = p(%’) <Oé,y> - P(y) <a7$> - <Oé, {x7y}2>7
for all homogeneous elements x,y € T'(F) and o € T'(E™).

3. For every n > 3 the n-ary brackets {---}, : T'(S"(F)) — I'(E) and the component
of arity n — 1, Q=Y : T(E*) — T'(S™(E*)) are dual to each other.

Theorem 2.2.15 can be combined with example 2.2.13 from which we also immediately
see that a Lie algebroid can be seen as an example of a Lie oc-algebroid, a fact that we
will use later when discussing singular foliations using Lie co-algebroids. It also deserves
to be noted that when we apply theorem 2.2.15 with M = {x} we recover a similar duality
theorem for L.-algebras (using example 2.2.3).

From here on we will use the notation (F, Q) to denote a Lie oo-algebroid with @) the
homological vector field that gives the brackets as described in theorem 2.2.15.

2.2.2 Lie oo-algebroid Morphisms and Homotopies
Morphisms

Just as for L..-algebras one can define morphisms between Lie oco-algebroids and homo-
topies between those. For this the point of view we developed in section 2.2.1 and more
specifically theorem 2.2.15 will come in very useful as morphisms are more easily explained
in the category of N@-manifolds. Dualizing then yields the appropriate definitions for
Lie oco-algebroids, we develop these definitions following section 3.4.2 in [LGLS20]. To
define morphisms we take inspiration from the smooth manifold case: giving a smooth
map f : M — N between smooth manifolds is equivalent to giving an algebra morphism
f*: C®°(N) — C>°(M) between the function spaces on N and M respectively. We view a
Lie oo-algebroid as a pair (F, Q) (as established by theorem 2.2.15 ) and denote its sheaf
of functions by €. Then a Lie oc-algebroids morphism can be defined in the following
way.

Definition 2.2.16 (Definition 3.45 in [LGLS20]). A Lie co-algebroid morphism from
a Lie oo-algebroid (E', Q') to a Lie co-algebroid (F, Q) with sheaves of functions £ and
& respectively, is a graded commutative algebra morphism ® : £ — £’ that satisfies

Do =Q 0. (2.12)

We say that ® intertwines the homological vector fields @ and Q'
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Remark 2.2.17. Note that ¢ in particular induces some other morphisms:

e base morphism: since ® is a degree 0 morphism of graded commutative algebras we
in particular have that ® maps & to £]. Which exactly means giving an algebra
morphism C*(M) — C*°(M’), i.e. it induces a smooth map ¢ : M" — M,

e linear part: by definition of the sheaves of functions on an N(Q)-manifold we have
that £ =T'(S(E*)) and & =T'(S(E™)) and so @ : I'(S(E*)) — I'(S(E™)). Because
® is an algebra morphism we may restrict to looking at the restricted map & :
['(E*) — T'(S(E™)). Now we use the following fact from the theory of vector
bundles: given vector bundles A — M and A’ — M’, giving a vector bundle
morphism = : A — A’ is equivalent to giving the following data: (a) an algebra
morphism &* : C®°(M') — C>°(M) and (b) a linear map ¥ : I'(A™) — I'(A*) such
that U(fe) = &*(f)¥(e) for all e € T'(A™) and f € C°(M’). Now applying this to
the restricted morphism ® : I'(E*) — I'(S(E"™)) we get a vector bundle morphism
¢ : S(E') — E and so, in particular, a vector bundle morphism ¢, : £/ — F which
consist of a sequence of vector bundle morphisms ¢y o : E, = E,.

Remark 2.2.18. We can restrict equation (2.12) to terms of arity 0 and apply theorem
2.2.15 to see that Q) and Q"® correspond to d and d’ respectively. Then equation (2.12)
states that ¢g (from remark 2.2.17) is a chain map between the linear parts of the Lie
oo-algebroids (E', Q) and (E, Q) respectively,

d d d' o
A E', E |, —— TM

l‘f’o,—s l@o,—z' ls@a,_l JSO*

A Ep, 4 E, B, TM

Consider a C°°(M)-linear map ¢ : & — &£’ (not necessarily a Lie oo-algebroid mor-
phism) then @ is said to be of arity/degree k if it maps functions of arity [ in £ to
functions of arity k + [ in £&'. By ®® we denote the component of ® that is of arity k,
ie. % . D(E*) - T (S"‘“(E’*)). One can decompose any ¥ as above as

o= ol (2.13)
keZ
Note that by C°°(M)-linearity the arity & component ®*) comes from a bundle morphism
®®) ;. p* — SH1(E™). Now using that
Homcoo(M) (E*, Sk+1(E/*)) = Sk+1(El*) ®COO(M) E,

(see for instance [Lan05] XVI, §6 corollary 5.5) we see that ®*) gives rise to a section of
the bundle S*™1(E™) ® E (we omit writing the ring over which these modules are defined)
that we denote by ¢, and we call it the k-th Taylor coefficient of ®. By definition of
these Taylor coefficients, we have that for all o € I'(E™)

™ (a) = (pr, ).
Hence together with the decomposition (2.13) we have that any ® is uniquely determined
by it’s Taylor coefficients. Indeed we have that for all k,;n € N and «ay,...,a; € ['(E¥)
the following holds
(I)(n)(al @O Oék) - Z q;(il)(al) @O @(ik)(ak)'

114 Fig=n
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Remark 2.2.19. A more concrete interpretation of a Lie oco-algebroid morphism can be
given by using definition 2.1.4. Let (E,Q) and (E’,Q’) be two Lie oco-algebroids over
the same base manifold M and ¢ : (E', Q') — (E,Q) a Lie oco-algebroid morphism
between them. By dualizing the Taylor coefficients one obtains a collection of maps
®y, 1 S*(E') — E. For these maps we can formulate some concrete conditions under
which they constitute a Lie oo-algebroid morphism. The first one is a compatibility
relation with the anchor maps: p' = p o ®g. Secondly, since I'(E’) and I'(E) are Lu-
algebras, we require (®y)r>0 to be Lo-algebra morphisms in the sense of definition 2.1.4.

Remark 2.2.20. Note that the sequence of vector bundle morphisms ¢y, : E, = E, from
remark 2.2.17 come from the vector bundle morphism S'(E’) — E which is exactly the
arity 0 component ®©.

Example 2.2.21. Let (A,[-,:],,pa) and (B, [-,-|z,pp) be two Lie algebroids then in
example 2.2.13 we saw that we get two Lie oco-algebroids (A[1],Q4) and (B[1],Qp). In
the literature a morphism between Lie algebroids is defined as a vector bundle morphism
p: B — A (over the identity on M) such that ps o = pp and p ([z,y]|g) = (@), u(y)] 4
for elements z,y € ['(B). Writing out the definition of a morphism of Lie co-algebroids
(B[1],Q5) = (A[1],Q4) now yields exactly the same result.

¢

Let (E,Q) and (E’, Q") be two Lie oo-algebroids over M with sheaves of functions £
and &' respectively. Define the following degree one operator on the space of linear maps
Lin(&,€&’) from & to &

Qeer - Lin(E,E) - Lin(£,E) : Vs Q oV — (-1 o Q.

Here |¥| denotes the degree of the algebramap ¥ : &€ — £’. Note that for all U € Lin(&€, &)
one has

Qe(V) = Q 0 Qeer(V) — (—1)MQe /(W) 0 Q
= Qo (Qow—(-1)"WoQ) — (-1 (Q 0w - (—1)"WoQ)0Q
_ Q/Z o — (_1)|\I/\Ql oWo(— (_1)|\Il\+1Q/ oWo(— (_1)2|\P|+1\I, o Q2
=0.
Here we used that for the homological vector field Q we have that Q? = Q? = 0, that
Qe is a degree +1 map and finally that by linearity of ¥ we have that ¥ o @Q* = 0.
This means that Qg ¢ defines a degree +1 differential for which we thus have a notion of

cocycle which in turn can be used to find a condition for a graded commutative algebra
morphism to be a Lie oo-algebroid morphism. This is contained in the following lemma.

Lemma 2.2.22 (Lemma 3.47 in [LGLS20]). Let (E, Q) and (E', Q") be Lie co-algebroids,
a graded algebra morphism ® : £ — &' is a Lie oco-algebroid morphism if and only if it is
degree zero Qg gr-cocycle.

Proof. We already know that a morphism between N-manifolds necessarily has degree
0. Now note that ® is a Q¢ ¢-cocycle exactly when Q¢ (V) = 0 which, by definition of
Q¢.¢ and taking into account that ¥ has degree zero, precisely states that

Qloq)_q)onov

i.e. ® is a Lie oo-algebroid morphism. O
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Definition 2.2.23 (Definition 3.48 in [LGLS20]). For every graded algebra morphism
®: £ — &', ahomogeneous map W : &€ — &’ of degree k that satisfies

W(F®G)=W(F)o®G)+ (-DFIe(F) o W(G),

for all homogeneous elements F, G € £ is called a ®-derivation of degree k. We denote
the space of ®-derivations by X(€ 2 &') and its restriction to C°(M)-linear ones by
Xeart(€ D E).

Example 2.2.24. When ® : £ — £’ is a degree k graded algebra morphism then Q¢ ¢ (P)
is a ®-derivation k + 1. For details see lemma 3.49 in [LGLS20].

¢

Note that a ®-derivation does not need to be a morphism of algebras. However, it is
still completely determined (in a unique way) by its Taylor coefficients w; € T'(S*™(E™*)®
E) where now i > —1;

k
W(")(Oq @"'Qak) — Z Z ejq)(i1)<&1)@...@ <wij704j> @...@@(ik)(ak)’ (2'14)

J=1 i1+ Fig=n

where

€ = (_1)IW|(\a1|+-~+|aj,1|)‘

And again for all o € I'(E*) we define (wy, ) = W®(a). Conversely, starting from a
graded algebra morphism ¢ : £ — £ and a given section w € I'(S*(E™) ® E), there is
a unique ®-derivation that we denote w® whose arity n component satisfies (2.14). For
this we let wy, be the restriction of w to T'(S*™(E™*) ® F).

Note that when ® : (F', Q) — (E,Q) is a Lie oo-algebroid morphism then example
2.2.24 immediately yields the following lemma .

Lemma 2.2.25 (Lemma 3.50 in [LGLS20]). For every Lie co-algebroid morphism & :
(E', Q") — (E,Q) the graded space X(E 2 E') equipped with Qg g becomes a complex.

Proof. As explained earlier Q¢ ¢ is a degree 41 operator on the graded space of ®-
derivations and we already showed that Q)¢ ¢ squares to zero. O]

Homotopies

In this section we will follow section 3.4.3 in [LGLS20] from which we also take all defini-
tions. The following will be used in the definition of a homotopy between Lie oo-algebroid
morphisms.

Definition 2.2.26 ([LGLS20]). Let B — M be a vector bundle, a piecewise smooth
path in I'(B) is a map ¢ : M x I — B such that, for all fixed ¢t € I = [0, 1], the map
m — 1(m,t) is a section of B and there is a subdivision 0 =ty < --- < t; = 1 of I such
that the map ¢ : M x (t;,t;41) — B is a smooth map.

Definition 2.2.27 (Definition 3.51 in [LGLS20]). Let (E£,Q) and (E',Q’) be two Lie
oo-algebroids over M. A path ¢t — ®; valued in Lie oo-algebroid morphisms from E’ to FE
(i.e. ®; is a Lie oco-algebroid morphism from E’ to E for all t) is said to be continuous
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piecewise-C*> when for all £ € N, its Taylor coefficients ¢ +— ¢ (t) of arity k is a
piecewise-C'* path valued in I (Sk“(E’*) ® E) (in the sense of definition 2.2.26), which
is also continuous-even at the junction points. Given such a piecewise-C*® path t — &,
valued in Lie oo-algebroid morphisms from (E’, Q') to (E, Q), we say that a path t — Hy,
with H; a ®, derivation, is piecewise smooth if its Taylor coefficients ¢ — hy(t) of arity
k is are piecewise-smooth paths valued in I' (Sk“(E’*) ® E) for all .

Remark 2.2.28. Note that the partition of I for which ¢y (t) is a piecewise-C'™ path valued
in ['(S*(E™ @ E) may depend on k. The derivative <2 is well-defined for all ¢ € I which
do not delimit these subdivisions. Note that these spemal points form a countable set.
When considering Lie n-algebroids we can take this subdivision to be the same for all
k > 0. Indeed the Taylor coefficients ¢, can be identified with degree 0 elements in
[(S(E™) ® E)). Now note that ¢ : T(S¥(E™)) — T'(E) is a degree 0 morphism that
takes k inputs, hence using that £ = F_1 @ --- @ E_,, we see that the maximal degree of
an element in I'(F) must be —n, so for degree reasons ¢, must vanish for & big enough.
Said differently this means that the arity & components of the degree 0 part of the bundle
S(E™) ® E vanish for k big enough. Hence we can take the subdivision to be the same
for k sufficiently big.

4% g a degree zero ®,-derivation for all ¢ for which it is well-

dt
defined. Furthermore it satisfies that Q¢ ¢ (%) = 0, i.e. it a cocycle in the complex from

lemma 2.2.25. This inspires the following definition behind which the rough idea is to let
homotopies be curves of Lie oo-algebroid morphisms whose derivatives are coboundaries

for the complex of ®-derivations.

One can show that

Definition 2.2.29 (Definition 3.53 in [LGLS20]). Let &,V : (£, Q') — (E,Q) be two
Lie oo-algebroid morphisms over the identity. A homotopy between ® and V is a pair
(®y, Hy) consisting of the following data:

1. a continuous piecewise-C'*® path ¢ +— ®; valued in Lie oo-algebroid morphisms be-
tween £’ and E for which

(I)O =0 and (I)l = \I/,

2. a piecewise smooth path t — H; valued in ®;-derivations of degree —1 such that
the following equation is satisfied, for all ¢ € I for which it is well-defined

— = Qee(H,). (2.15)

Remark 2.2.30. A more precise statement of equation (2.15) is to say that the following
equality holds for all £ € N and ¢ € I for which it is well-defined

do)

k ) A
= Qee(H))Y =37 (@) o 1V + HFV 0 Q). (2.16)

=0

We now prove the following proposition.

Proposition 2.2.31. Homotopy of Lie co-algebroid morphisms is an equivalence relation,
denoted by ~, that is compatible with composition.
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Proof. We first show that ~ indeed defines an equivalence relation.

o reflexivity: clearly & ~ & by taking &, = ® and H; =0 for all t € 1.

e symmetry: once we have ® ~ ¥ by a homotopy (®,, H,) one can take the homotopy
(P14, —Hy_¢) from which it also follows that ¥ ~ &.

e transitivity: suppose we have two homotopies & ~ ¥ and ¥ ~ = by the ho-
motopies (O, F;) and (II;, G;) respectively. Now can ‘glue’ these two homotopies
together by rescaling the time parameter: in general this will not give a differentiable
path at ¢ = 1/2 but it is continuous at this point (which is all we need).

Now for the compatibility with composition; let &, ¥ : £ — & be homotopic Lie oo-
algebroid morphisms from (E',Q’) to (E,Q), by the homotopy (®;, H;), and &', ¥’ :
E" — &£" be homotopic Lie oo-algebroid morphisms between (E”, Q") and (E’, Q') by the
homotopy (®}, H}). Now we can form the homotopy (®} o ®,, H/ o &, + ®, o H;) between
the morphisms &' o ® and ¥/ o V. O

Remark 2.2.32. Altough the definition of this kind of homotopy is quite complicated, every
homotopy of Lie oo-algebroids gives a chain homotopy between the linear parts. Indeed,
when considering the same setting as in definition 2.2.29 equation (2.16) for £ = 0 yields
that
dol”
dt
Now integrating this equation gives us that

~ Q06 g0 £ HO 6 Qo)

1 do)”
0o dt

= | QO HO + HP 0 Q)
0

1 1
=Q0o (/0 Ht(o)dt> + (/0 Ht(o)dt> o

By the fundamental theorem of calculus we have

1 do)”
0o dt

dt = (1350) _ (IDSO) — \I;(O) _ (I)(O)_
Now define the map
1
HO — / H dt. (2.17)
0
So combining these observations we see that
0 _ ) — Q( o HO 4 O 4 Q. (2.18)

As already noted in remark 2.2.20 the arity zero components ¥ and ®(© induce the chain
maps between the linear maps. Combined with equation (2.18) this gives the following
commutative diagram.

QO . QO ” QO N
e I(BL) «———— T(BL,) «— T(BY)
o v®| (6@ O gO||pO gO g0 [0
k” K

o T(E) P(E%) r(&")

Q'(©® Q'
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Since H; is a ®,-derivation for all + we have that H©® from (2.17) is a C°°(M)-linear
map (integrating does not change this property) and all other maps involved are also
O (M)-linear so we can form the following diagram between vector bundles.

QO QO

QO
E*y ¢&———F~— E*,

E*,

-

O @O ) g©)  gO) | |pO) H00)  y(0) 3(0)

-
I I
/% 13

-3 QI(O)

Q'

In this diagram we can dualize all maps and differentials: by remark 2.2.20 we have that
(TO)* = oy, (2O)* = ye and (HO)* = h,; furthermore by theorem 2.2.15 we have
that the dual of Q¥ is the differential d and similarly for @'®). Hence we get the following
diagram

a®3) d2)

E_5 E_, E_4
" o3 ©0,—3 .7 to,—2 ®o,—2 .7 o1 0,1
—3 e h72 -7 h*l

i’ it
/ / /
_
E—3 PIE) E—2 42 E—l

From equation (2.18) we get that, by dualizing,

w(),o - 900,0 = (lII(O))* - ((I)(O))* = (Q/(O) o H(O))* + (H(O) o Q(O)>*
=heod +doh,.

This exactly means that h, is a chain homotopy between the chain maps ¢y, and ¢g .



Chapter 3

Universal Lie oo-algebroid of a
Singular Foliation

In this chapter we will state the main results of [LGLS20]. These results consist of
two theorems: an existence result and a uniqueness result. We will give a ‘non-technical’
description of the proof of the existence result. For this we build on the notions developed
in earlier chapters.

3.1 Main Results

Definition 3.1.1 (Definition 2.6 in [LGLS20]). Let F be a singular foliation on a manifold
M. We call a Lie co-algebroid (E, Q) over M a universal Lie co-algebroid of F if the
linear part of (E, Q) is a geometric resolution® of F.

Using this definition we can state one of the main results of [LGLS20].

Theorem 3.1.2 (Theorem 2.7 in [LGLS20]). Let F be a singular foliation on a manifold
M which admits a geometric resolution (E,d, p). Then there exists a universal Lie co-
algebroid of F the linear part of which is the geometric resolution.

The following theorem and its corollary show that there is also some sense of uniqueness
to this universal Lie co-algebroid.

Theorem 3.1.3 (Theorem 2.8 in [LGLS20]). Let (E, Q) be a universal Lie co-algebroid of
a singular foliation F on a smooth manifold. For every Lie co-algebroid (E', Q') defining a
sub-singular foliation® of F. There is a Lie co-algebroid morphism from (E', Q') to (E, Q)
over the identity on M and any two such Lie co-algebroid morphisms are homotopic.

Corollary 3.1.4 (Corollary 2.9 in [LGLS20]). Two universal Lie oo-algebroids of the
singular foliation F are homotopy equivalent and two such homotopy equivalences are
homotopic.

Remark 3.1.5. Theorem 3.1.3 and corollary 3.1.4 also imply the following very useful
result: once you have found any Lie oco-algebroid structure on the geometric resolution

1See definition 1.2.40.
This means that p' (I'(E”,)) C F.

45
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of a foliation, you are automatically sure this is the universal one. This essentially allows
one to ‘guess’ (in some sense) a Lie oco-algebroid structure and then conclude this is the
universal one.

We can also rephrase these observations in a categorical language: consider a category
where objects are Lie oo-algebroids whose induced singular foliation is a sub-singular
foliation of F and where morphisms are homotopy classes of morphisms of Lie oo-algebroid
morphisms. Then theorem 3.1.3 implies that any universal Lie oo-algebroid over F is a
final object in this category. This also provides inspiration for corollary 3.1.4; indeed, any
two final objects in a category are unique up to a unique isomorphism, see for instance
proposition 5.5 in [Alu09].

3.1.1 Proof of Theorem 3.1.2

Instead of explaining the whole proof of theorem 3.1.2 we will explain the main idea, this
because the whole proof is of a quite technical nature. For this we follow [LGLS20] section
3.5.

Throughout this section we will assume that F is a singular foliation on a smooth manifold
M (but the ideas used in the proof can also be used on a neighborhood when considering
analytic or holomorphic manifolds). Of course, we also need to assume that F admits a
geometric resolution (E,d, p) for otherwise there would be nothing to show.

By the first part of theorem 2.2.15 we see that a complex of vector bundles
S E S E L, S E (3.1)

is in a one-to-one correspondence with an N(@Q-manifold with the homological vector field
QW of arity 0, dual to the differential d. We will now use a deformation of such an
N@-manifold to expand Q© to a homological vector field ). With this we mean that,
given Q) we want to search for arity & > 1 degree +1 vector fields Q) such that in the
end we can form the vector field

Q=> QWM. (3.2)

k>0

Of course, we want the degree +1 vector field that we obtain in this way to be homological
i.e., we want that [@Q, Q] = 0. Using the expansion (3.2) we can rewrite this condition as
a system of equations. We first expand the left-hand side of the following equation

>y e =o. (3.3)

k>0 1>0
Which gives the following result
+[Q® QW]+ +[Q® Q®]+
@QWW- ;W%ﬂmww@+

+ :Q(S), Q(O): —|—[Q(2), Q@)}-I— :Q(2)7 Q(3): 4. (3.4)
{Q“), Q(U)] + :Q(3)’ Q(l): + [Q(f%)’ Q(2)] + :Q(3)7 Q(3): +
T I —0
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Now grouping the terms in (3.4) by arity (see the colors) and using that [Q(k), Q(l)} =
[Q(l), Q(k)} we get the following system of equations

[Q(O), Q(O)} =0, (3.5)
Q. QW] =0, (3.6)
[Q©, Q] = _; S [e0,qu). (3.7)
1<i,j<n—1
+j=n

Equation (3.5) is satisfied by assumption because d*> = 0 and d* = Q®) = Q. We already
explained above that from a homological vector field we get an anchormap p: E_1 — T'M.
Furthermore from equation (3.6) and theorem 2.2.15 we have that Q™) gives a family of
binary brackets for which the Leibniz identity is satisfied and such that d is a derivation
of these brackets.

A particular way of looking at deformation problems is by looking at a differential
graded Lie algebra (DGLA); these are defined in the following way.

Definition 3.1.6 ([FMO07]). A differential graded Lie algebra (DGLA) is a Z-graded
vector space L = @®ezL; together with a bilinear bracket [-,¢] : L x L — L and a linear
map d : L. — L that satisfies the following conditions:

1. the bracket [-,-] is homogeneous skew-symmetric, i.e. [L;, L;] C L;y; and for all

homogeneous a,b € L
[a, 8] = —(=1)“I* b, a],

2. for all homogeneous a, b, c € L the graded Jacobi identity holds

[av [b7 CH = [[CL, b] 76] + (_1)‘(1”1)' [b7 [a: CH )

3. d is a degree 1 differential and is a derivation of the bracket; i.e. d(L;) C L1,
d*> =0 and
d [a,b] = [da,b] + (—1)%! [a, db] .

In the case of the deformation problem of the N@Q-manifold we can look at the DGLA?
(%(E% ['7 ] ) {Q(O)7 }) .
Note that we have the following consequence from the graded Jacobi identity
[Q(O), [Q(O)’Q(n)ﬂ + [Q(”), {Q(O),Q(O)” + [Q(O), [Q(n)’Q(O)H —0.

Hence using equation (3.5) we see that {Q(O), {Q(O), Q(”)” = 0. In particular this means
that {Q(O), } squares to zero which allows us to talk about cohomology. Furthermore

this observation implies that the right-hand side of equation (3.7) is a {Q(O), -]—closed
term. Now suppose for the sake of argument that the right hand side of equation (3.7)
is also a {Q(O), l—exact term. Then given Q@ QW ..., Q™Y we are able to define an

3 A bit lower on this page we show that [Q(O), ] is indeed a differential.
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arity n component Q. This allows us to construct the homological vector field @Q in
an inductive manner. Indeed, if the right-hand side of (3.7) is exact with respect to the
given differential this means that there exists a degree +1 element, denoted (),, such that

1

Q@) =5 X [@¥.QV].

o)} ¥ 0
i+j=n

Furthermore since the bracket [-, ] is additive with respect to the arity? we have that the

arity of the right hand side is n and so (),, has to have arity n also. Hence, we can write

When considering the DGLA (.’{(E), [, [Q(O), D we have an induced complex
Q.. Q.. Q..
XYE) u> X*(E) M X*E) Q e

Thus combing the explanation above with this complex we see that the obstruction for
finding Q™ lives in H? (%(E), [Q(O), D which is defined as

2 0 {(X e x(E) | [Q, X|}
H? (X(E), [QV,-]) = {[Qm),yny[exl(E)}}

If we are able to show that H? (%(E), [Q(O), D = 0 we are done and can extend the
homological vector field.

It is exactly the vanishing of the second cohomology group that is used in [LGLS20].
However there the authors chose to consider a particular Lie subalgebra of (X(F),[-,-])
that is more practical to consider in the case of N@Q-manifolds. For this we first need
some new terminology.

Definition 3.1.7 ([LGLS20]). A vertical vector field on an N@Q-manifold (E, Q) over
a manifold M with sheaf of functions £ is a C°°(M)-linear derivation of £.

From now on we consider the following differential graded Lie subalgebra
(XVert(E)a ['a ] ’ [Q(O)a }) .

By theorem 2.2.15 it can be seen that all of the Q™ are vertical vector fields except for
QW the component defining the binary bracket and anchor. However the Lie bracket
between Q) and Q™ is vertical for n > 2. Hence all of the obstruction classes for
n > 2 live in H? (.’fvert(E), {Q(O), D We can specify a bit more: again, using that the
Lie bracket adds the arity and that the right hand side of equation (3.7) has arity n, the
obstruction lies in

H? (X00(B), [QV,]), n>2 (3.8)

Here stzt(E) denotes the vertical vector fields of arity n. As is evident from this dis-
cussion the case n = 2 needs special care. Note that requirement (3.7) for n = 2 reads

4By this we mean that the arity of [Q(i), Q(j)] is 4 4+ j. This is not hard to see given the definition
of arity; it essentially follows from the fact that the degree of the product of two polynomials is also
additive.
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[Q(O), Q(z)} =1 [Q(l), Q(l)}. The right hand side of this equation is vertical and so one
also needs

QW QU] € Xyen(E). (3.9)

If this condition is met than its class in H? (%gzzt(EL [Q(O), D is defined and so needs to
vanish.

Now we proceed by outlining the rest of the proof where we do not always give the
details and just provide the main steps.
Cohomology of vertical vector fields for geometric resolutions

Here we follow subsection 3.5.2 in [LGLS20]. By %szzt(E) r we denote the space of ver-
tical vector fields on E of arity n and degree k. Since vector fields of arity n can be seen as
C°°(M)-linear maps E* — S™+U(E*) we have that X", (E), = T (Hom&m(M)(E*, S”“(E*)).
We have already seen that there is an isomorphism

T (Hom¢ e (4 (E*, S™H(E")) 2 T (S"H(E) @ B) .

Hence there also is a natural isomorphism

XGh(E)e =T (S™YE) R E) .

We now define the following map.
Definition 3.1.8 ([LGLS20]). We define the root map as
1t Xeh (B)e = T (S"H(EY)) @c=qn F 1],

obtained by applying the map 1 ® p to the component of a vertical vector field in
S"HE*), @ E_1.

Remark 3.1.9. Note the shift in degree for the elements in F. This is needed to make rt
into a degree 0 map.

Remark 3.1.10. We can also characterize the root map as follows: let f € C*(M),
darf € D(T*M) the differential of f and p* the dual of the anchor. Note that when
x € I'(F_1) one has (z, p*dar f) = p(x) [f] and so also for every vertical vector field

W (p*darf) = rt(W) [f]. (3.10)
Before stating the following proposition we recall a definition from homological algebra.

Definition 3.1.11 ([Eis95]). Let (A®,d4) and (B®,dg) be two cochain complexes. A
cochain map f : A* — B°® is called a quasi-isomorphism when the induced morphism
on cohomology is an isomorphism. That is

H™ (A*,dy) = H" (B*,dg).

The authors in [LGLS20] now proceed by stating and proving the following proposition.
We will only state it since we are only interested in its corollary.
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Proposition 3.1.12 (Proposition 3.64 in [LGLS20]). If (E,d, p) is a geometric resolution
of F, then

rt: (X00(E)s, [Q9,]) = (TS (E™))e @con F[-1],Q0 @ 1),
is a quasi-isomorphism.

The proof of this proposition is quite technical and for this we refer to section 3.5.2 in
[LGLS20]. We now state a lemma from [LGLS20] that is used in the proof of proposition
3.1.12 and the corollary that we are interested in.

Lemma 3.1.13 (Lemma 3.66 in [LGLS20]). Let (E,d, p) be a geometric resolution of F
and R a vertical vector field of degree i and arity n which is Q©-closed and rt(R) = 0.

Then R = [Q(O), W} for some vertical vector field W of arity n which has no component
I (Sn+1(E*)i X E_1>.

The proof of this lemma is of a technical nature but it uses one main observation.
From the geometric resolution (E,d, p) we get an exact sequence on the level of sections

B T(EL) S T(E) D F—o. (3.11)

Since S"T!(E*), is a vector bundle over M we have that T (S"*1(E*);) is a projective
C*°(M)-module (see for instance theorem 12.32 in [Nes20]). In particular projective
modules are flat modules. This means that we can tensor the exact sequence (3.11) with
[ (S™1(E*);) such that the resulting sequence is still exact. In this way we obtain the
following exact sequence

- AEL T (S E) @D (Boz) 225 T (S™1(E*)x) @co(ary T(E-1)
S T (S (E")) @cqan F = 0.
Which can be rewritten as the exact sequence®
AT (SUUE) ® Bop) ~B T (S E" )y @ Boy) =5 T (S (E")k) ®cany F = 0.
It is the exactness of the above sequence that is key to proving lemma 3.1.13.

Corollary 3.1.14 (Corollary 3.67 in [LGLS20)). If (E,d, p) is a geometric resolution of
a foliation F we have the following:

L (R [0 ]) = 5 (1(5°(5) ey 71 Q0 01),

2. H* (%E,ZZt(E), {Q(O), D =0 when n > 3.

Proof. 1. When dropping the degree shift in F [—1] the degree of the complex shifts
up by one and so proposition 3.1.12 immediately gives the result.

2. Note that when we apply the first result with £ = 2 we get that
HE (x0a(B), [Q©), ]) = H° (D(S"4(E)) @c=an F,Q¥ @ 1)

Remark that when n > 3 elements of degree 3 in I'(S"™!(E*)) vanish and so the
result immediately follows.
[l

SThis is due to the fact that I'(-) is a strong monoidal functor.
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Extension of an almost Lie algebroid to a graded almost Lie algebroid on a
geometric resolution

In this part we will follow 3.5.3 in [LGLS20]. The main focus will be on the following
problem: given a geometric resolution (E,d, p) we automatically get £ and Q) (as de-

scribed in the deformation problem above). We now want to search for a {Q(O), -]—Closed

QW that induces our given p.

Coming back to the geometric resolution (F,d, p); we know that by definition of a
geometric resolution we have that p(I'(E_;)) = F. Hence from proposition 1.2.39 we see
that E_; can be equipped with an almost-Lie algebroid structure. This means we have an
anchor map and a binary bracket on the sections of E_; that satisfies the Leibniz identity.
This corresponds precisely to a degree 41 vector field of arity one, denoted ngl. This
does not yet define an almost-Lie algebroid structure; the second condition is still missing
(the algebra morphism). It can be shown that equation (1.2) is satisfied if and only if
(see appendix A)

[QSLQS}J € Xyert(E-1). (3.12)

So, to start our deformation problem we need to extend ng L on E_; to a vector
field QM on the whole bundle E such that {Q(O),Q(l)} = 0 (we say QM) needs to be
Q-closed). By means of a connection it is possible to lift ngl to a vector field Qg) on

ES. It may be tempting to set QY = Qg) but it is not guaranteed that our choice of lift
indeed satisfies the Q(®-closed condition. To remediate this problem, we define

QW =W + (3.13)

where V' is a vertical vector field in @;>oT (SQ(E*)iH ® E_;). This thus means that we
choose some V to define Q). Hence we also get a collection of Qs that depend on
different choices of V. We will now continue by showing that there is some particular
choice of V for which the corresponding Q") has the right properties we will describe
below. So an important property to keep in mind is that the vector field QY depends on
the choice of V' (this is not immediately clear from the notation).

Note that by (3.12) [ g),Qg)} € Xyert(F) and so

V. Q"] = [@“) +V,Q5 + V]

— [0 Q] + [ ] + [V.@f] + v V).

Hence Q) satisfies the condition (3.9). Now we show that one can always choose V in
such a way as to make Q) a Q®-closed element. In this way we obtain a structure on
E, given by Q© + QW that is called a graded almost Lie algebroid.

Definition 3.1.15 (Definition 3.68 in [LGLS20]). A graded almost Lie algebroid is
a complex of vector bundles in the sense of equation (3.1) equipped with a bracket

[ T(E) x D(E-) = T(E_ijy),

6We do not provide details as to why this is possible.
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satisfying the following three axioms

[z, fy] = [z, y] + p(x) [f]y, (3.14)
dz,y] = [d(z),y] + (=1)" [2,d(y)], (3.15)
o[z, y]) = [p(2), p(y)], (3.16)

forall z € [(E_;), y € I'(E_;) and f € C°(M). As usual it is understood that p(z) =0
when z € I'(E_;) and i > 2.

We will now prove the following proposition.

Proposition 3.1.16 (Proposition 3.69 in [LGLS20]). Every geometric resolution (E, d, p)
and every almost Lie algebroid structure on E_1 C E can be extended to a graded almost
Lie algebroid structure on E.

The proof uses three lemmas.

Lemma 3.1.17 (Lemma 3.70 in [LGLS20]). A graded almost Lie algebroid structure is
in one-to-one correspondence with a graded manifold E equipped with a degree one vector
field Q = QO + QW of arity at most one such that equations (3.5), (3.6) and (3.9) are
satisfied.

Proof. The proof of this lemma is not provided in [LGLS20]. We will only describe the
very rough idea. It revolves mainly about using theorem 2.2.15. Given a graded manifold
E with vector field Q = Q@ + QW one can dualize Q® to obtain the map d. Equation
(3.5) then states that d> = 0, i.e. d is a differential and so (F,d) becomes a complex
of vector bundles. From Q) we obtain an anchor map p : E_; — TM and a binary
bracket. Equation (3.6) states that d is a derivation of the bracket which is equation
(3.15). Equation (3.14) comes free in this construction. Finally from (3.9) we get that
[Q(l), Q(l)} € Xyert(F) and so p defines an algebra morphism (again see appendix A) with
respect to the bracket which is (3.16). O

Lemma 3.1.18 (Lemma 3.71 in [LGLS20]). The vector field {Q(O), Q(l)} with QWM as in
(3.13) defines an element in H? (aeﬁ,lel,t(E), {Q(O), D

Proof. As we already explained in the part right after example 2.2.14 we have that Q) f =
p* (dar f) for f € C*(M). Hence we have

Q. QW] (f) = (d?)" 0 p* (danf)
= (P o dm)* (dar.f) -

Now because of the definition of a geometric resolution one has p o d® = 0 and so
[Q(O)a Q(l)] € xvert- ]

Lemma 3.1.19 (Lemma 3.72 in [LGLS20]). For every choice of V' in (3.13) one has
It ([Q(0)7 Q(l)D —0.
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Proof. We already calculated that {Q(l),Q(l)} € Xvat(E). Hence [Q(O), [Q(l),Q(I)H is
also a vertical vector field. Now let f € C°°(M) then using the Jacobi identity

0= [0 [0, Q] ()
= [[@*.QM], Q"] ()
= 1@, QW] (p" (darf)) -

Using the useful characterization of the root map (3.10) we see that rt ({Q(O), Q(l)]) [f]=0
for arbitrary f € C*°(M) and so we conclude the lemma. O

We are now ready to prove proposition 3.1.16 based on the proof of proposition 3.69
in [LGLS20].

Proof of proposition 3.1.16. For every choice of V' in equation (3.13), lemma 3.1.18 implies
that [Q(O), Q(l)} is a vertical vector field. By lemma 3.1.19 we have rt ([Q(O), Q(l)D =0

and so by lemma 3.1.13 there exists some vertical vector field W with no component in
[(S?(E*,) ® E_;) for which

[Q(O),Q(l)} — {Q(O),W} _ (3.17)

Recall that our Q) inherently depends on the choice of V. Hence we can define some
new Q) (that we may also denote by the same symbol) by replacing V by V — . Note
that we clearly have [Q(O), Q(O)} = 0. Now from equations (3.13) and (3.17) we have that

Q. Q) +v—w] =0

Taking inspiration from this equation we define QM) := Qg) + V — W. Then clearly

[Q(l), Q(l)} € Xyert(E) because all involved vector fields are vertical and {Q(O), Q(l)} =0
by construction. This means we have shown that all equations mentioned in lemma 3.1.17
are met and so F together with Q = Q© + QW defines a graded almost Lie algebroid
structure. [

Extension of an almost Lie algebroid to a Lie oco-algebroid structure on a
geometric resolution

In this final part everything will come together to show the following proposition.

Proposition 3.1.20 (Proposition 3.76 in [LGLS20]). Every graded almost Lie algebroid
(E,QV +QW) over a geometric resolution (E,d, p) can be extended to a Lie co-algebroid
structure on E.

Before giving the proof we show the following lemma.

Lemma 3.1.21 (Lemma 3.77 in [LGLS20]). For the arity one part QY of the odd vector
field characterizing a graded almost Lie algebroid as in lemma 3.1.17, one has

rt (|QW,QW]) = 0. (3.18)
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Proof. Tt is easy to see that the Jacobi identity implies HQ(”, Q(l)} ,Q(l)} = (. Now using
that {Q(l), Q(l)} is vertical we can do the following calculation where f € C*(M):

0=[[@W.Q"], Q"] ()

Thus comparing with equation (3.10) we have rt ([Q(l), Q(l)D = 0. O

With this lemma we are ready to prove proposition 3.1.20 following the proof outlined
in [LGLS20]

Proof of proposition 3.1.20. We are given a graded manifold E and vector field Q) + Q)
that together constitute a graded almost Lie algebroid. This thus means that Q® and Q™
satisfy the equations (3.5), (3.6)7 and (3.9) by lemma 3.1.17. These are also the equations
needed for the deformation problem we described. To solve the extension problem, we
need the equations (3.7) to have solutions: a necessary and sufficient condition for this is
for the cohomology classes (3.8) to vanish for all n > 2. Using corollary 3.1.14 we have
for n > 3 that

H? (Xn(E), [V, ]) =0.

Thus, the only case left to study is the n = 2 case. By proposition 3.1.16 {Q(l) Q(l)] €
1) s

Xvert(E) and Q®-closed. In this setting it may happen that H? (.’{(Vﬂt(E), {Q(O), D i
non-trivial. However, note that it would also be sufficient for the cohomology class of
[Q(l), Q(l)} to vanish. By lemma 3.1.21 together with the quasi-isomorphism from propo-

sition 3.1.12 we have that the cohomology class of [Q(l), Q(l)} indeed vanishes. O]

So, to recap: we have shown that the deformation problem initially outlined can be
solved. Indeed starting with the graded almost-Lie algebroid (E,Q® 4 QM) that one
gets from the gemetric resolution we can define, inductively, arity n components of degree
+1 denoted by Q™ that satisfy the equations outlined for our deformation problem. This
allows us to define the homological vector field () of degree +1 as

Q=X Q".

n>0

Hence, we have a Lie oo-algebroid structure on E by theorem 2.2.15. This means we have
shown the following corollary to proposition 3.1.20.

Corollary 3.1.22 (Corollary 3.79 in [LGLS20]). Every geometric resolution (E,d, p) and
every almost Lie algebroid structure on E_y C E can be extended to a Lie co-algebroid
structure on E.

"Here we already assume that Q) is chosen to be [Q(®), ]-closed. We showed this was possible in
the proof of proposition 3.1.16
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Adding in proposition 1.2.39 which states that for a geometric resolution (F,d, p) of
a singular foliation F the bundle E_; C F can be equipped with an almost Lie algebroid
structure we have the following corollary.

Corollary 3.1.23 (Corollary 3.80 in [LGLS20]). Every geometric resolution (E,d, p) of
a singular foliation F admits a Lie oco-algebroid structure over it.

Notice that this is exactly the content of theorem 3.1.2.

3.2 Examples of Universal Lie co-algebroids

Example 3.2.1 (Example 3.101 in [LGLS20]). In example 1.2.14 a geometric resolution
for the singular foliation F, was described. We can define brackets to get a universal Lie
oo-algebroid of F,. First some notation: we let I = (i1,...,i;) denote a multi-index, I*
denotes the multi-index I where we dropped i, ® denotes concatenation of multi-indices,
€(i1,...,1x) denotes the sign of the permutation needed to bring iy, ..., up to the front

in [; ®--- e [, in that given order and finally 0; denotes a% JANRREIAN 83 . Now one can
’Ll ’Lj

define brackets as follows

. . o
{3[1,...,8Ik}k = Z 6(21,...,Zk)malzl.m.lzk.

€. ig€lx
For example, we can calculate the 2-ary bracket

{8/\8/\8 8/\8/\8}
8:701 81‘2 8ZE378{L‘4 8ZE5 61'6 2'

For short notation we write the first entry as 0;23 and the second one as dy56. Now note
that both of these trivector fields are actually degree —2 elements. Indeed E_y = A?T'C"
so I'(E_5) = X3. Now for k = 2 one can show that €(i, j) = (—=1)"7~! and so the RHS of
the formula above becomes

i1 0%
; (—1)"* 18%8%8{1’2’3}i.{4’5’6}j'

1=1,2,3
7=4,5,6

So now we can calculate the complete 2-ary bracket but as this would become quite a long
formula that would not bring much more insight, we focus on for example thei =1,7 =4

term:
[oalt 0 0 0 0
N A A .
0x10x4 \Oxy Ox3 Oxs Oxg
Now as {-, -} is a degree +1 bracket we have that deg{0;,0;}2 = deg 9y +degd;+ 1 so in
this case we have that deg{0i23,0s56}2 = =2 — 2+ 1 = —3. And indeed, the term above

is a four vector field and by definition of the geometric resolution this corresponds to a
degree —3 element.

¢

Example 3.2.2 (Example 3.97 in [LGLS20]). In example 1.2.58 we displayed a geometric
resolution for the singular foliation arising from the action of sl;(R) on R?*. We now
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give a Lie oo-algebroid structure on the given geometric resolution. Then we may also
immediately conclude that this is the universal one. Since we saw that F_; = sly(R) [1]
we can define the bracket between two elements in E_; to just be the Lie bracket of the
corresponding elements in sly(R) and then adjust the degree. This procedure gives a way
to compute the bracket between constant sections of £_; and by the Leibniz identity we
can extend this to the whole bundle. Now we define a bracket between elements of E_;
and E_, for which we first note that

{€.ds} = xy{e, h} + p(&)(xy)h + p(&)(y*)E — 2*{e, [} = 0.

Indeed by the definition of the differential d we have that ds = xyﬁ + y%e — 22 f and so
we also have that, by the Leibniz identity,

(&, xyh +y*€ — 2’ f} = ay{& h} + p(&)(xy)h
+y*{e, e} + p(e)(y?)e
—2*{&, f} — p(e) (™).

Now we use that p(€) = e = x% and so p(€)(z?) = 0 and also {¢, e} = 0 because, when
we consider e as an element of sly its bracket with itself vanishes.

Since the map d is injective on a dense open subset and is a derivation of the bracket
{-,-}, this implies that {€,s} = 0. A completely similar reasoning can then be used to
also recover {f,s} = 0 and {h,s} = 0. Since this is a bracket defined only on constant
sections, we need to extend it to a bracket between sections of E_; and E_, by the Leibniz
property. There is no k-ary bracket for k£ > 3.

Note that this foliation F is given by a Lie algebra action and so there also is a
transformation Lie algebroid A = R? x sly(R). In example 2.2.13 it was shown that a Lie
algebroid can be seen as a Lie co-algebroid denoted (A, @), and so by theorem 3.1.3 there
exists a Lie oo-algebroid morphism @ : (A, Q4) — (F, Q) which in this case can be seen
to be the inclusion 1 0: A - FEF=FE_| ® E_s. ¢



Chapter 4

Geometry of Singular Foliations

In this chapter we will exploit the universal Lie co-algebroids associated to singular folia-
tions F to get information about the geometry of F. We will do this by means of several
cohomologies that can be associated to the Lie oo-algebroids.

4.1 Universal Foliated Cohomology

A first example of a cohomology associated to a singular foliation is the so-called universal
foliated cohomology.

Lemma 4.1.1 (Lemma 4.1 in [LGLS20)). Let F be a singular foliation on M. Let (E,Q)
and (E', Q") be two universal Lie co-algebroids of F with sheaves of functions € and &’
respectively. The cohomologies of (£.Q) and (E', Q") are canonically isomorphic as graded
commutative algebras.

Proof. In chapter 3 we noted that there exist two Lie oo-algebroid morphisms ¢ : &' — &
and ¢ : &€ — &' such that p o) ~ g and ¢ o ¢ ~ lg (here ~ denotes homotopy
equivalence of morphisms of Lie oo-algebroids). So in particular ® := p o9 and ¥ :=
l¢ are homotopic and by proposition 3.57 in [LGLS20] they are inverses on the level
of cohomology. Moreover this does not depend on the choice of ¢ since another map
¢ : & — & and ¢ are homotopic and so would define the same isomorphism on the level
of cohomology. m

This lemma ensures that the following is well-defined.

Definition 4.1.2 (Definition 4.2 in [LGLS20]). Let F be a singular foliation on M that
admits a geometric resolution. We call the cohomology of (£, Q), where £ is the sheaf of
functions of any universal Lie co-algebroid (£, @) of the given foliation F, the universal
foliated cohomology of F and denote it by Hy(F).

For the 0-th cohomology there is a nice interpretation that we will explain now. For
the higher cohomologies this becomes more difficult. Note that by definition

_ ker (Q: & — &)
HS(I) N im (Q : 6,1 — (C/’[))’

and by definition £ ; = {0} so im (Q : £_1 — &) = {0}. Hence it remains that
HY(F) =ker (Q: & — &) .

o7
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Now as noted above we know that & = C*°(M) so pick an f € C°(M) then Qf € I'(E*,)
(also noted earlier). Now if f € H}(F) we need Qf to be the zero section in E*,. Clearly
this is the case when for all z € I'(E_;) we have that (Q f, z) = 0. But as we remarked ear-
lier we have that for all x € I'(E_;) and f € C°(M) the following holds (Qf, z) = p(x) f
so using this we see that (Qf,z) = 0 if and only if p(z)f = 0 for all x € I'(E_;). So, since
p(L(E_y)) = F it follows that this is equivalent to f being constant along the leaves of
F. By this we conclude that H{(F) consists of those f € C°°(M) that are constant along
the leaves of F.

There also is another cohomology that will be of interest. Define the following space

Q(F) := € Homp (/\’(“9]:, (9) :
k>0
We will call this the space of longitudinal forms that we equip with the following
differential (here the hat means that that specific entry is left out)

—

d()(Xo, ., Xi) = D (=1)'X; (a(Xo, .., X, ..., X))

+ Y (D)Ma (X, X)), Ko, X Xy X))

0<i<j<k

where a € QF(F) and Xy, ..., X € F. Equipped with this differential we can define the
cohomology of the complex (Q(F),dr) and call it the longitudinal cohomology of F
and denote it by H*(F).

Remark 4.1.3. Note that each a € QF(F) induces a k-form on the regular leaves of F.
Indeed, if m € M is a regular point of the foliation then it is contained in a regular leaf
L,, and an a € QF(F) induces the unique k-form oz, defined as

a(Xq, ., Xp)|lm = ap,, (Xi(m), ..., Xk(m)).

This need not to be true for the singular points of the foliation: consider F = (z2) and
define a € QY(F) as

oz:/\%g]:—>O:Fx§xr—>F.

Then the singular leaf {0} has dimension 0 and so it does not permit a 1-form satisfying
the above.

By definition of the universal Lie co-algebroid of F we have that p (I'(E_;)) = F and
so it makes sense to define the following map

pr i QUF) = Epfalxy, ... xk) = alp(xr), ..., p(zr)). (4.1)

Here we have x1,...,x, € ['(E_;) and p*a € T'(E*,).
Although the universal foliated cohomology and the longitudinal cohomology do not seem
to be related to one another at first sight the following lemma states otherwise. For the

proof we refer to [LGLS20]

Lemma 4.1.4 (Lemma 4.5 in [LGLS20]). Let F be a singular foliation on M that admits a
universal Lie co-algebroid. There is a canonical algebra morphism p* : H*(F) — H(F).
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4.2 Isotropy Lie oco-algebra

Androulidakis and Skandalis defined a rather simple invariant of a singular foliation in
the isotropy Lie algebra at a point m € M on a manifold that has a singular foliation
F. It is defined as the quotient F(m)/I,,F. Here F(m) denotes the sections of F that
vanish at m and I,,, C C°°(M) the functions vanishing at m. Note that [, F forms a
Lie ideal and so the quotient indeed is a Lie algebra. In this section we will provide a
generalization of this notion by defining the (homotopy) isotropy functor by which we get,
associated to each point m € M, an L.-algebra that we will call the isotropy L-algebra
of F at m € M. The isotropy Lie algebra as defined by Androulidakis and Skandalis will
be recovered from this L..-algebra.

We begin by fixing some notation: let V' — M be some vector bundle then by i,,V
we will denote the fiber of V above m. If ¢ : V — V' is a morphism of vector bundles
over M then i, denotes the restriction of ¢ to the fibers. Now let (E,d, p) be a geometric
resolution of a singular foliation F on M. Then the complex

imd® . imd3® . i d( .
B i By T Ker (imp) — 0, (4.2)

may have cohomology as the following example illustrates.

Example 4.2.1. Recall the geometric resolution from example 1.2.58. Over the origin
0 € R? we can form the following sequence

ioR [2] 2% Ker (igp) — 0. (4.3)

By definition of the anchor map as p(€) = e, p(f) = f and p(h) = h it is not hard to see
that iop vanishes and hence that also ker (iyp) = sl [1]. Similarly by definition of d® one
can see that ipd® = 0 and hence the sequence (4.3) has cohomology.

¢

Remark 4.2.2. Note that example 4.2.1 also illustrates that the geometric resolution from
example 1.2.58 is minimal at the origin.

This means we can define the following graded vector space

H*(F,m) = H (F,m). (4.4)

i>1

Here H~*(F,m) denotes the degree —i cohomology of the complex (4.2). At first sight
it is not immediately clear why this construction is independent of the chosen geometric
resolution. To show this we have the following lemma.

Lemma 4.2.3 (Lemma 4.8 in [LGLS20)). Let F be a singular foliation that admits geo-
metric resolutions in the neighborhood of a point m € M. Then the following holds

1. the cohomology of the complex (4.2) is independent of the choice of geometric reso-
lution for F,

2. For every geometric resolution (E.d,p) of F which is minimal at m and every
i > 2, the vector space H"(F,m) is canonically isomorphic to i,,E_;. Furthermore
H=Y(F,m) is canonically isomorphic to the kernel of ipmp : i E_1 — T M.
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Proof. 1. An immediate consequence of lemma 1.2.55 is that two geometric resolutions
(E,d,p)and (E',d', p') are homotopy equivalent. All the maps that are involved in this ho-
motopy equivalence are C*°(M)-linear and so they restrict nicely to the fibers where they
give a homotopy equivalence between the complexes (i,, F, i d, imp) and (i, E' ipd’, imp)
which immediately gives the result.

2. Let (E,d,p) be a geometric resolution of F which is minimal at m € M. By def-
inition of minimality we have that for all ¢ > 2 the maps i,dD i E , — i, ;11 vanish
and so ker (imd(i)) =1i,F_; and im (imd(i“)) = {0} by which it immediately follows that
H~*(F,m) and i,,F_; are isomorphic. The statement for i = 1 is obvious. O

Proposition 4.2.4 (Proposition 4.10 in [LGLS20]). Let F be a singular foliation that
admits geometric resolutions on the neighborhood of some m € M. Then the following
are equivalent:

1. There is a neighborhood of m € M on which F is a Debord foliation,
2. H(F,x) =0 for all i > 2 and for all x in a neighborhood of m,
3. H*(F,m) =0.

Proof. In the smooth case F is a Debord foliation if and only if it is a projective
C>(M)-module. Hence it admits a geometric resolution of length 1. Hence we certainly
have that H(F,y) = 0 for all ¢ > 2 and y in a neighborhood of m since i,E£_; = 0 for
all 7 > 2.

2 = 3| This is quite obvious.

3 = 1| Assume that H=2(F,m) = 0 then by definition we have that keri,,d® =
imi,,d®. Now use the following result from linear algebra: perturbing the elements of a
matrix does not decrease the rank of the matrix (see appendix B for a small proof of this
fact). Using this we see that there exists some neighborhood U of m € M such that:

1. the dimension of the image of i,d® at every z € U has to be greater than or equal
to its dimension at m,

2. the dimension of keri,d® at every x € U has to be lower than or equal to its
dimension at m.

But notice that, by definition of a complex, we always have that imi,d® C keri,d®
and so we always have dimimi,d® < dimkeri,d® for all z € U. Now note that from
our observations above it also follows that dimimi,d® > imi,,d® = dimkeri,,d® >
dim keri,d® which can only hold when keri,d® = imi,d® for all z € U. From this it
immediately follows that H=2(F,z) = 0 for all € U. This implies that the map d® |y :
E_,|y — E_i|y has constant rank and so d®(E_,|y) C E_1|y as subbundles. From this
it follows that £ | := (E_l/d(Z)(E_l)) | is a vector bundle and because p o d® = 0 the
anchor restricts to £, to define a morphism of C*°(M)-modules p(E’ ;) — F which,
by construction, is an isomorphism. Because I'(E’ ) is projective it follows that F is
projective and hence Debord on U. [

L As explained above, a geometric resolution of the C°°(M)-module F can be thought of as finding a
projective resolution for F in the category of C°°(M)-modules (but again note it is not exactly the same
as not all projective modules come from vector bundle sections).



4.2. ISOTROPY LIE co-ALGEBRA 61

Intermezzo: Isotropy Functor

Let M be a smooth manifold then for all £ € NU {co} the Lie k-algebroids together with
the Lie oc-algebroid morphisms form a category that we denote by Lie — k — algoidy,
(one can also consider the category where we mod out the arrows by homotopy equiva-
lences to get the category hLie — k — algoidy of homotopy equivalent Lie co-algebroids).
When M is a point we recover L..-algebras which themselves form a category that
we denote by Lie — k — alg (here there also is the homotopy equivalent counterpart
hLie — k — alg). Our aim is to define the isotropy functor at a point m € M

h3,, : hLie — k — algoidy; — hLie — k — alg. (4.5)

We proceed by defining this functor on objects and then on arrows in the category without
worrying about homotopy equivalences for now.

e On objects: let (F,Qr) be a Lie k-algebroid over M with anchor p. According to
the axioms of Lie k-algebroids the k-ary bracket restricts to the graded vector space

K*(F,m) = keri,p ® @imF,i.

i>2

Here we use keri,,p to ensure that the 2-ary bracket between elements in K*(F,m)
is well-defined. This has to do with the chosen extension to a local section of an
element in i,, /1. When restricting to keri,,p the Leibniz identity ensures that the
bracket is independent of the chosen extension.

e On arrows: let & : I'(S(F*))) — I'(S(£*))) be an arbitrary Lie k-algebroid mor-
phism from (F,Qg) to (F,Qr). By C*°(M)-linearity this restricts to a morphism

in® : S(imF*) = S(imE").

Considering only the linear part of ® we see that this linear part must be a chain map
(because it must commute with Qg) and ng) and they are dual to the differentials
in the complex) so we get a graded algebra morphism

Jm(®) : S(K*(F,m)*) — S(K*(E,m)"),
which, by definition, is a Lie k-algebra morphism.

In this way we have completely defined the functor J,,. We now pass to the categories
hLie — k — algoidy; and hLie — k — alg to define the isotropy functor. For this we need
the following lemma.

Lemma 4.2.5. Let &,V : (E,Q) — (F',Q’) be two homotopic Lie co-algebroid mor-
phisms over M. For every point m € M, Jp(P),Jn(V) : Jn(E, Q) — Jn(E, Q) are
homotopic Lo,-algebra morphisms.

Using lemma 4.2.5 it is clear that J,, passes to the category of homotopy equivalent
Lie oo-algebroids

hJm : hLie — k — algoidy; — hLie — k — alg.
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Back to the isotropy Lie oco-algebra

We will now use the isotropy functor to define the isotropy L.,-algebra of a singular
foliation at a point m € M. Let F be a foliation on a manifold M with universal Lie
oo-algebroid (E, Q) then we may apply J,, to (E,Q) and get a L.-algebra structure on

the complex
imd® . imd® . imd® .

= i, By m— i, By —— ker (i,,p) — 0. (4.6)
Because J,, maps homotopy equivalences of Lie co-algebroids to homotopy equivalences of
L.-algebras, we may restrict to ‘looking up to homotopy’. All universal Lie co-algebroids
of F are unique up to homotopy so, after applying the isotropy functor, any other choice
of universal Lie oco-algebroid results in a homotopy equivalent L..-algebra. By this ob-
servation, combined with lemma 4.2.3 we have that we may choose the universal Lie
oo-algebroid in a particular way as to induce an L.-algebra structure on the cohomology
of (4.6) i.e. choosing the Lie oo-algebroid to be minimal at m € M (this is (locally)
always possible).

Definition 4.2.6 (Definition 4.11 in [LGLS20]). Let (£, Q) be a universal Lie co-algebroid
of F which is minimal at m € M. Then hJ,,(E,Q) is an L. -algebra structure on
H*(F,m), which we denote by (H*(F,m),Q,,) and call the isotropy L..-algebra of F
at m.

At first sight this isotropy L..-algebra seems to depend on the choice of universal Lie
oo-algebroid of F but the following proposition ensures this is not the case.

Proposition 4.2.7 (Proposition 4.12 in [LGLS20]). Any two isotropy Lie co-algebras at m
of F, constructed out of two universal Lie co-algebroids of F minimal at m, are isomorphic
through an isomorphism whose linear part is the identity on H®(F,m). Furthermore the
restricted 2-ary bracket is a graded Lie algebra bracket on H*(F, m) which does not depend
on any choices made in the construction.

Before proving this proposition, we show a lemma which will be helpful in the proof
but for which the proof in [LGLS20] is very brief and without details. It concerns Le-
algebras whose 1-ary bracket vanishes which is the case for an isotropy L..-algebra as
defined above. This follows from minimality of the universal Lie co-algebroid. Indeed the
1-ary bracket on the isotropy L..-algebra is dual to the map i,,d. Since the universal Lie
oo-algebroid is minimal at m € M the maps i,,d vanish and so the 1-ary bracket also
does.

Lemma 4.2.8 (Lemma 4.13 in [LGLS20]). Let (V,Q) and (V', Q") be two Ly-algebras
whose 1-ary bracket is equal to zero. Then the following holds:

1. its 2-ary bracket is a graded Lie algebra bracket,

2. the linear part of any Le-algebra morphism from (V,Q) to (V', Q') is a graded Lie
algebra morphism of the 2-ary bracket,

3. the Leo-algebras (V,Q) and (V', Q') are isomorphic to one another if and only if
they are homotopy equivalent.
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Proof. 1. Since we are actually working with an L., [1]-algebra we want to show that the
space (V' [—1],]-,]) is a graded Lie algebra. Here the bracket |-, ] is the one we get from
the binary bracket {-,-}2 on V' (from now on we will denote this binary bracket without
the subscript 2); in the following way

[v1,02] = (=1)1""H{ay, o} = (1) {ay, 20},

Here v; and vy are representatives of the elements x1,zo € V in V [—1] respectively.
Showing that the bracket [-,-] is a graded Lie algebra bracket amounts to showing that
the following equation is satisfied for all vy, ve,v3 € V [—1]

[v1, [V, v3]] = [[v1,va] , vs] + (—=1)11%2] [uy, [vy, w5]]. (4.7)

We will now do the following steps: first we show a Jacobi-like identity for the binary
bracket {-,-} and secondly we will show that equation (4.7) induces the identity found
in the first step, showing by computation that the found identity and (4.7) are actually
equivalent.

Consider the n = 3 higher Jacobi identity

Z 6(0’){{330(1), xcr(2)}7 xcr(S)} = 0. (48)

ceS(2,1)

It is easy to compute that S(2,1) = {e, (23), (123)} and so we can write out (4.8) out in
full with the corresponding Koszul signs

{{o1, 22} w5} + (=) {ay, wg}, ao} + (—1)lrllezitionllealffn) 20} 2} =0, (4.9)

Note that {{zy,z3}, 25} = (—1)=l*2l{{z5 21} 25} so replacing this term in (4.9) and
multiplying everything by (—1)#1l173! we get that

(—1)‘”31”$3|{{x1, Ty}, 3} + (—1)"2||”33‘{{x3,x1},x2} + (_1)|$1||$2|{{x27$3}’ 21} =0.
(4.10)

On the other hand, we have that

[, [oa, vs]] = [or, —(=1) "y, w3}
= —(—1)'362' . —(—1)‘“‘{1’1, {112,1’3}}

= (—1)'“'““‘““H”‘Hmux?’mm‘{{:1:2.:1:3}, 1},

[[o1, 03] , v3] = [—(=1) " {1, 22}, v
— (_1)\x1\ . (_1)\x1\+|9«“2\+1{{x1’$2}7x3}
= — (=D {{xy, 22}, 23}

(_1)(‘$1‘+1)(|12|+1) [U27 [U17U3]] = (_1)|1"1||332|+|$1|+|m2| |:U27 _(_1>|x1|{‘r17:p3}]
— _(_1)|=’D1\ ) —(—1)'332'(—1)'11HIZ|+|21|+‘$2‘{1‘2, {a1,23}}
— (_1)|$1|+|$2|(_1)|$1||$2|+|$1|+|$2|(_1)|$2|(\931\+|$3|+1){{x1’ x3}7 x2}

= (_1)I:c2||x3|+|w2|+|m1||a:3|{{x3’ $1}, m2}'
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Now we apply (4.7) and replace all terms with the [-,-]-bracket by its {-,-}-bracket
counterpart. This gives us the following identity

(_1)\x1\+|932|+|561||992|+|561||9«“3|+|a?1|{{meS}’ T} =— (—1)'332'{{3;1, Ty}, x5}

+ (_1)|lelws|+|le+|wlllxsl{{xg’xl}, T}
(4.11)

We now multiply equation (4.11) by (—1)~le2l=l=llzsl and after canceling some terms in
the exponents it is not hard to see that we recover equation (4.10). So to conclude: we
have shown that equation (4.7) implies equation (4.10); of course one could do the process
above in reverse to show that equation (4.10) implies equation (4.7). So we see that these
two equations are exactly the same but written down with elements in different vector
spaces. Since we derived equation (4.10) from the higher Jacobi identity we finally have
that [-, -] indeed satisfies the graded Jacobi identity (4.7) and so (V,[-,]) forms a graded
Lie algebra which is what we wanted to show.

2. This follows immediately from the definition of an L.-algebra morphism together
with the observation that the 1-ary brackets are zero. Indeed, writing out the definition

2.1.4 for k = 2 and n = 2 we have the following (where u; denotes the k-ary bracket on
V and pj, the k-ary bracket on V')

Y. o) (M2 ® IL@O) (%(1))

0€eS8(2,0)
€(9)

- Z T/“L; (fkl Q- fkj) (To(r)) (4.12)

Hence using §(2,0) = {1} and S(1,1) = S, = {1, 0} this yields

filpe) () = ph (fo)(wr) + ;Mlz(fl ® fi)(zr) + ;(—lelm/i/z(fl ® f1)(To(1))

Using that i} = 0 now yields that

fi(pa)(xr) = ;Mlz(fl ® fi)(xr) + ;(—1)|x1x2/ﬁ/2(f1 ® f1)(Zo(r))-

Now using that f; : V' — V' is a degree 0 map we see that |z1| = |fi(x1)| and the same
for |xo|. This allows us to write

1 1
Silpe)(zr) = iﬂé(fl ® fi)(@r) + 5(—1)|f1(Il)“fl(m”//z(fl ® f1)(@on))-
Using graded symmetry of the binary bracket u!, we have

po(fr @ fu)(ar) = (=)PEIRE0 (f @ fi) (em),

and so

fi(pe) (1) = ps(fr @ fi)(zn).



4.2. ISOTROPY LIE co-ALGEBRA 65

I.e. we recover that
Si(pa(21, 29)) = p5(fr(21), fi(w2)),

This last equation exactly states that the linear part f; : V' — V' is a graded Lie algebra
homomorphism.

3. Let & : S(V™*) — S(V*) be an Ly-algebra morphism. This is a morphism between
the spaces of functions on V' and V respectively. Just like in the smooth manifold case
one can show that a morphism between the spaces of functions is invertible if and only
if the underlying/induced smooth map between the manifolds is invertible. Hence one
can show that ® is invertible if and only if the linear part ¢ : V — V' is invertible.
Clearly, when @ : (V,Q) — (V/,@Q’) is a part of a homotopy equivalence, the linear part
¢ : V= V'is also part of a homotopy equivalence. Because the 1-ary brackets correspond
to the differentials in the complexes V and V' these differentials are zero. A homotopy
equivalence between complexes with the zero differential clearly has to be invertible. []

Proof of proposition 4.2.7. By the functorial properties of the isotropy functor hJ,, two
isotropy Ls.-algebras at some point m € M of the foliation F and which are minimal at
m are homotopy equivalent. By (3) of lemma 4.2.8 they are isomorphic and {-, -}, yields
a graded Lie algebra structure by (1) of lemma 4.2.8. O

So after all we are left with a graded Lie algebra (H*(F,m),{-, -}2). In particular this
bracket restricts to H~(F,m); indeed {-, -}» has degree +1 and so when z,y € H~(F,m)
we have

deg ({z,y}2) = deg(z) + deg(y) + 1 = —1.

This makes (H~'(F,m),{-,-}2) into an ordinary Lie algebra. As the name of the isotropy
Lo.-algebra already hinted, the isotropy Lie algebra from Androulidakis and Skandalis
can indeed be recovered from this L..-algebra as the following proposition states.

Proposition 4.2.9 (Proposition 4.14 in [LGLS20]). The isotropy Lie algebra of F at
m € M s isomorphic to the degree —1 component of the isotropy Lo.-algebra H®*(F,m)
of F at m.

Proof. We are going to construct a Lie algebra (iso)morphism 7 : H~1(F, m) — g,, where
9m = F(m)/L,F is the isotropy Lie algebra as defined by Androulidakis and Skandalis.
To start pick an element e € keri,,p C i,,F_; and let & be a (local) extension of e to a
section of E_; i.e. é(m) = e. By definition of a geometric resolution p (I'(E_;)) = F and
it easy to see that p(€) € F(m). The element p(€) has an equivalence class in F(m)/I,,,F
that we denote by 7(e). This is also how we define the map 7. We now check that this is
indeed a well-defined map. For this let € denote another extension of e to I'(E_;). Then
clearly we must have that

€ = € + (section vanishing at m),

but one can also show that [,I'(E_;) = {X € I'(E_;) | X(m) = 0} and so € and &
can only differ by an element in I,,I'(F_;). Now using that the anchor is C*°(M)-linear
together with p (I'(E_;) = F we see that p (I,,'(E_1)) = I,,JF and so p(€) and p(€) differ
by an element in I,,F which exactly means that they define the same element 7(e) € g,,.
We now proceed by showing that 7 is a bijection.
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e Surjectivity: again, the crucial observation to be made here is that p (I'(E-1)) = F.
Let X € g,, and X a lift of X to F(m) which you can clearly take (at least locally)
to be of the form p(€) where € is again an extension of element e € keri,,p to I'(E_;).

e Injectivity: pcik an element e € i, E_; and let € € I'(E_;) again be a local extension

of e. Note that 7(e) = p(€) € g, and so 7(e) = 0 if and only if p(€) € I,,F. This
precisely means that

k
p(e) = ZfiX,-, fi €I, and X; € F.
i=1

Again, we use that p (I'(E_;)) = F so we can choose sections €; € I'(F_;) such that
p(€;) = X; forall i = 1,... k. Hence, we have that

k k
pe)=> f;Xiep (5— > fi@') =0.
i1 i=1

Because the complex (E, d, p) is a geometric resolution we have that im d® = ker p
. The equation above implies that there exists an element h € I'(E_;) such that

k
e— > fieg; =d?h.
=1

Evaluating this expression at m € M gives that

k

em) =Y fi(m)e(m) + (imd®) (h(m)),

=1

and since f; € I, we have f;(m) = 0 for all ¢ = 1,... k. Because the geometric
resolution was chosen to be minimal at m € M we also have that i,,,d®) = 0 showing
that e = €(m) = 0. This shows 7 is injective.

]

Examples of Isotropy L..-algebras

We will now display some examples of isotropy L..-algebras.

Example 4.2.10 (Example 4.20 in [LGLS20]). Let F be a regular foliation on a manifold
M. We know by Frobenius’s theorem that F can be seen as F = ['.(T'F) for TF the
associated tangent distribution. Hence we can form the minimal geometric resolution
E_ :=TI[|F CcT[l]M, E_; =0 for all i > 1 and the anchor map just the inclusion
map. In particular we have that around every point m € M one has H*(F,m) = 0.
Note that this also implies that the isotropy Lie algebra g,, is zero for regular foliations,
a fact that was already shown in lemma 1.1 in [AZ13]. We can also use exactly the same
argument to show that for a regular point m € M of a singular foliation the isotropy
L.-algebra is identically zero.

¢
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Example 4.2.11 (Example 4.22 in [LGLS20]). Consider the foliation given by the action
of sl5(R) on R? as discussed earlier in examples 1.2.58 and 3.2.2. Using the universal Lie
oo-algebroid structure found in example 3.2.2 we can use the definition of the isotropy
L..-algebra to compute it. From example 4.2.1 we see that the we get an isotropy Lie
2-algebra

H*(F,0) =RI[2] ®sl(R)[1].

We have a bracket on H~'(F,0) = sly(R)[1] and for degree reasons all other brackets
vanish.

¢

Example 4.2.12 (Example 4.26 in [LGLS20]). We have encountered the foliation F,
earlier; in example 3.2.1 we gave a universal Lie oco-algebroid for F, which we will now
use to get an isotropy Le.-algebra at the origin. All (first order) partial derivatives of ¢
vanish at the origin. So the geometric resolution from example 1.2.60 becomes minimal at
the origin. From this it also immediately follows, by definition of the geometric resolution,
that H=*(F,,0) = A*C" and that for all k > 2 the k-ary brackets are the restrictions
of the ones in example 3.2.1 in the following way

ok
P U — i1 ip . 4.1
8331‘1 . axlk (0)8]1 .....]k ( 3)

{811,...,01k}k: Z E(il,...,ik)

n€lh,...ig€ly

¢

4.3 Minimal Rank Lie algebroids Defining a Foliation

Above we saw that Lie algebroids account for a large class of examples of singular foli-
ations. In this section we will exploit the isotropy L..-algebra to answer the following
question: does there always exist a Lie algebroid of minimal rank which locally induces
the foliation F ? Before proceeding with explaining these notions we do some preparatory
work. The following proposition mentions Chevalley-FEilenberg cohomology, a very brief
introduction to this formalism can be found in appendix C.

Proposition 4.3.1 (Proposition 4.27 in [LGLS20]). Let F be a singular foliation that
admits a geometric resolution of finite length in a meighborhood of m € M. FEquip
H*(F,m) = @1 H (F, m) with the isotropy Loo-algebra brackets ({- - - }1),~, constructed
out of some universal Lie co-algebroid (E, Q) minimal at m. Then the following holds:

1. The restriction of {-,-}2 in the following way
{2 HYF,m)® H*(F,m) — H *(F,m).

gives a Lie algebra representation of the Lie algebra H'(F,m) on the vector space

H~%(F,m) which does not depend on the choice of (E, Q).
2. The restriction of the 3-ary bracket
{'7 5 '}3 : /\SH_l(Fa m) — H_Q(‘F7 m)

is a 3-cocycle for the Chevalley-Eilenberg complex of H=(F, m) valued in the rep-
resentation on H*(F,m).
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3. The cohomology class of this cocycle does not depend on the choice of (F, Q).

Proof. 1. This is an immediate consequence of proposition 4.2.7.

2. To show this we can do the following calculation. Let n = {-,-,-}3 then we want
to show that

(degls) (x1, 02, w3, 24) = Z{llfw (@1, .. Ty, 2) }o

+ Z ’Jrj {.I'ij}%xla---;fC\i,---7fE\j7---,x4):0,
1<4,5<4

for arbitrary elements 1,29, 23,74 € H '(F,m). Writing out this whole expression
amounts to showing that

- {xla {Jfg, X3, 'r4}3}2 + {$27 {.Th €3, Jf4}3}2 - {x37 {xh Zo, $4}3}2
+{zg, {21, 22, w3}3}o — {71, 22 }2, 23, wats + {{71, 23}2, T2, T4 )3
- {{$1, 904}2, T2, 1‘3}3 - {{9027$3}2, !E1,$4}3 + {{$27$4}27$1, 953}3

- {{x?)u 374}2, $1,JJ2}3 =0.

On the other hand, we have the n = 4 higher Jacobi identity which we can apply to the
same elements i.e.

4
Z 6(0’){{.’130(1), Ce ,xg(i) }i: {130(2‘+1), c. 7$o(n)}4fi+1 =0.

=1 0eS(i,4—1)

Because {-}; = 0 the only terms that remain from this equation are

Z G(U){{xo » Lo (2 }27 Lo(3)s Lo(4 }2 + Z {{xa » Lo (2) xa(3)}37 To(4 }2 = 0.

c€eS(2,2) ceS8(3,1)

Now using that
S(2,2) = {1,(23),(243), (123), (1243), (13)(24) },

and
S(3,1) = {1, (34), (234), (1234)},

it is not too hard to see that this higher Jacobi identity exactly gives that (dogn) (21, e, X3, 24) =

0 for all @y,...,24 € H Y(F,m). This proves that I3 indeed is a 3-cocycle for the
Chevalley-Eilenberg differential with values in the representation {-, -} : H '(F,m) ®

H2(F,m) — H*(F,m).

3. Again, this requires some calculation. Note that an L.-algebra morphism ¢ :
(V,Q) — (V', Q') consists of a collection of maps @, : S*(V) — V’. In particular the
map @, : S?(V) — V has a component 0 : S (H~Y(F,m)) — H2(F,m). Applying the
definition of an L..-algebra morphism applied to elements xy, 1o, 23 € H (F,m) gives
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us the following equation

Y. €(o)®s (11 ® 1®2) (Zo(1): o) To@)+ D €(0)P2 (l2 ® 1) (To(1)s To)s To(m))

ceS(1,2) s€S(2,1)
+ Z €(0)®1 (Is) (To (1), To(2), To(3))
€5(3.0)
= Y elo) (<I>3(:co() To(2) )+ Z (Cbl®<I>2(xa(1),56a(2),13a(3)))
ceS(3) ceS(1,2)
6( )
+ > 76 (95 (2o1), o(2), Tots))
oceS(1,1,1)

The different Koszul signs are calculated easily and one then obtains the following equation
which holds for all homogeneous elements z1, xo, z3 € H*(F, m)

(I)g (l1<I1) T2, .Z‘g) (ll(JIQ), x1, ZL’3) + (I)3 (l1($3)7 Ty, (L’Q)
+ @y (I (21, x2), x3) — Do (la(21, 23), 22) + P2 (l2(22, 23), 1)
+ &1 (Is(21, 22, 23)) = l (P (21, 22, 23))

+ ;[1/2 (P1(21), Po(w, w3)) — Iy (Pr(w2), Po(w1, 23)) + Iy (P1(23), o1, Iz))}

L@ (01). 1 ). 01 (1)

(4.14)

Now remark that the map ®; : H~Y(F,m) — H'~'(F,m) is the identity map by propo-
sition 4.2.7 and this combined with lemma 4.2.8 gives that [ = [}, (i.e. the 2-ary brackets
coincide). Lastly, we also have that the differential is zero so [; = I} = 0. Combined with
equation (4.14) above this give an expression for the difference between the 3-ary brackets

1, 1
53(271, $2,$3) - 613@1@2, 953) 25 [12 ($1, q)2($27 iUs)) -1y (552, (132(5151, 1’3)) + 1y ($3> @2(33175172))}

— &, (l2(51317$2), 353) + ®, (l2($1, $3),$2) — &, (l2($2,$3),$1) .
(4.15)

On the other hand, computing the Chevalley-Eilenberg dlfferentlal of @y : S (H Y (F,m)) —
~2(F,m) with values in the representation ly = {-,-}o : H *(F,m) ® H *(F,m) —
H _2(.7: ,m) gives us that

(dep®s) (21, 22, x3) =lo (x1, Po(wa, 23)) — l2 (T2, Pa(x1, 23)) + lo (3, Po(21, 22))
— &y (a1, 22), 3) + P2 (la(21, 23), 2) — P2 (la(22, 23), 21) .
(4.16)
Comparing equations (4.15) and (4.16) it is not too hard to see that
l3—lg :O{'dCE97 « GR, (417)

where we have used that on S?(H~'(F,m)), the maps ®, and 6 coincide and we chose
11, T2, 73 € HY(F, m). Equation (4.17) now gives us exactly that the cohomology classes
of I3 and [} are the same (since they differ by an exact term).

O]
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We are now ready to use the developed theory to prove a result regarding the existence
of a Lie algebroid inducing a given singular foliation F. However, we require something
more of the Lie algebroid: it must have minimal rank?, i.e. the same rank as the foliation
F at a point m (this is defined as the minimal number of generators for F in a neighbor-
hood of m). In general, so without further assumptions, this is still an open question as
remarked earlier.

The following definition is the main object of interest to determine if a minimal rank
Lie algebroid inducing F exists and so is named appropriately.

Definition 4.3.2 (Definition 4.28 in [LGLS20]). The 3-cohomology class from proposition
4.3.1 is called the No-Minimal-Rank-Lie-Algebroid class or NMRLA class.

We will now show the following proposition.

Proposition 4.3.3 (Proposition 4.29 in [LGLS20]). Let F be a singular foliation on a
manifold M that admits a geometric resolution of finite length, let r be the rank of F
at m. If the NMRLA 3-class does not vanish, it is not possible to find a Lie algebroid
(A, [-,:], pa) defined in a neighborhood U, of m satisfying the following two conditions:

1. the rank of the vector bundle A is r,
Before proceeding to the proof of proposition 4.3.3 we need some preparatory results.

Lemma 4.3.4 (Lemma 4.31 in [LGLS20]). For every geometric resolution (E,d, p) of F
which is minimal at m, the rank of the vector bundle E_q is equal to the rank r of F at
m.

Proof. Let rg = rk E_; and r the rank of F at m. One can now choose a local trivialization
of E_; that we denote ey,...,e,,. By the definition of a geometric resolution we have
that p(I'(E_;)) = F and so the collection (p(e;))i=1,..,, generates F as a C°° (M )-module,
clearly this implies that » < rg. Now we show this inequality is, in fact, an equality. For
this suppose r < rg then we must have that one of the generators p(e;) is a C*°(M)-linear
combination of the other ones. After a possible renumbering we may assume that this is
p(e1) so there exist smooth functions f, ..., f,, € C°°(M) such that

pler) = f;fip(ei).

Completely similar to the proof of proposition 4.2.9 it now follows that this linear depen-
dence implies the existence of a section g € I'(E_3) such that

TE
e1 =) fiei + d®yg.
=2

Minimality of the geometric resolution at m now means that evaluating this equation at
the point m implies
TE
ei(m) =Y fi(m)es(m).
=2

Clearly this contradicts that e;,...,e,, is a local trivialization of the bundle £_; and
hence we conclude r = rg. O

2Recall that the rank of a Lie algebroid is defined to be the rank of the underlying vector bundle.
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We are now ready to start the proof of proposition 4.3.3, during the proof we will need
one more lemma which is stated and proven after the following proof.

Proof of proposition 4.3.3. Assume that there exists a Lie algebroid (A, [,:],pa) satis-
fying p(I'(A)) = F. Let (E,Q) be the universal Lie oco-algebroid of F in a neighbor-
hood of m that is constructed out of a geometric resolution minimal at m. By the-
orem 3.1.3 , combined with example 2.2.13 there exists a Lie oo-algebroid morphism
O (A[1],Q4) — (F,Q). Recall remark 2.2.19 which gives a concrete explanation of
what a Lie oo-algebroid morphism looks like. It states that it is given as a collection
of maps (®),~, that give Lo,-algebra morphisms on the sections I'(A[1]) and I'(£) and
such that py = p o ®,. In particular we have the linear component ®; : A[l] — E.
Remark that A[1] is concentrated in degree —1 and that ® is a degree 0 morphism so
more specifically we have that &y : A[1] - E_;.

Recall that r is the rank of F at m. Now assume the vector bundle A to have rank
r, then by lemma 4.3.4 we have rk A = rk E_;. By lemma 4.3.5 the restriction i,,® :
inA[l] = i,,E_; becomes a surjective map and combined with rki,,A = rki,,A[l] =
rki,, F_; this means i,,$9 becomes a bijection. Note that we also have two other maps
) : S2(A[1]) — E_5 and @, : S3(A[1]) — E_3 (again the codomain can be seen by a
simple degree count). Some general remarks:

e in example 2.2.13 we denoted the bracket on I'(A [1]) as {-, -}. We shall do the same
here being careful not to confuse this bracket with the 2-ary bracket {-,-}2 on I'(£),

e the Lie co-algebroid (A [1], Q) only has a binary bracket (the one from the previous
point) and all the others are zero,

e recall that the 1-ary bracket on T'(E) corresponds to the differentials (d®);ss.

Using remark 2.2.19 we may now do a computation completely similar to the one done
in the proof of proposition 4.3.1 to obtain that the components ®, ®; and @, satisfy the
following equation for all a,b,c € I'(A[1]) (keeping in mind the list above)

- ; {®o(a), @1(b, ¢)}2 = {Po(b), P1(a, ) }2 + {Po(c), Pi(a, b) }2]
+ @, ({a,b},c) — @1 ({a,c},b) + D1 ({b,c},a) (4.18)
= dPdy(a,b,c) + é{@o(a), Do(b), Do(c)}s.

We now proceed by evaluating equation (4.18) at the point m and invoking a couple of ear-
lier results. First note that by minimality the first term on the right-hand side of equation
(4.18) vanishes by definition. Moreover, by the bijective correspondence between i, A [1]
and i,, F_; we may assume that i,,P, is the identity map. Now recall the construction of
the isotropy Lo.-algebra at m: it was constructed as keri,,p® @;>2 imE_; and so choosing
a,b,c € I'(A[l]) such that i,a,inb,i,c € keriyp (after an application of &5 = 1) we
recover the 3-cohomology class from proposition 4.3.1 on the right hand side of equation
(4.18). Also note that when working in the restriction to m, by the same reasons as in
the proof of proposition 4.3.1 the binary brackets coincide and so the left hand side of
equation (4.18) yields exactly the expression for the Chevalley-Eilenberg differential of
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®4 (-, -) with values in the representation determined by {-,-} (up to a constant multiple).
Hence it is shown that the NMRLA 3-class is a Chevalley-FEilenberg coboundary.
O

The following lemma was used in the proof above.

Lemma 4.3.5 (Lemma 4.31 in [LGLS20]). Restricting the vector bundle morphism ®y :
A[l] = E_; to the fiber at m yields a surjective linear map.

Proof. Pick an arbitrary element e € i,,E_; and let € € T'(E_;) be an extension of e to
a section. We assumed pa(I'(A)) = F and by the definition of a geometric resolution
p(I(E_1)) = F so, modulo a degree shift, there exists an element a € I'(A[1]) such
that pa(a) = p(€). Hence by the Lie oc-algebroid morphism property we have that
p(€) = p(Po(a)) i.e. p(€ — Py(a)) = 0. As we already saw a couple of times this implies
that there exists a g € ['(E_5) such that €—®,(a) = d?g. Because (E, d, p) was chosen to
be minimal at m this implies that e = i,,®¢(a(m)) which means i, P : i,,A[1] = i, E_1
is surjective. O

We will now display two examples that have non-trivial NMRLA 3-class, thus showing
the following corollary to proposition 4.3.3.

Corollary 4.3.6 (Proposition 4.33 in [LGLS20]). There exist singular foliations of rank
r that, even locally, cannot be induced by a Lie algebroid of rank r.

As we already remarked we will now illustrate corollary 4.3.6 by two examples. The
first one is taken from [LGLS20], the second one takes inspiration from the first one but
is original.

Example 4.3.7 (Example 4.32 in [LGLS20]). This example looks at the foliation F,, that
we already saw in examples 1.2.36 and 1.2.60. It can be shown that this foliation has rank
n(n—1)/2. In example 4.2.12 we displayed the k-ary brackets on the isotropy L..-algebra
of F, at the origin 0. We now consider n > 4 and the homogeneous polynomial

0:C" = C:(21,...,2,) = > ).

Remark that this polynomial certainly satisfies the conditions that we set earlier: it is
homogeneous and so certainly weight-homogeneous and it has an isolated singularity at
the origin. According to equation (4.13), which defines the brackets, the 2-ary bracket
vanishes, indeed a:?jai - (0) = 0 for all 4,5 = 1,...,n. Combining this with proposition
4.3.1 one sees that the representation of H*(F,,0) on H ?(F,,0) is trivial. Also a small
calculation, using (4.13) shows that

{8/\8 (9/\6 (9/\(3}_3/\3/\8
Ory Oxy Oxy  Oxg Oxy  Oxyls Oxy Oxs  Oxy

This shows that the NMRLA 3-class does not vanish and so the foliation F,, is not induced
by a rank n(n — 1)/2 Lie algebroid in a neighborhood of the origin.

¢

The following example was found by using inspiration from example 4.3.7.
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Example 4.3.8. All the things we discussed earlier about F,, were under the assumption
that the polynomial ¢ is a weight-homogeneous polynomial with an isolated singularity at
the origin. Up until now all explicit descriptions of ¢ where homogeneous polynomials. In
this example we give an example where ¢ is weight-homogeneous but not homogeneous.
Because this polynomial is quite specific, we let n = 4. Consider the following polynomial

e : 3., .5 7 11
0 :C" = C: (21,29, 23,24) — ] + 25+ x5 + 24 .

This is a weight homogeneous polynomial with weights w; = 385, w, = 231, w3 = 165 and
wy = 105. It also clearly has a singularity at the origin since

(322, 525, 725, 1121°) = (0,0,0,0) < (21, 29, 73, 24) = (0,0,0,0).

It is also verified very easily that the representation {-, }» : H *(F,,0) ® H %(F,,0) —
H=2(F,,0) is the trivial one and that in exactly the same way as the previous example
we have, by equation (4.13)

{6A8 6/\6 8/\0}8/\8/\8
61’1 axg’ﬁxl 81’3781}1 6134 3—81‘2 8[)33 (9.174'

(4.19)

So again, we conclude that there does not exist a rank 6 Lie algebroid inducing the
foliation F, in a neighborhood of the origin.

Actually, the procedure used for finding this polynomial with these specific properties
can be replicated for n > 4. One can take a polynomial of the following form

@:C”%C:(xl,...,xn)l—)ZxZ’“, Vk=1,...,n:14, € N.
k=1

We now want to choose the weights wy,...,w, # 1 (we exclude this case because this
yields ordinary homogeneous polynomials) such that we have the following equations for
some w € N

w = U}lil
W = Wyiy
It is not hard to see that we want at least one k = 1,...,n for which i, = 3 (for otherwise

the 3-ary bracket and thus the NMRLA 3-class vanishes), without loss of generality we
may assume this is for £ = 1. From w = 3w; we now also see that w must be a multiple
of 3. We can now form w in the following way

W =3p2- - Pn,

for primes 3 < py < -+ < p,,. If we now let i, = p,. and wy, = 3pg -+ - pr - - - pn for k > 2 the
system of equations from above is satisfied (here the hat denotes we left out the prime py).
In this way we made sure, by construction, that ¢ is a weight-homogeneous polynomial
and that it has an isolated singularity at the origin. Furthermore, we also have that the
representation of the isotropy Lie algebra on H2(F,,0) is trivial and that equation (4.19)
still holds and so everything we said earlier applies to F,.

¢
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Conclusion

The aim of this thesis was to introduce the necessary concepts to understand the paper
[LGLS20] and use them to study singular foliations as was done in [LGLS20].

In chapter 1 we introduced some preliminary material on regular foliations. After
this we introduced singular foliations in the two ways they appear in the literature. In
particular we introduced the sheaf point of view as this is the way singular foliations are
defined in [LGLS20]. We illustrated these definitions by giving several examples. We
also illustrated that one cannot expect to get a Lie algebroid from a singular foliation,
but one does get an almost-Lie algebroid structure. This provided incentive to look for
‘higher structures’ In the last two subsections we introduced and illustrated geometric
resolutions. These are one of the main objects used in this thesis as they are the first
building block for the universal Lie oo-algebroid. In this context we provided the details
to a proof concerning the existence of a geometric resolution for an algebraic singular
foliation of a Zariski open set.

In chapter 2 we introduced L..-algebras and Lie oc-algebroids. These are necessary
to understand the main results of [LGLS20] that we introduced in the next chapter. We
also explained the duality between Lie oo-algebroids and N@-manifolds. We did this to
introduce morphisms and homotopies between Lie oco-algebroids as these are more con-
crete in the category of N@Q-manifolds.

In chapter 3 we introduced the main results of [LGLS20]: the existence of a universal
Lie oo-algebroid for a singular foliation admitting a geometric resolution, and a uniqueness
result. We provided the main steps and some calculations in the proof of the existence

result. Finally, we illustrated the universal Lie co-algebroid by displaying explicit exam-
ples following [LGLS20].

Chapter 4 contains the material developed in section 4 of [LGLS20]. It studies the
geometry of singular foliations through their universal Lie co-algebroid. In this chapter
we also provided more detailed calculations and proofs than the ones in the original
publication. We ended with answering the question ‘can all rank r singular foliations
can be induced, locally, by a rank r Lie algebroid?’ and illustrated this by giving two
examples. The first of these examples comes from [LGLS20] while the second example is
heavily inspired by the first one but is original.
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Chapter 5

Appendices

5.1 Appendix A

In this appendix we will show that claim used in chapter 3, namely that p: £y — TM
is a morphism of the brackets if and only if

{Q(EIZN ngl} € %vert(E—1>.

To do the calculations we will make use of lemma 2.11 in [ZZ12]. This lemma describes
a correspondence between Lie algebroids and N@Q-manifolds concentrated in degree 1,
based on the derived bracket construction from [KS04]. Given an N@Q-manifold! M =

(E1[1],Q = Q(l) ) we have that the degree —1 vector fields on M are T'(E_;) (see
lemma 2.6 [ZZlQ]). Furthermore, we have the following expressions for the anchor and

bracket
[av b]E,l = [[Q’ a’] 7b] ) p<a)f = [[Q7 a] 7f] ) (51>

for a,b € I'(E_1) and f € C*(M). We will now apply this to get our desired result.

Let (x;) be a set of coordinates on the base M and &; a set of degree +1 coordinates

on the vector bundle £_;. Note that [ng . le 1} is a degree +2 vector field and so it
can be written as

1
[QE 17Q( : } Z z]( )gzgja + Z bzgk §Z§J§k8€ (52>
imj?k 7 ] k‘l
horizontal part vertical part
for af;(x), b, (x) € C*°(M). Now let ey = ag and ey = g- then these are sections of the

vector bundle £ ; and so they can be viewed as degree 1 vector fields on the graded

manifold (F_;,Q = Q%z .). Furthermore, they are part of the canonical local frame and
so it suffices to work with this type of sections .This allows us to compute the following

Q. Q). =Y dj(x) +wa,€ i

Here E_; — M is a vector bundle.

7
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Now pick a function f € C°°(M) then using the above it is easy to see that

10.Q], ] ] 1) = 3 a0 k+zbwk o

*og
= Z ajj( fm'
So when we choose f = x; we have

[[Q, Q1 ex] , ea] , ] = afj(x).

On the other hand we can do the following calculation for general f € C*°(M) and
e1,e9 € I'(F_1). From the graded Jacobi identity, it is not hard to see that

[Q, Q] e1] =2[Q,[Q, ex]] - (5.3)

Hence we may write

H[[Qv Q] 761] 762] ) f] =2 [HQ? [Qa 61]] 762] ) f] :

Applying the graded Jacobi identity once more we have that
[[[Qa Q] 761] )62] =2 ([Q? [[Qa 61] 762“ - [[Q? 61] ) [Q7 62]]) .

Now we apply the equations from (5.1) to conclude that

[Q, e1] = p(e1) + vertical part,
[Q, ea] = p(ez) + vertical part,

[Q,[[Q,e1] ea]] = p ([61, elp ) + vertical part.

Letting f € C*(M) as above we see that

[[[Q, QL e1] €], f] =2 (P ([617 62]E,1) f = 1lpler), p(e2)]x f) ' (5.4)

Indeed, writing a bit informally, we have (vertical part)(f) = 0 because f does not depend
on the coordinates §. Now note that the right hand side of equation (5.4) is zero if and
only if for all sections e; and es of the form & and all f € C*°(M) the anchor p preserves
the brackets. On the other hand we have shown above that for this particular choice
of sections and f = x; we have that the left-hand side of equation (5.4) is zero if and
only if afj (x) = 0 for all 4,7 and k. By the Leibniz property of the bracket the choice
of coordinate functions suffices and so we conclude the following: the anchor preserves
brackets if and only if afj(x) = 0 for all 7,5 and k. Going back to equation (5.2) this

exactly means that the horizontal part vanishes and so [@Q, Q] = {Q(Elzp ngl} is vertical.
This is exactly what we wanted to show.

5.2 Appendix B

Lemma 5.2.1. Let A : R" — R™ be a linear transformation with rk(A) = k. Then any
small perturbation B of A satisfies that tk(B) > k.
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Proof. Since the determinant det : M, «,,(R) — R can be expressed as a polynomial
it is a continuous function. The linear map A having rank k is the same as saying its
representative matrix, also denoted A, has rank k. A matrix has rank k if and only if there
exists a k X k-submatrix with nonzero determinant. Now since det is continuous it is easy
to see that any small perturbation of the entries in A (and thus also the k X k-submatrix)
does not change the value of the determinant. Hence, we conclude the lemma. O

5.3 Appendix C

Here we will expose very briefly the theory of Chevalley-Eilenberg cohomology or Lie
algebra cohomology. From standard sources on differential geometry like [Leel2], we see
that the de Rham cohomology is constructed on the space of differential forms

Q*(M) = é (AT M) .

Taking inspiration from this we now define the Chevalley-Eilenberg differential on the

space
oo

k=0
Recall here that AFg* = {multilinear and antisymmetric maps g x --- x g — R}. We now
define the Chevalley-Filenberg differential to be the degree +1 map
dep : N°g" — A°g7,
defined for all n € A®g* as

(chn)(Ul,...’karl) = Z (—1)i+j77([?]i,'l}j],/Ul,...,'l/}\i,...,'l/};,...,'l}kJrl).
1<i<j<k+1

Note that with some small calculations one can show that for all n € Alg* we have
dor(dep(n)) = 0 and that for all ¢ € AFg* € € Alg*

der(CNE) = dep(C) N+ (1) ¢ Ader(€).

From this it can be seen that dcg o dog = 0 and so dog indeed is a differential. We now
define the Chevalley-Eilenberg cohomology groups as
" ker(dop : A"g* — A"Tlg*)
HCE(g) = . An—1 g% nex)
im(deg : A" lg* — Ang¥)

We now continue with Chevalley-Eilenberg cohomology with values in a Lie algebra rep-
resentation. For this let V' denote some vector space and gl(V') the linear endomorphisms
of V. A Lie algebra representation is now a Lie algebra homomorphism

p:g—gl(V).
Now define the following space

AFg* ® V = {antisymmetric maps g x --- x g — V}.
S —

k times
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We now define the Chevalley-FEilenberg differential with values in a representation p : g —
gl(V) as follows for all n € A*g* @V

k+1 )
(dgn)(v1, .. vpg1) = Y (=1)'p(v)n(vr, ..., Biy oo, V1)

i=1
+ Z (—1)i+jn([v,-,vj],vl,...,T}i,...,@j,...,vkﬂ).
1<i<g<k+1

This differential also has a resulting cohomology that we also denote by the Chevalley-
Eilenberg cohomology with values in the representation p : g — gl(V').
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