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0.1. Introducción

El objetivo de esta tesis es el teorema de convexidad de la aplicación momento, el
enunciado 3.3.5. Este resultado fue probado por Atiyah (1982), y poco después por V.
Guillemin y S. Sternberg (1983). Más concretamente queremos ver que la imagen de la
aplicación momento de la acción de un toro sobre una variedad simpléctica compacta es
un poĺıtopo convexo, esto es, la intersección de una cantidad finita de inecuaciones. Para
ello necesitamos saber antes que significan esto.

Una forma simpléctica, ω, es una dos forma cerrada y no degenerada. Si tomamos
una variedad, M , que admita una de estas formas tendremos una variedad simpléctica y
el estudio de estas y sus morfismos (simplectomorfismo, difeomorfismos que conservan ω)
será la geometŕıa simpléctica. Análogamente a considerar la geometŕıa Riemanniana como
el estudio de los objetos que conservan ángulos y longitudes, la simpléctica será el estudio
de los objetos que conservan la forma simpléctica y estos serán sensibles la orientación.
Estas dos geometŕıas pese a comenzar definiendo una forma bilineal, en el tangente y el
cotangente, posen muchas diferencias entre ellas. Para empezar mientras que una métrica
es admisible en toda variedad, una forma simpléctica sólo se puede tener en variedades de
dimensión par y orientables. Y con segundo grupo de De Rham no nulo si esta es compacta.
Se tiene por ejemplo que la única esfera que puede ser tratada como variedad simpléctica
es la 2−esfera. Otra de las caracteŕısticas t́ıpicas de las variedades simplécticas es que
no tienen invariantes locales, menos la dimensión; esto es, a igual dimensión localmente
todas son simplectomorfas. El que no existan dichos invariantes nos permite un número
tan grande de transformaciones. Si miramos las simetŕıas de una variedad riemanniana, es
decir que conserven ángulos y distancias, nos podemos encontrar con que existen variedades
riemannianas que no admiten ninguna, mientras las simplécticas tienen un gran número.
El número de simetŕıas, aquellas que conservan área y orientación, no sólo hay siempre, si
no que hay una cantidad infinitas.

El comienzo de la geometŕıa simpléctica está estrechamente relacionado con la mecánica.
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El origen se puede situar hacia 1808 cuando Lagrange realiza sus estudios sobre la mecánica
celeste. En las ecuaciones que empleó para definir el movimiento de los astros ya veńıa
impĺıcita la idea. Este planteamiento fue extendido por Hamilton dando lugar a lo que
conocemos como mecánica Hamiltoniana. A finales del siglo XIX y principios del XX,
Jacobi, Liouville y Poisson, ente otros muchos, sentaron las bases. Pero no fue hasta 1939
que Weyl introdujo el término “simpléctica“, que no es otra cosa que la versión latina de
la palabra “compleja“.

El texto comienza planteando la geometŕıa simpléctica a nivel de álgebra lineal y mos-
trando algunos resultados básicos de esta y de geometŕıa en general. Para nuestro teorema
hará falta algún concepto más, como el de grupo de Lie. Éste es una variedad que es a la
vez grupo, siendo enlazadas ambas estructuras pidiendo que la inversa y el producto sean
diferenciables. Él álgebra de Lie asociada a un grupo será la aproximación infinitesimal de
ese grupo, dándonos un espacio vectorial con una forma bilineal antisimétrica que cumple
la fórmula de Jacobi. Si a una estructura de álgebra de Lie le añadimos la regla de Leibniz
se tiene un álgebra de Poisson. Ésta se define normalmente sobre las funciones y vendrá de-
notada como (C∞(M), {}). Si un campo conserva nuestra forma simpléctica, LXω = 0, éste
se llamará simpléctico. El ser simpléctico se puede ver que es equivalente a que el producto
interno del campo en la forma sea una uno forma cerrada, iXω ∈ Ω1

cerradas
(M). Si pedimos

algo más fuerte, que iXω sea exacta tendremos un campo hamiltoniano.

En la segunda parte de la tesis se presentan las acciones en variedades simplécticas,
los casos más destacados y una motivación mecánica. Para hacernos una idea; si tenemos
la acción diferenciable de un grupo de Lie sobre una variedad,Φ : G � (M,ω), esto nos
da un morfismo de grupos entre el grupo que actúa y los difeomorfismos en la variedad.
La acción nos genera una acción infinitesimal, que a cada vector en el álgebra de Lie,
v ∈ g, nos induce un campo de la siguiente forma: vM (p) = d

dt t=0
Φexp(−tv)(p) ∈ χ(M).

Si la variedad es simpléctica podemos considerar aquellas acciones tales que el morfismo
vaya a los simplectomorfismos. Esto nos es equivalente a que la acción infinitesimal nos
genere campos simplécticos. Incluso podemos buscar acciones de tal forma que generen
campos Hamiltonianos. En realidad no es algo tan fuerte como pudiera parecer ya que
localmente ambos campos son lo mismo. Si tomamos un abierto simplemente conexo de la
variedad y miramos la cohomoloǵıa de De Rham vemos que todos los simplécticos en el son
hamiltonianos. Que cada campo inducido por la infinitesimal sea hamiltoniano significa que
se le puede asociar una función deM . La aplicación que a cada elemento del álgebra de Lie le
da el campo inducido y de ese campo da la función que le corresponde se llama aplicación
comomento si es un morfismo de álgebras. Al dual de dicho morfismo, µ : M → g∗, lo
llamamos aplicación momento. Que exista una es equivalente a que exista la otra y diremos
que la acción es hamiltoniana.

La tercera y última parte de la tesis supone la prueba del teorema de convexidad da la
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aplicación momento, aśı que su aplicación el teorema de Schur-Horn, resultado anterior que
fue una de las motivaciones para este teorema. Dividiremos la prueba en tres partes. En
la primera veremos en la acción de un toro que la imagen de la aplicación momento de los
puntos con un estabilizador común será la unión de una cantidad de componentes conexas,
donde cada una de ellas es la envoltura convexa de un conjunto de las imágenes de los puntos
fijos de la acción. Continuaremos comparando localmente, en un entorno de un punto fijo,
nuestra aplicación momento con la de la acción a nivel lineal y viendo que su imagen difiere
en una traslación. Esto nos permitirá, con un poco de teoŕıa de representaciones, enunciar
el teorema de convexidad de forma local, en los puntos fijos. Esto es, existe un entorno
tal que la imagen en el álgebra será la intersección de un abierto y un cono centrado
en el punto. Para terminar la demostración usaremos la teoŕıa de Morse-Bott para ver
que cada componente de la aplicación momento tendrá un único máximo local; lo cual
junto con una versión relativa del teorema local nos dará el teorema de convexidad, como
deseábamos. Terminaremos dando algunos ejemplos sencillos y usaremos nuestro teorema
para demostrar el teorema de Schur-Horn, que nos dice que



Caṕıtulo 1

Geometŕıa simpléctica lineal

La geometŕıa simpléctica es el estudio de las variedades con una forma simpléctica, esto
es, con una forma diferencial no degenerada que sea cerrada. Ser una dos forma diferen-
cial lleva impĺıcita la antisimetŕıa. El ser cerrada es una propiedad local, mientras que el
ser no degenerada es puntual. Por tanto el estudio de ésta segunda es una propiedad de
álgebra lineal el tangente. De ah́ı que empecemos por el estudio de los espacios vectoriales
simplécticos.
En esta primera parte veremos también algunas definiciones y resultados clásicos de geo-
metŕıa simpléctica, aśı como de grupos y álgebras de Lie.

1.1. Espacios vectoriales simplécticos

Para empezar definiremos los conceptos más destacados de la sección para luego ver su
comportamiento.

Definición 1. Forma bilineal antisimétrica: Es una forma bilineal definida en un

espacio vectorial V , Ω : V × V → R, tal que:

Ω(v, w) = −Ω(w, v) ∀v, w ∈ V

Definición 2. Forma simpléctica: Es una forma antisimétrica, Ω, tal que es no gene-

rada, es decir:

∀v ∈ V ,v �= 0 ,∃w ∈ V tal que Ω(v, w) �= 0

7
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Definición 3. Espacio vectorial simpléctico: Es la dupla (V,Ω), donde V es un espacio

y Ω una forma simpléctica definida en él.

Veamos a continuación una forma estándar para las formas antisimétricas que nos
permitirá expresar la forma en una base conveniente, ver que el único invariante es la
dimensión y caracterizar la no degeneración de forma fácil. Denotaremos como V ⊥ el
ortogonal simpléctico de espacio vectorial V .

Teorema 1.1.1 (Forma estándar de una forma bilineal antisimétrica). 1.1Sea V un espacio

vectorial, con dim(V ) = 2n + k, con una forma bilineal antisimétrica Ω en él, existe una

base v1, ..., vn, w1, ..., wn, u1, ..., uk de V tal que:

Ω(ui, v) = 0 ∀v ∈ V

Ω(vi, vj) = Ω(wi, wj) = 0 ∀i, j

Ω(vi, wj) = δij

Demostración. La prueba consiste en el proceso de Gram-Schmidt con la ortogonalidad da-
da por la forma simpléctica. Sea el conjunto de ortogonales a todo v ∈ V , lo denotamos como U =
{u ∈ V : Ω(u, v) = 0 ∀v ∈ V } y un complementario W :

V = U ⊕W.

Tomamos una base u1, ..., uk de U . Por serW el complemento de U , ∀w1 ∈ W\{0} ∃v1 ∈
W\{0} tal que Ω(v1, w1) �= 0. Bajo producto por escalar podemos considerar Ω(v1, w1) = 1.

Definimos W1 = span{v1, w1} y su complementario en W , W⊥
1 = {w ∈ W : Ω(w, v) =

0 v ∈ W1}. Esto define una suma directa de W , W = W1 ⊕ W⊥
1 , y luego procedemos

reiteradamente hasta llegar a la dimensión.

Sea v ∈ W1 ∩W1, v = a1v1 + a2w1 se tiene:

Ω(v, v1) = Ω(a1v1, v1) + Ω(a2w1, v1) = a2

Ω(v, w1) = Ω(a1v1, w1) + Ω(a2w1, w1) = a1

Luego v = a1a2−a2a1 = 0. Y W1∩W⊥
1 = 0. Por otro lado sea v ∈ W con Ω(v, v1) = a1

y Ω(v, w1) = a2, se tiene:
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v = v + a1w1 − a1w1 + a2v1 − a2v1 = (v + a1w1 − a2v1) + (−a1w1 + a2v1)

Ω(v + a1w1 − a2v1, v1) = Ω(v, v1) + Ω(a1w1, v1)− Ω(a2v1, v1) = 0

Ω(−a1w1 + a2v1, v1) = Ω(−a1w1, v1) + Ω(a2v1, v1) = 0

Repetimos el proceso sobre el ortogonal. Sea w2 ∈ W⊥
1 y v2 ∈ W⊥

1 tal que Ω(v2, w2) = 1.
Definimos W2 = span{v2, w2} y repetimos. Llegará el momento, por tener dimensión finita,
en el que el proceso pare. Y nos quedará:

V = U ⊕W1 ⊕W1 ⊕ · · · ⊕Wn

como suma ortogonal simpléctica de Wi’s con base {vi, wi} y Ω(vi, wi) = 1

La dimensión del subespacio U es fija, es un invariante k, al igual que 2n. Al mı́nimo
2n lo llamamos rango.

Dado que estamos trabajando con una forma bilineal en un espacio vectorial, podemos
obtener un morfismo entre V y su dual V ∗ de la siguiente forma:

V → V ∗

v �→ Ω(v, ·)

A veces a esta aplicación se le cambia el signo. El núcleo de la aplicación es el conjunto
de los vectores ortogonales a todos, V ⊥. Nosotros sólo consideraremos el caso de que V sea
de dimensión finita. Que este sea 0 es equivalente a que la aplicación sea un isomorfismo
entre V y V ∗ (siendo inyectiva y ambos de la misma dimensión es isomorfismo), ó a que Ω
sea una forma simpléctica (ya no será degenerada).

En este caso dim(Ker(V → V ∗)) = 0 y 2n = dim(V ), y todo espacio simpléctico (V,Ω)
tendrá dimensión par.

A toda forma bilineal Ω, en un espacio vectorial V , se le puede asociar una matriz dada
por los valores de una base, e1, ..., en, como entradas:
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Aij = Ω(ei, ej)

Además en el caso de (V,Ω) espacio simpléctico por el teorema de forma estándar () se
puede tomar una base simpléctica, v1, ..., vnw1, ..., wn tal que:

Ω(vi, wj) = δij y Ω(vi, vj) = Ω(wi, wj) = 0

Ω(u, v) = [−u−]

�
0 Id

−Id 0

�


|

v
|





con u y v en coordenadas de la base.

Definición 4. Simplectomorfismo: entre dos espacios simplécticos (V1,Ω1) y (V2,Ω2)
es un isomorfismo ϕV1 � V2 que conserva la forma simpléctica, esto es:

ϕ∗Ω2 = Ω1

En tal caso se dice que (V1,Ω1) y (V2,Ω2) son simplectomorfos

El prototipo de espacio simpléctico de dimensión 2n es (R2n,Ω0), con Ω0 está definida
con base simpléctica:

v1 = e1, v2 = e2, ..., vn = en

w1 = e1+n, w2 = e2+n, ..., wn = e2n

siendo los ei la base canónica.

Por el teorema de forma estándar () todo espacio simpléctico (V 2n,Ω) es simplectomorfo
a (R2n,Ω0) por un isomorfismo que lleve la base simpléctica en (V 2n,Ω) a la canónica en
(R2n,Ω0).
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1.2. Subespacios de un espacio vectorial simpléctico

Sea W ⊂ V un subespacio del espacio vectorial V con una forma antisimétrica, Ω,
podemos restringir la forma a través de la inclusión i : W �→ V y considerar la forma
i∗Ω = Ω|W en W . En el caso simpléctico clasificaremos algunos subespacios posibles en
función según su ortogonal en V . Su relación con Ker(V → V ∗) se ve en el siguiente
resultado.

Proposición 1.2.1. (V,Ω) espacio vectorial y forma antisimétrica, con W subespacio. Se

verifica:

Ker(W → W ∗) = W ∩W⊥.

Demostración. Que e ∈ Ker(W → W ∗) equivale a que e ∈ V y ∀w ∈ W se tiene Ω(e, w) =
0. Entonces e ∈ W⊥.
Si e ∈ W ∩W⊥ entonces ∀v ∈ V se tiene Ω(e, v) = 0, entonces e ∈ Ker(W → W ∗).

Según la restricción de Ω, en (V,Ω) espacio vectorial simpléctico, al subespacio W y
usando la proposición anterior, distinguimos entre:

1. W es simpléctico si Ω|W es no degenerada, ó equivalente W ∩W⊥ = 0.

2. W es isotrópico si Ω|W ≡ 0, esto es, W ⊂ W⊥.

3. W es coisotrópico cuando su ortogonal simpléctico W⊥ es isotrópico, ó equivalente
W⊥ ⊂ W .

4. W es lagrangiano si es coisotrópico e isotrópico a la vez, esto es, W⊥ = W .

Veamos ahora algunas de las propiedades de estos subespacios (hay otros posibles).
Consideremos siempre (V,Ω) un espacio simpléctico, menos que se indique lo contrario.

Lema 1. Sea W subespacio de (V,Ω). Las siguientes afirmaciones son ciertas:

1. dim(W ) + dim(W⊥) = dim(V ).

2. (W⊥)⊥ = W .

3. W es lagrangiano ⇔ dim(W ) = 1
2 y coisotrópico ⇔ dim(W ) = 1

2 e isotrópico.
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Demostración. 1. Por ser (V,Ω) simpléctico ρ es isomorfismo. Podemos identificar W⊥

con W ◦, el anulador de W en V ∗. Este tendrá la dimensión complementaria de W
en V y dim(W ) + dim(W⊥) = dim(V )

2. Si z ∈ W por definición de W⊥, z ∈ (W⊥)⊥, Ω(z, w) = 0 ∀w ∈ W⊥ , z �∈ W⊥.
Luego (W⊥)⊥ = W .

3. Es directo de lo anterior y la definición de lagrangiano.

1.3. Variedades simplécticas.

Definición 5. forma simpléctica: en una variedad M es una dos forma diferencial,

ω ∈ Ω2(M), cerrada y tal que ωp es simpléctica ∀p ∈ M .

Que la forma sea cerrada implica que es de De Rham, esto es, que vaŕıa suavemente
y está en TxM . También cabe destacar que dim(TxM) = dim(M) y por tanto dim(M) es
par

Definición 6. Variedad simpléctica: es la dupla (M,ω) donde M es una variedad y ω
una forma simpléctica en ella.

Cuando trabajamos con variedades simplécticas siempre estamos tratando de variedades
de dimensión par y orientables. Esto último se tiene por ser ωn una forma volumen. A
continuación damos algunos resultados directos de la definición y algunos ejemplos. Más
adelante veremos algunos más.

Definición 7. Simplectomorfismo: entre dos variedades simplécticas (M1, ω1) y (M2, ω2),
de igual dimensión, es un difeomorfismo ϕ : M1 → M2 y tal que conserva la estructura

simpléctica de las variedades, esto es:

ϕ∗ω2 = ω1

Dado que conservan las formas simplécticas también conservarán ωn. En particular los
simplectomorfismos son difeomorfismos que conservan el volumen.

Vimos que en una estructura simpléctica el único invariante era la dimensión, pero en
el caso de las variedades esto se reduce a algo local, que se verá más adelante como conse-
cuencia del teorema de Darboux. Por tanto cuando trabajamos con variedades simplécticas
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localmente es útil pensar que estamos en R2n con coordenadas lineales (p1, ..., pn, q1, ..., qn)
y la forma canónica ωCAN , definida:

ωCAN =
n�

i=1

dpi ∧ dqi.

Proposición 1.3.1. Si (Mn, ω) es una variedad simpléctica y compacta, se tiene:

1. H2(M,R) �= 0.

2. H2j(M,R) �= 0 ∀0 ≤ j ≤ n.

Demostración. 1. Supongamos que el segundo grupo de cohomoloǵıa de De Rham es
nulo. Tomamos α ∈ Ω1(M) tal que dα = ω. ωn = d(α ∧ ω ∧ ... ∧ ω) será una forma
volumen y exacta a la véz, llegando aśı a una contradicción.

2. Razonamos igual para ωk = dα con α ∈ Ω1(M) se tiene que ωn = d(α ∧ ωn−k)
será volumen y exacta y volvemos a la misma contradicción.

A continuación vamos a ver la generalización de que todos los espacios simplécticos de la
misma dimensión son simplectomorfos. Este es un hecho muy caracteŕıstico de la geometŕıa
simpléctica, ya que a diferencia de otras geometŕıas, como la riemanniana, dos variedades
simplécticas de la misma dimensión son localmente simplectomorfas. Esto nos permite con
frecuencia trabajar localmente con (R2n, (x1, x2, . . . , xn−1, xn, y1, y2, . . . , yn−1, yn)), y con
la forma

�
n

i=1 dxi ∧ dyi. Las coordenadas locales en las que toma dicha forma se llaman
coordenadas simplécticas o estandar. Esta generalización del caso lineal se conoce
como teorema de Darboux. La prueba de este se basa en la versión relativa del teorema de
Moser. Este se demuestra por un argumento muy común en simpléctica llamado el truco
de Moser, pero nos saltaremos su prueba.

Teorema 1.3.2 (Teorema relativo de Moser). Sea M con dos formas simplécticas definidas

en ellas ω0 y ω1, y N una subvariedad compacta de M . Si ∀p ∈ N ω0(p) = ω1(p), entonces
existen entornos tubulares U0 y U1 de N , y ϕ : U0 −→ U1 difeomorfismo, tal que: ϕ∗ω1 = ω0

y el siguiente diagrama conmuta

U0
ϕ

−→ U1

i0 � � i1

N
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siendo N
i0
�→ U0 y N

i1
�→ U0 las inclusiones correspondientes

EL truco de Moser se usa para probar que entre dos formas simplécticas en una variedad
existe una familia de formas simplécticas suave que las une. Para ello se tiene que pedir
que tengan la misma clase de cohomoloǵıa de De Rham, lo que aqúı nos viene dado por
coincidir en N .

Teorema 1.3.3 (Teorema de Darboux). Sea (M,ω) una variedad simpléctica 2n-dimensional.

∀p ∈ M , existe una carta en un entorno del punto, (U, x1, x2, . . . , xn−1, xn, y1, y2, . . . , yn−1, yn),
tal que la forma simpléctica tiene la forma

n�

i=1

dxi ∧ dyi

ésta se suele llamar carta de Darboux.

Demostración. La prueba consiste en usar Moser relativo con N = p. Tomemos una base en
TpM y1, y2, . . . , yn−1, yn tal que nos dé en un entorno de p las coordenadas (x�1, x

�
2, . . . , x

�
n−1,

x�n, y
�
1, y

�
2, . . . , y

�
n−1, y

�
n) en las que

ω(p) =
n�

i=1

dx�i ∧ dy�i|p

Ahora aplicamos Moser relativo a ω y ω� =
�

n

i=1 dx�
i
∧dy�

i
, que coinciden en p. Por este

teorema se tiene que existen U0 y U1 y un difeomorfismo ϕ : U0 −→ U1 tal que ϕ(p) = p y

ϕ∗

�
n�

i=1

dx�i ∧ dy�i

�
= ω

Se tiene: ϕ∗ (
�

n

i=1 dx�
i
∧ dy�

i
) = (

�
n

i=1 d(x�
i
◦ ϕ) ∧ d(y�

i
◦ ϕ)). Estas nuevas coordenadas

nos dan localmente, en U0, la forma simpléctica como queŕıamos.
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1.4. Introducción a grupos y álgebras de Lie.

En ésta sección definiremos lo que es un grupo de Lie, un álgebra de Lie y enunciaremos
algunos teoremas de teoŕıa clásica de Lie, sin demostración. Para nuestro objetivo nos es
suficiente con considerar los casos reales y de dimensión finita.

Un grupo de Lie real no es más que un grupo con estructura de variedad diferencial.
Obviamente tiene que haber un lazo entre ambas que haga compatibles las estructuras, éste
viene dado al pedir que la inversión y el producto sean las dos aplicaciones diferenciables,
es decir, suaves.

Definición 8. Grupo de Lie: es un grupo G tal que tiene estructura de variedad dife-

rencial y se cumple que:

1. La inversión: a �→ a−1 ∀a ∈ G

2. El producto por un elemento a ∈ G: b �→ ab ∀b ∈ G

son funciones suaves

Definición 9. Álgebra de Lie real: es un espacio vectorial, g, con una operación bilineal

{·, ·} : g× g −→ R que cumple las siguientes propiedades:

1. Es antisimétrica: ∀X,Y ∈ g {X,Y } = −{Y,X} .

2. Cumple la identidad de Jacobi: {X{Y, Z}}+ {Z{X,Y }}+ {Y {Z,X}} ∀X,Y, Z ∈ g

Las notaciones g ó Lie(G) son tomadas con frecuencia para designar al álgebra asociada
a un grupo. A partir de un grupo de Lie podemos sacar su álgebra de Lie, esto es la versión
infinitesimal de dicho grupo de Lie. EL álgebra de Lie de un grupo contiene localmente
toda la información sobre la estructura del grupo. De ah́ı la relación entre ambos.

Sea la traslación a la izquierda Lg : G → G , h �→ gh ∀h ∈ G. Llamamos vectores
invariantes por la izquierda a aquellos invariantes por esta aplicación, esto es,X ∈ χ(M)
tal que dLg ◦ X = X ◦ Lg ∀. No es dif́ıcil comprobar que el conjunto de vectores por la
izquierda forma con el corchete de Lie de los vectores de la variedad un álgebra de Lie.
Además la aplicación TeG → Lie(G) , v �→ dLg(v) nos da un isomorfismo entre el espacio
tangente al neutro y álgebra de Lie del grupo.

Sabemos que a cada grupo de Lie le corresponde un álgebra de Lie, pero no si al revés
también es cierto. Para ello se tiene el siguiente teorema de Lie que fue completado por
Cartan.
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Teorema 1.4.1. Cartan−Lie Para toda álgebra de Lie real finito dimensional, g, existe

un grupo Lie real, G, tal que g = Lie(G). Y además al restringirnos a los grupos de Lie

reales simplemente conexos se tiene una biyección entre estos grupos y las álgebras reales

finito dimensionales.

Dado un morfismo entre dos grupos de Lie, al tomar la diferencial en el neutro se
obtiene siempre un morfismo de álgebras. Lo que no es cierto siempre es el contrario, pero
se tiene el segundo teorema de Lie.

Teorema 1.4.2. Segundo Teorema de Lie Sean G y H, dos grupos de Lie con álgebras

g y h. Si suponemos que G es simplemente conexo, para todo morfismo de álgebras de Lie

Φ : g → h existe un morfismo de grupos φ : G → H del que Φ es un levantamiento. Esto

es, conmuta con las exponenciales, φ ◦ expG = expH ◦ Φ y se tiene que deφ = Φ

Otro resultado que se usará más adelante nos dice que un gran número de las álgebras
de Lie se pueden trabajar como grupos matriciales, lo que por ejemplo nos simplifica la
expresión de la exponencial. Entre ellas están las nuestras, las álgebras de Lie reales y finito
dimensionales.

Teorema 1.4.3. Teorema de Ado Toda álgebra de Lie sobre un cuerpo de caracteŕıstica

cero y de dimensión finita se puede embeber dentro de un álgebra de Lie matricial.

Por último un criterio que nos facilita decir que un subgrupo de Lie sea un grupo de
Lie.

Teorema 1.4.4. Teorema de Cartan Todo subgrupo cerrado de un grupo de Lie es un

grupo de Lie.

1.5. Estructuras complejas

Existe una estrecha relación entre la geometŕıa simpléctica y la compleja, por medio de
las estructuras complejas compatibles. En un espacio vectorial complejo el producto por i,
la unidad imaginaria, es un endomorfismo tal que su cuadrado da −Id. Una generalización
de esto es la estructura compleja. Además el concepto de estructura compleja compatible
nos entrelazará en la variedad los conceptos de métrica, forma simpléctica y estructura
compatible de tal forma que dos de ellos determinan al tercero, pero no determinado de
forma uńıvoca.

Definición 10. Estructura compleja: en V es un endomorfismo J : V → V tal que:
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J2 = −Id.

El par (V, J) es llamado espacio complejo

Todo espacio complejo (V, J) tiene dimensión par. Esto se ve tomando determinantes,
ya que nos sale det(J)2 = (−1)dim(V ).

Ejemplo 1. El ejemplo más sencillo es considerar R2n
, ó lo que es lo mismo Cn

, tomando

como estructura compleja J0(e) = ie ó de forma matricial para R2n
:

�
0 −Id
Id 0

�

Para ver la relación a partir de los espacios simplécticos tomemos p1, ..., pn, q1, ..., qn
coordenadas lineales simplécticas, en R2n

. Y dotémoslo además de forma simpléctica canóni-

ca y métrica eucĺıdea:

ω0 =
n�

i=1

dpi ∧ dqi.

g0 = �·, ·�.

Visto en forma matricial en la base, nos queda:

J0(u) =

�
0 −Id
Id 0

�


|

u
|





ω0(u, v) =
�
−v−

�t
�

0 −Id
Id 0

�


|

u
|





g0(u, v) =
�
−v−

�t
�
Id 0
0 Id

�


|

u
|





La relación entre las tres se puede expresar como sigue:
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ω0(u, v) = g0(J0(u), v)

Esta última relación nos lleva al concepto de compatibilidad. En un espacio pueden
existir muchas estructuras complejas, a nosotros nos interesa que estén relacionadas con Ω

Definición 11. Estructura compleja compatible: para un espacio vectorial simplécti-

co, (V, ω), es una estructura compleja, J , tal que:

gJ(u, v) = Ω(u, J(v)), ∀u, v ∈ V

es un producto interno en V .

El que sea una estructura compleja compatible es equivalente a que conserve la for-
ma simpléctica ( Ω(u, v) = Ω(J(u), J(v)) ∀u, v ∈ V ), esto es que sea simplectomorfismo, y
Ω(u, J(v)) > 0∀u, v ∈ V − {0} . Aun que no se pueda tener la unicidad, si se puede ver la
existencia de estructura compleja compatible para un espacio simpléctico.

Proposición 1.5.1. Sea (V,Ω) un espacio vectorial simpléctico, siempre existe una es-

tructura simpléctica compatible con Ω.

Demostración. Tomamos una base simpléctica p1, ..., pn, q1, ..., qn, y definimos J tal que:

J(qi) = pi, J(pi) = −qi

Esto nos da que J es isomorfismo y J2 = −Id. La base {J(pi), J(qi)} es también
canónica y J isomorfismo simpléctico.

Esta prueba depende de la base tomada. Podemos construir estructuras complejas sin
necesidad de fijar base y además se ve mejor el concepto de compatibilidad.

Tomamos producto interno positivo cualquier g en V . Existe una única aplicación lineal
A : V → V tal que:

g(A(u), v) = Ω(u, v).
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Y esta además cumple A∗ = −A.

g(A∗u, v) = g(u,Av) = Ω(v, u) = −Ω(u, v) = Ω(u, v) = g(−Au, v)

Si A2 = −Id hemos terminado. En caso contrario descomponemos como sigue. Se tiene
que AA∗ es simétrica y positiva. Tiene por tanto una factorización,

AA∗ = Bdiag(λ1, λ2, ..., λn)B
−1

,con λi’s los autovalores. Tomamos ráıces y nos queda
√
AA∗, que es definida po-

sitiva y simétrica. Ahora tomamos la descomposición polar de A, A =
√
AA∗J , con

J = (
√
AA∗)−1A . No es dif́ıcil comprobar que esta J resultante se una estructura compleja

compatible con Ω.

Aśı dado una g y una Ω tenemos una J inducida. Y también se tiene el siguiente
resultado.

Proposición 1.5.2. Sea (V,Ω) un espacio simpléctico con una estructura compleja que

sea simplectomorfismo, J , la aplicación

g : V × V −→ R
(u, v) �−→ Ω(u, J(v))

es una forma bilineal simétrica.

Como la forma simpléctica es no degenerada, también lo será la g definida. Y si se pide
(1.5), entonces es un producto interno.

A partir de Ω y una estructura compatible, J , podemos sacar una métrica g. De hecho a
partir de dos elementos de una terna de forma simpléctica, estructura compleja compatible
y métrica, (Ω, J, g), podemos sacar un tercero. Esto no significa que si a partir de un
par (Ω, g) usado en el procedimiento anterior de una J tal que luego con (Ω, J) podamos
recuperar g. Por lo general la g obtenida por Ω(u, J(v)) no coincidirá con la usada para
obtener J .

Pasemos a generalizar lo anterior a nivel de variedades simplécticas.

Definición 12. Estructura casi compleja: en una variedad M es una aplicación suave

que a cada punto le asigna una estructura compleja en el tangente:
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J : M −→ EndR(TxM)

x �−→ Jx : TxM → TxM

u �→ Jx(u), con J2
x(u) = −Id

,esto es un campo de estructuras complejas en M . A (M,J) se lo llamaremos variedad
casi compleja.

Definición 13. Estructura casi compleja compatible: Es una variedad simpléctica

(V, ω) con una estructura casi compleja tal que g definida

x �−→ gx : TxM × TxM → R
(u , v) �→ gx(u, v) = ωx(u, J(v))

es una métrica riemanniana. El triplete (ω, g, J) se llama Triplete compatible cuando

g(·, ·) = ω(·, J(·)).

Proposición 1.5.3. Sea (M,ω) variedad simpléctica y g métrica en M . Entonces existe

una estructura casi compleja compatible J en M .

Demostración. Es como el caso lineal pero haciéndolo de forma suave. Una vez elegida
una métrica la descomposición polar (1.5) es única. Siendo esta métrica suave en M la
construcción vale para una J suave en M .

Veamos ahora que las posibles estructuras complejas compatibles para una variedad
simpléctica dada no pueden ser demasiado distintas unas de otras.

Proposición 1.5.4. Sea (M,ω) una variedad simpléctica y J0 y J1 dos estructuras compa-

tibles con ella. Entonces ∃Jt, ∀0 ≤ t ≤ 1, familia suave de estructuras complejas compatibles

que lleva J0 a J1.

Demostración. Tomando las dos métricas correspondientes por compatibilidad, gJ0 y gJ1 ,
y hacemos una combinación convexa

gJt(·, ·) = (1− t)gJ0(·, ·) + tgJ1(·, ·)
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que nos da una familia suave de métricas. Y aplicando la descomposición polar obte-
nemos una familia de Jt’s compatibles uniendo J0 a J1.

Corolario 1.5.5. El conjunto de estructuras casi complejas compatibles en una variedad

simpléctica es conexo por caminos.

1.6. Grupo simpléctico

Volvamos otra vez a los espacio simplécticos para definir Sp(V ). Toda forma simpléctica
nos define una forma volumen. Todo endomorfismo que conserva una forma simpléctica
conservará también el volumen canónico. Un tal endomorfismo tendrá determinante uno y
será isomorfismo. Y por tanto, siendo un isomorfismo que conserva la forma simpléctica se
tiene que es un simplectomorfismo.

Al conjunto de dichos simplectomorfismos en V lo denotamos Sp(V ). Es claro que
es un grupo. Vimos antes que todos los espacios simplécticos de la misma dimensión son
simplectomorfos y podemos trabajar como en (R2n,Ω0). Lo mismo pasa con Sp(V ), Aśı que
nos referiremos al grupo simpléctico de una espacio de dimensión 2n como Sp(2n).

Para poder trabajar con Sp(2n) con más facilidad lo miramos como un grupo matricial.
Que sea ϕ : V → V un simplectomorfismo, con matriz asociada A, equivale a Ω(u, v) =
Ω(ϕ(u)ϕ(v)), que visto en forma matricial nos da:

AJ0A
t = J0 con J0 =

�
0 Idn

−Idn 0

�
(1.1)

Por tanto podemos definir el grupo simpléctico matricialmente como las matrices 2n×2n
que cumplen la ecuación 1,1. Este grupo matricial es además un grupo de Lie con su
correspondiente álgebra como vemos a continuación.

Proposición 1.6.1. Sp(2n) es un grupo de Lie de dimensión n(2n+ 1).

Demostración. Sp(2n) es un subgrupo de Gl(2n). La identificación matricial se hace igua-
lando a constantes funciones diferenciables. Luego además de subgrupo es cerrado. Por
el teorema de Cartan se tiene que es un grupo de Lie. La dimensión coincide con la del
tangente, que veremos ahora con el álgebra de Lie.
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El álgebra de Lie de Sp(2n) es sp(2n) = {M ∈ GL(n) : J0M t +MJ0 = 0}. Esto se ve
fácilmente tomando una curva I + tM y tomando la derivada en 0 de la fórmula 1,1.

Ya en caṕıtulo anterior hicimos una identificación entre J0 y el producto por la unidad

compleja. Identificando la matriz compleja X + Y i con la real

�
X −Y
Y X

�
vemos como se

relación los subgrupos de GL(2n,R): Sp(2n), O(2n), GL(n,C)) y U(n).

Proposición 1.6.2.

Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = GL(n,C) ∩O(2n) = U(n)

Demostración. La pertenencia cada uno de estos grupos lo podemos expresar matricial-
mente. Para Sp(2n) teńıamos MJ0M t = J0. Para los otros dos:

M ∈ GL(n,C) ⇐⇒ MJ0 = J0M

M ∈ O(2n) ⇐⇒ M tM = 1

Calculando un poco con matrices sale que cuales quiera dos implican al tercero. Tome-
mos el caso Sp(2n) ∪O(2n). Si M ∈ Sp(2n),

M =

�
A B
C D

�
tal que AtC = CtA , BtD = DtB , AtD − CtB = 1

teniendo para nuestro caso



Caṕıtulo 2

Acciones en variedades
simplécticas

En éste caṕıtulo consideraremos las acciones en variedades, y dentro de ellas las que
conservan la estructura simpléctica. Para ello empezaremos viendo los campos que con-
servan esta estructura y que nos servirán para ver si lo hacen las acciones, los campos
simplécticos. De entre ellos destacan los hamiltonianos, a los que exigiremos algo más;
veremos que en realidad los campos simplécticos no son más que aquellos que localmente
son hamiltonianos, y al restringirnos a estos últimos las acciones que les asociamos (con
algún requisito más) son muy valiosas. A partir de ellas podemos construir nuevas varie-
dades simplécticas (reducción), ver las simetŕıas de un sistema mecánico clásico ó dar una
foliación en variedades simplécticas del dual de un álgebra de Lie.

2.1. Campos Hamiltonianos

En este caṕıtulo consideraremos siempre que estamos trabajando una variedad simplécti-
ca (M,ω).Denotaremos como χ(M) los campos suaves en M , aśı como Ωn serán nuestras
n−formas. En esta primera sección definiremos los conceptos de campo simpléctico y ha-
miltoniano, que juegan un papel importante en las acciones en variedades simplécticas y en
los sistemas integrables en mecánica. El primero se refiere a aquellos campos que conservan
la forma simpléctica, es decir, un campo X tal que LXω = 0. La variación de la forma
simpléctica es nula a lo largo de las curvas integrales de X. En el caso de que su flujo este
definido globalmente (M sea compacta o completa) este será un simplectomorfismo de M
en śı misma.

23
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El segundo supone un caso particular del anterior, si a caso más importante. Siempre
que tengamos definida una forma bilineal no degenerada, ya sea un forma simpléctica
ó una métrica, en un espacio vectorial la aplicación definida a continuación nos dará un
isomorfismo con su dual. Igual que hicimos a nivel de álgebra lineal definimos la aplicación:

� : X (M) −→ Ω1(M) (2.1)

X �−→ iXω

En cada punto esta aplicación es la que definimos a nivel lineal para ωx. Vimos que era
un isomorfismo. Luego la nueva será un isomorfismo punto a punto y por tanto también glo-
balmente. Además de un isomorfismo lineal sobre R, si tomamos una función f ∈ C∞(M)
se tiene que ρ(f ·X) = f · ρ(X), siendo un morfismo de C∞(M)-módulos.

Por tanto, usando la inversa, a cada 1-forma α le asignamos Xα, el campo que por � nos
da α. En caso que α = df , al campo Xdf , que denotamos Xf , será el campo hamiltoniano
de la función f , y a esta su función hamiltoniana. Por ser isomorfismo la aplicación 2.1
a cada f le corresponde un único Xf , pero a la inversa f no será única, ya que bajo suma
por constante df queda invariante.

Veamos ahora cómo se comportan estos campos. Tomemos una función f ∈ C∞(M) y
su campo hamiltoniano Xf . Supongamos que Xf es completo y podemos tomar su flujo
ρ : R×M → M . Este nos da un grupo uniparamétrico de difeomorfismos que cumple:

�
ρ0 = IdM

dρt
dt

◦ ρ−1 = Xf

Veamos que la forma simpléctica no vaŕıa a lo largo de las curvas integrales. Aplicando
la fórmula de Cartan,

d

dt
ρ∗tω = ρ∗tLXfω = ρ∗t (diXfω + iXfdω) = 0.

La última igualdad se obtiene de diXfω = d ◦ d(f). Es equivalente que iXαω sea una
forma cerrada a que ω no vaŕıe con su flujo. Este caso es el de los campos simplécticos
(LXα = d

dt
ρ∗tω = 0). Esto nos permite definir los campos Simplécticos y hamiltonianos

como sigue.

Definición 14. Campos simpléctico: Xα ∈ χ(M) tal que cumple una de las tres afir-

maciones equivalentes:
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1. LXαω = 0

2. El flujo de Xα ,ρt, preserva ω. En caso de que este definido globalmente el flujo, nos

da una familia de simplectomorfismos.

3. iXαω es una forma cerrada.

Todas estas afirmaciones son también ciertas para los campos hamiltonianos que defi-
nimos a continuación.

Definición 15. Campos hamiltonianos: Xα ∈ χ(M) tal que cumple una de las dos

afirmaciones equivalentes:

1. iXαω es una forma exacta.

2. iXαω = df para alguna f ∈ C∞(M). Siendo f llamada su función hamiltoniana

Observación 1. Los campos hamiltonianos preservan sus funciones hamiltonianas.

LXf f = ixfdf = ixf ixfω = 0

Luego las funciones hamiltonianas son constantes en cada curva integral de Xf , es

decir, cada ρt(p) ∀p ∈ M está contenida en un conjunto de nivel de f : f(p) = (ρ∗t f)(p) =
f(ρ∗t (p))

Observación 2. A veces a los simplécticos se los denomina localmente hamiltonianos.

Esto no es un idea muy descabellada si miramos su relación a través de la Cohomoloǵıa de

De Rham. Śı H1
DR

(M) = 0 todas las uno formas cerradas son automáticamente exactas

y por tanto todo campo simpléctico es hamiltoniano. Localmente toda variedad tiene un

abierto en el que se da este caso, luego siempre podemos pensar que para un entorno ambos

tipos de campo coinciden.

Pasamos a ver ahora la relación que se establece entre estos campos y la mecánica, para
luego dar paso a su relación con el corchete de Poisson.
La construcción de un campo hamiltoniano tiene como análogo el gradiente, grad(f), en
geometŕıa riemanniana. Tomando una métrica g en M y la aplicación , ν : χ(M) −→

Ω1(M), X �→ iX(g), definimos grad(f) = ν−1(df).

Localmente podemos pensar en una variedad simpléctica como (R2n, ωCAN ) por el teore-
ma de Darboux. Tomando una parametrización local, (p1, ..., pn, q1, ..., qn) en una variedad
simpléctica (M,ω) , con la aplicación 2.1 en el caso simpléctico se obtiene los siguientes
resultados.
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Proposición 2.1.1. Se cumple

�(
∂

∂pi
) = −dqi, �(

∂

∂qi
) = dpi

Demostración.

i ∂
∂pi

�
n�

i=1

dqi ∧ dpi

�
=

n�

i=1

i ∂
∂pi

(dqi) ∧ dpi − dqi ∧ i ∂
∂pi

(dpi) = −dqi

E igual para el otro.

Saquemos ahora con lo anterior una expresión de Xf en función de f .

Xf = �−1(df) = �−1

�
∂f

∂pi
dpi +

∂f

∂qi
dqi

�
=

n�

i=1

�
∂f

∂pi

∂

∂qi
−

∂f

∂qi

∂

∂pi

�
(2.2)

En coordenadas canónicas Xf se puede calcular mediante el productor matricial Xf =
Jdf . Esta expresión da lugar a un sistema dinámico conocido como ecuaciones Hamilton,
que son al fin y al cabo el sistema que da las curvas integrales ρt = (q(t), p(t)) de Xf .

2,6

�
∂qi
∂t

(t) = ∂f

∂pi
∂pi
∂t

(t) = −
∂f

∂qi

Estas ecuaciones aparecen con frecuencia en la mecánica. Como en el hamiltoniano de
la enerǵıa con las leyes de Newton.

Para el caso del gradiente de f ∈ C∞(M) en las coordenadas canónicas de la métrica
g, compatible, se obtiene

grad(f) =
n�

i=1

�
∂f

∂qi

∂

∂qi
+

∂f

∂pi

∂

∂pi

�

Sea J la estructura casi compleja estándar tal que J( ∂

∂qi
) = ∂

∂pi
y J( ∂

∂pi
) = −

∂

∂qi
,

sacamos J(Xf ) = grad(f).
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Pasamos a definir el corchete de Poisson y la relación entre los campos hamiltonianos y
simplécticos como subálgebras de Lie. Buscamos un álgebra que nos dé información sobre
estos campos y/ó la estructura como variedad simpléctica dada por ω.

Pasemos ahora a definir un álgebra sobre las funciones C∞(M) por medio de la forma
simpléctica.

Definición 16. Corchete de Poisson:Sean dos funciones f, g ∈ C∞(M), el corchete de

Poisson será definido como la función

{f, g} = ω(Xf , Xg)

Esta expresión puede aparecer cambiada de signo según como se tome la forma simplécti-
ca en el espacio de fases. La expresión anterior puede ser expresada de formas equivalentes
que usaremos según nos convenga.

{f, g} = ω(Xf , Xg) = iXfω(·, Xg) = iXf (dg) = Xf (g)

El corchete de Poisson es local. Este se puede restringir a cualquier abierto ó usarlo en
gérmenes de funciones. Por la ecuación 2.2 podemos expresarlo localmente como

{f, g} =
n�

i=1

�
∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi

�

Ahora veremos una proposición que esclarece un poco más la relación con los campos
hamiltonianos. Y después que este corchete realmente nos define un álgebra de Lie, y no
sólo eso si no que es también un álgebra de Poisson. Ambas unidas nos dan un morfismo
de álgebras.

Proposición 2.1.2. Si X,Y ∈ χSym(M), campos simplécticos en M , en una variedad

simpléctica (M,ω), entonces [X,Y ] será un campo hamiltoniano. Y además, gracias a ser

ω cerrada, se puede ver que ω(Y,X) será una de sus funciones hamiltonianas.

Demostración. La prueba se basa en la siguiente fórmula de Cartan

i[X,Y ]α = LX iY α− LY iXα = [LX , iY ]α, ∀α forma diferencial.
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Al igual que el resto de fórmulas de Cartan se demuestra para funciones y 1-formas
y de ah́ı por linealidad para todo grado. En nuestro caso, siendo ω cerrada se simplifica
obteniendo:

i[X,Y ]ω = LX iY ω − LY iXω

= diX iY ω + iXdiY ω − iY diXω − iY iXdω

= d(ω(Y,X))

Esto nos da la relación X{f,g} = −[Xf , Xg]

Definición 17. Álgebra de Poisson: Es un álgebra de Lie (P, {}), que además cumple

la regla de Leibniz, esto es:

{f, gh} = {f, g}h+ g{f, h}

Proposición 2.1.3. El corchete de Poisson sobre las funciones suaves nos da un álgebra

de Poisson (C∞(M), {}) de dimensión infinita.

Demostración. La antisimetŕıa es directa de la forma simpléctica, al igual que el ser una
forma bilineal.
Para la ecuación de Jacobi desglosamos los tres términos que aparecen en ella

{f, {g, h}} = Xf ({g, h}) = Xf (Xg(h))

{g, {h, f}} = Xg({h, f}) = −Xg(Xf (h))

{h, {f, g}} = Xf,g(h) = −[Xf , Xg](h)

que sumados nos dan

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = Xf (Xg(h))−Xg(Xf (h))− [Xf , Xg](h) = 0

Para terminar comprobamos la regla de Leibniz
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{f, g · h} = ω (Xf , Xg·h)

= iXfd (g · h)

= iXf (d(g) · h+ d(h) · g)

= iXf (ω(·, Xg)h+ ω(·, Xh)g)

= {f, gh} = {f, g}h+ g{f, h}

De lo anterior obtenemos el siguiente antimorfismo (tal y como hemos definido el cor-
chete, sino seŕıa morfismo) de álgebras de Lie

(C∞(M), {·, ·}) −→ (χ(M), [·, ·])

f �−→ Xf

{·, ·} �−→ [·, ·]

Por otra parte restringiendo el corchete en los campos de la variedad a los simpléctico
(χSym(M)), y los hamiltonianos (χHam(M)) y usando la proposición 2.1.2 obtenemos las
siguientes inclusiones de álgebras y subálgebras de Lie.

(χHam(M), [·, ·]) ⊆ (χSym(M), [·, ·]) ⊆ (χ(M), [·, ·])

2.2. Acciones en variedades.

Empezaremos desde una acción de un grupo de Lie G sobre una variedad M , que
denotaremos como G � M y a partir de ah́ı presentaremos la acción infinitesimal. Siempre
sobreentenderemos que dicha acción es diferenciable.

Un ejemplo conocido de una de estas acciones es el de un campo completo, X, en la
variedad. Siempre posemos integrar y obtener el flujo ρ : R ×M → M . Fijando el punto,
p ∈ M , nos da la curva integral que pasa por p en tiempo 0, esto es:

�
ρ0(p) = p

dρt(p)
dt

= X(ρt(p))
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Por otro lado si variamos sólo el t nos da una familia de difeomorfismos,ρt : M → M ,
que es además un grupo uniparamétrico {ρt : t ∈ R}, denotando con frecuencia exp(tX)ρt}
para indicar el campo. Es fácil ver que ρt ◦ ρs = ρt+s y ρ−1

t
= ρ−t. Esto nos induce el

morfismo de grupos

(R,+) −→ (Dif(M), ◦)

t �−→ ρt

Como cada campo completo nos induce una acción de R en M , y podemos sacar un
campo completo de cada acción de R, se obtiene la biyección

{X ∈ χ(M) completo } −→ {R � M}

X �−→ exp(tX) = ρt

Xp =
d

dt t=0
Ψt(p) �−→ Ψt

Sea una acción Ψ : G � (M,ω). Si no se especifica ésta será una acción por la izquierda.
Se puede ver como la evaluación evΨ : G × M → M tal que (g, p) �→ Ψ(g, p) = Ψg(p),
aśı como tomar el difeomorfismo dado por cada elemento del grupo

G −→ Dif(M)

g �−→ Ψg(·)

dando aśı un morfismo de grupos. Sea x ∈ M un punto fijo de la acción. Podemos tomar
la diferencial de cada difeomorfismo dΨg : TxM → TxM obteniendo la aplicación

dΨ : G → AutR(TxM)

g �→ dΨg

Sea G � M una acción y X ∈ g podemos inducir por la acción un campo en la variedad.

Definición 18. Acción infinitesimal ψ: Sea una acción Ψ : G � M , de G un grupo de

Lie . Esta nos define la siguiente acción infinitesimal:
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ψ : g −→ χ(M)

v �−→ vM

donde el campo inducido por la acción nos viene definido bajando por la exponencial de

G, expG, y viendo como vaŕıa el difeomorfismo en cada punto

vM =
d

dt t=0
ψexpG(−tv)(p) =

d

dt t=0
(expG(−tv) ◦ p)

Esta aplicación será un morfismo de álgebras (antimorfismo al tomar t en lugar de −t)
ya que ψ([X,Y ]) = [ψ(X), ψ(Y )]. En la definición hemos incluido que G sea simplemente
conexo, que no es necesario, pero esto nos permitirá por el segundo teorema de Lie hacer el
camino contrario. Si tienes una acción infinitesimal ψ : g → χ(M) y ∀v ψ(v) es completo
entonces existe una acción Ψ : G×M → M de la que proviene.

2.3. Acciones simplécticas y hamiltonianas.

A partir de ésta sección trabajaremos con variedades simplécticas (M,ω). Definiremos
las acciones simplécticas, las que conserva ω, y las hamiltonianas.

Definición 19. Acción simpléctica: es una acción diferenciable que preserva ω

Ψ : G −→ Symplec(M) ⊂ Dif(M).

esto es, actúa por simplectomorfismos.

Si tenemos una acción simpléctica la acción infinitesimal nos generará campos simplécti-
cos.

∀v ∈ g LvMω =
d

dt t=0
(ρvM

t
)∗ω =

d

dt t=0
ω = 0.

Esto nos vuelve a dar una relación biuńıvoca entre campos simplécticos completos y
acciones simplécticas de R en (M,ω).

A nosotros nos interesan aquellas acciones que nos den campos hamiltonianos, vM ∈

χHam(M). Como vimos no resulta descabellado restringirnos a este tipo de acciones, al fin



32 CAPÍTULO 2. ACCIONES EN VARIEDADES SIMPLÉCTICAS

y al cabo localmente los dos tipos de campos son lo mismo. Estas acciones son precisa-
mente aquellas en las que existe una aplicación momento. Definiremos el concepto por una
construcción que en realidad es el de comomento para dar paso a la definición común, con
la aplicación momento.

Dada la acción simpléctica Ψ : G � (M,ω), podemos tomar los morfismo de álgebras
de Lie τ : (C∞(M), {·, ·}) → (χ(M), [·, ·]), f �→ Xf y ψ : g → χSym(M), v �→ vM .

Definición 20. Acción hamiltoniana: Es una acción simpléctica Ψ : G � (M,ω) para

la cual existe un morfismo de álgebras µ∗ : g −→ C∞(M), que será la dual de la aplicación

momento, tal que τ ◦ µ∗ = ψ. Esto es:

µ∗ : g −→ χSym(M) −→ C∞(M)

v �−→ vM = Xf �−→ f.

Visto con la forma significa ivMω = df .

El que exista dicha aplicación no implica que la τ sea invertible, pero si nos dice que
cada campo simpléctico proviene de una función. Luego una acción hamiltoniana es aque-
lla simpléctica donde todos los campos generados por la infinitesimal son hamiltonianos.
La aplicación µ∗ es la comomento y su extraña notación proviene de ser la dual de la
momento µ. Esta última se saca como dual de la comomento. Para cada p ∈ M tomamos
el elemento e ∈ g∗, tal que:

�e, v�p = µ∗(v)(p) =: µv(p) ∀v ∈ g

Dejando variar el p se obtiene

µ : M −→ g
∗

p �−→ ep

En la próxima definición usaremos la notación µv(p) = �µ(p), v�. para referirnos al valor
que toma el pairing entre un elemento de g∗, µ(p), y un vector v de g.

Definición 21. Aplicación momento: Sea Ψ : G � (M,ω) hamiltoniana. Es la aplica-

ción µ : M −→ g∗ tal que:
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1. ∀v ∈ g vM = Xµv( esto es, µv
es la función hamiltoniana de vM ).

2. µ es G-equivariante: µ(Ψg(p)) = Ad∗gµ(p).

Definición 22. Aplicación comomento: Sea Ψ : G � (M,ω) una acción hamiltoniana.

Es una aplicación µ∗ : g −→ C∞(M) tal que µ∗ [X,Y ] = {µ∗(X), µ∗(Y )} y el siguiente

diagrama conmuta:

C∞(M)
τ

−→ χSym(M)

µ∗
� � dΨ

g

ó equivalente: µ∗(v) = µv
es la función hamiltoniana de vM .

2.4. Representaciones adjunta y coadjunta

En ésta sección veremos dos tipos de representaciones frecuentes en geometŕıa simplécti-
ca. Más tarde las usaremos en la aplicación del teorema de convexidad del teorema de
Schurs. Para empezar recordemos que es una representación. Sea G un grupo de Lie una
representación en un espacio vectorial, V , es una acción G � V por isomorfismos ó equi-
valente un morfismo de grupos G → GL(V ).

Para todo grupo de Lie podemos tomar la acción suave por conjugación G � G.

ψ : G −→ Dif(G)

g �−→ ψg donde ψg(h) = ghg−1 = Lg ◦Rg−1(h) ∀h ∈ G.

Para cada ψ tomamos la derivada en la neutro, a la que denotamos como Adg = deψg.
Y luego dejando variar la g se obtiene Ad.

Ad : G −→ GL(g) = GL(TeG)

g �−→ Adg : TeG −→ TeG.
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Ad se conoce como representación adjunta y nos da una acción G � g. Si ahora
hacemos la derivada en el neutro en G de la acción se obtiene ad = deAd

ad : g −→ End(g)

definida por (deAd)(X)(w) = d

dt
|t=0Ad(exp(tX))w dondeX,w ∈ g. ad es una aplicación

que en cada X te da Xg, su campo generado por la acción infinitesimal. Si uno se fija en el
núcleo de Ad se ve Ker(Ad) = Z(G). Por tanto, se tiene el morfismo de grupos inyectivo
G/Z(G) → Aut(g).

La representación adjunta esta estrechamente relacionada con la estructura de álgebra
de g, como vemos a continuación. Este resultado no es cierto para toda álgebra de Lie,
se necesita que sea un grupo matricial, pero al trabajar con álgebras de dimensión finita
sobre R por el teorema de Ado nos será siempre válido para nosotros.

Proposición 2.4.1. Sean X,Y ∈ g, donde g es un álgebra de Lie de dimensión finita sobre

R. Se tiene:

adX(Y ) = [X,Y ]

Demostración. Por el teorema de Ado toda álgebra de Lie de dimensión finita que esté sobre
un cuerpo de caracteŕıstica cero (en nuestro caso R) se puede embeber en un álgebra de
matrices cuadradas. Por tanto trabajemos como si fuera un álgebra matricial.

adX(Y ) = d (Ade)X (Y )

=
d

dt
|t=0 (AdexptX ) (Y )

=
d

dt
|t=0

�
exp(tX)Y exp(tX)−1

�

=
d

dt
|t=0 (exp(tX)Y exp(−tX))

=
d

dt
|t=0

�
(I + tX + o(t2))Y (I − tX + o(t2))

�

=
d

dt
|t=0

�
(Y + tXY + o(t2)Y )(I − tX + o(t2))

�

=
d

dt
|t=0

�
(Y − tY X + tXY + o(t2)

�

=
�
(Y − tY X + tXY + o(t2)

�
|t=0

= [X,Y ]
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Para definir una acción de G en el dual, g∗, usamos el pairing. Definimos la represen-
tación coadjunta como la acción Ad∗ : G � g∗ definida por

�Ad∗g(l), v�g∗×g = �l, Adg−1(v)�g∗×g l ∈ g
∗v ∈ g.

esto induce una acción en g∗ como (Ad∗)g(l) = l ◦ Adg−1 . El tomar g−1 es para ob-
tener una representación por la izquierda: (Ad∗)g(Ad∗)h = (Adg−1)∗(Adh−1)∗ = (Adh−1 ◦

Adg−1)∗ = (Adh−1g−1)∗ = (Ad(gh)−1)∗ = (Ad)∗
gh
. Dándonos al dejar variar la g el morfismo

de grupos
Ad∗ : G −→ GL(g∗).

Para obtener el análogo de ad podemos tomar la diferencial en el neutro y proceder igual
que antes ó por dualidad. En este segundo caso, siendo Xg∗ ∈ χ(g∗) el campo inducido por
la acción infinitesimal se tiene:

�(Xg∗)ζ , Y � = �
d

dt t=0
(Ad∗)exp(−tX)ζ, Y �

=
d

dt t=0
�(Ad∗)exp(−tX)ζ, Y �

=
d

dt t=0
�(Adexp(−tX))

∗ζ, Y �

=
d

dt t=0
�ζ, Adexp(−tX)(Y )�

= �ζ, adXY �

= �ζ, [X,Y ]� = [X,Y ] (ζ).

Las órbitas de la representación coadjunta las llamamos órbitas coadjuntas y escri-
bimos para un ζ ∈ g∗

Oζ = {Ad∗gζ : g ∈ G}

Ahora vamos a definir una forma simpléctica en TζO y esto lo hacemos a partir de una
definida en g. El tangente a la órbita nos vienen determinado por los generadores de la
acción fundamental, TζO = {Xg∗(ζ) : X ∈ g}. Xg∗ nos denota los campos generados por
la infinitesimal en el dual del álgebra de Lie.
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∀X ∈ g ,∀ζ ∈ g
∗ Xg∗(ζ) =

d

dt t=0
(exp(−tX)ζ), es el tangente a la órbita.

Proposición 2.4.2. Sea ζ ∈ g∗ y sean X,Y ∈ g. La dos forma en g∗, ω, definida como

ωζ : g× g −→ R tal que:

ωζ(X,Y ) = �ζ, [X,Y ]�, ∀ζ ∈ g
∗.

nos define una forma simpléctica sobre las órbitas de la acción coadjunta, siendo aśı sub-

variedades simplécticas de g∗

Demostración. Para comenzar dejamos uno de los campos variar; se tiene:

g −→ TζO

X �−→ Xg∗(ζ)

Con lo anterior es fácil ver que la forma que acabamos de definir es antisimétrica
y bilineal, por la definición con el corchete de Lie. Miremos el núcleo para ver su no
degeneración.

Ker(ωζ) = {X ∈ g : ∀Y ∈ g : �ζ, [X,Y ]� = 0}

= {X ∈ g : Xg∗(ζ) = 0}

Se tiene por tanto, que donde se anula son los campos inducidos nulos, luego esta
forma será no degenerada. Además se puede ver que el núcleo es precisamente el álgebra
del estabilizador. Expresamos la forma ωζ en función de como vaŕıa Ad∗

exp(−tX) y vemos que
sea nula significa que la variación de Ad∗

exp(−tX) es cero, esto es X está en el estabilizador,
como vemos a continuación.

ωζ(X,Y ) = �ζ, [X,Y ]�

= �ζ,
d

dt t=0
adexp(tX)Y �

= �Ad∗
exp(−tX)ζ, Y � = 0
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También sabemos que la forma inducida depende de forma suave del punto , esto
está claro Por cómo está definida �ζ, [X,Y ]�. Llamamos ω a la forma diferencial inducida
por ωζ en cada punto.

Para ver que es una forma cerrada tendremos que echar mano de un par de fórmulas.
Ambas se pueden demostrar, al igual que el resto de fórmulas de este tipo, viéndolo para
grado cero y uno, y generalizando por linealidad. Luego sólo basta verlo para estos dos
grados. Por ejemplo la fórmula de De Rham es

dω (X1, X2, . . . , Xn, Xn+1) = (−1)iLXiω(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn, Xn+1)

+
�

i<j

(−1)1+jω ([Xi, Xj ] , . . . , Xn+1)

Para una 1-forma se tiene: dα(X,Y ) = X(α(Y )) − Y (α(X)) − α([X,Y ]). Localmente
podemos presuponer que dα = df ∧ dg, luego LHS = df ∧ dg(X,Y ) = df(X) ∧ dg(Y ) −
df(Y )∧ dg(X) = X(f)Y (g)−X(g)Y (f) y RHS = X(fY (g))− Y (fX(g))− f [X,Y ] (g) =
X(f)Y (g)+f(X(Y (g)))−Y (f)X(g)−f(Y (X(g)))−f(X(Y (g)))+f(Y (X(g))) = X(f)Y (g)−
Y (f)X(g). Y el caso de 0-formas es inmediato. Para la fórmula de Cartan, LX iY − iY LX =
i[X,Y ], se demuestra igual.

Ahora usamos estas fórmulas para ver que es cerrada la forma. Se tiene:

dω (Xg∗ , Yg∗ , Zg∗) = LXg∗ω(Yg∗ , Zg∗)− C.P

− (ω([Xg∗ , Yg∗ ] , Zg∗)− C.P )

Para el primer término se tiene:

− (ω([Xg∗ , Yg∗ ] , Zg∗)− C.P ) = �ζ, [[X,Y ] , Z]� ± C.P = 0.

Para el otro se tiene:
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LXg∗ω(Yg∗ , Zg∗) = LXg∗ iZg∗ iYg∗

= iZg∗

�
LXg∗ , iYg∗ω

�
+ i[Xg∗ ,Zg∗ ] (ω(Yg

∗ , ·))

= iZg∗

�
iYg∗ ,LXg∗ω

�
+ iZg∗ i[Xg∗ ,Yg∗ ]ω + i[Xg∗ ,Zg∗ ]iYg

∗ω)

= LXg∗ω (Yg∗ , Zg∗) + ω
�
LXg∗Yg∗ , Zg∗

�
+ ω

�
Yg∗ ,LXg∗Zg∗

�

Los dos últimos términos se anulan por la identidad de Jacobi de forma directa. El
primero metemos la derivada de Lie dentro y también por Jacobi da 0, como vemos a
continuación.

�
LXg∗ �·, [Y, Z]�

�

ζ

=

�
d

dt t=0
φ∗
t �·, [Y, Z]�

�

ζ

= �ζ, [Y, Z]� = 0.

Por lo tanto con el método anterior podemos definir una forma simpléctica en las
órbitas coadjuntas de g∗. Con esto las órbitas coadjuntas nos dan siempre subvariedades
simplécticas. En el caso concreto de u(n)∗ nos dan subvariedades simplécticas compactas.
Esto lo usaremos más adelante para el teorema de Schur-Horn.

2.5. Reducción simpléctica

En esta breve sección enunciaremos uno de los resultados junto con el teorema de con-
vexidad más importantes de acciones en simpléctica, la reducción simpléctica ó teorema de
Marsden-Weinstein-Meyers. Nuestro objetivo es cocientar y darle al espacio de órbitas una
estructura simpléctica; para ello usamos una acción G � (M,ω) por simplectomorfismos.
El teorema nos dice que bajo ciertas condiciones podemos cocientar la preimagen de la
aplicación momento de un punto,µ−1(a), por el grupo resultando una variedad que admite
una estructura simpléctica tal que su pullback por la proyección coincide con la de la forma
simpléctica original restringida a µ−1(a). La prueba de este enunciado requiere artilleŕıa
pesada que no nos será útil más adelante, y la omitiremos.
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Teorema 2.5.1. Sea (M,ω,G, µ) un G−espacio hamiltoniano, con G un grupo de Lie

compacto, y i : µ−1(a) �→ M la inclusión. Supongamos que a es un valor regular de µ y Ga el

estabilizador por la acción coadjunta actúa libremente sobre µ−1(a). Entonces su espacio de

órbitas, µ−1(a)/Ga, es una variedad que admite una única estructura simpléctica, denotada

(Mred = µ−1(a)/Ga, ωred, tal que i∗ω = π∗ωred, donde π : µ−1(a) → µ−1(a)/Ga es la

proyección canónica.

A la variedad (Mred, ωred) se suele llamar reducción ó cociente simpléctico. Ahora
mostraremos un ejemplo que se usará más adelante y que es importante, ya que normal-
mente a los espacios proyectivos se les da una estructura simpléctica por medio de la
reducción.

Ejemplo 2. Espacios proyectivo simpléctico Sea la variedad simpléctica (Cn+1, ωSTD),
con ωSTD la forma simpléctica canónica. Y tomemos la acción diagonal del ćırculo del

ćırculo, U(1) � Cn+1
, la aplicación momento de esta acción será:

µ(z) =
1

2

n�

i=0

|zi|
2

Para esta acción el único punto cŕıtico de la aplicación momento es el 0. Podemos tomar

la preimagen de un valor regular como
1
2 y la preimagen serán todos aquellos puntos tal

que la norma sea 1, esto es S2n+1
. Por tanto

µ−1(
1

2
)/S1 = S2n+1/S1 = CPn

será el cociente simpléctico, con forma simpléctica reducida.

Ahora vamos a ver como se trabaja la reducción con el producto de dos grupos. Sea
G = G1×G2 un grupo formado por el producto de dos grupos de Lie compactos actuando
sobre una variedad simpléctica (M,ω). El álgebra de Lie de dicho grupo será la suma
directa de g1 y g2 y análogamente para el dual.

Si es una acción hamiltoniana se tendrá una aplicación momento µ : M −→ g∗1×g∗2, que
se puede descomponer como µ = (µ1, µ2), con µi : M −→ g∗

i
. El que la aplicación momento

sea equivariante hace que lo sean cada una de estas aplicaciones por separado respecto del
grupo compacto, esto es, µ1 lo es de G2, y a la inversa.

Reduzcamos (M,ω) respecto de una de ellas en el origen, por ejemplo, la de G1. Si
suponemos que G1 actúa libremente sobre µ−1

1 (0) podemos reducir a (µ−1
1 (0)/G1, ωred) =

(M1, ω1. Y podemos obtener la aplicación momento que tiene G2 cuando actúa sobre este
cociente.
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Proposición 2.5.2. Sean G = G1 × G2 actuando en (M,ω), siguiendo con la notación

anterior, y sean la inclusión i1 : µ
−1
1 (0) �→ M y la proyección canónica π1 : µ

−1
1 (0) → M1.

Si G1 y G2 son compactos y G1 actuando libremente sobre µ−1
1 (0), entones se tiene que

existe J2 : M1 → g∗2 tal que:

1. J2 es diferenciable y cumple J2 ◦ π1 = µ2 ◦ i1.

2. J2 es la aplicación momento de la acción G2 � (M1, ω1).

3. Si G actúa de forma libre sobre µ(0, 0), entonces G2 lo hace sobre J2(0) y se tiene el

siguiente simplectomorfismo

J2(0)/G2 = µ(0, 0)/G

Esta reducción respecto de un subgrupo es una herramienta muy común para la cons-
trucción de variedades simplécticas como es el caso de los proyectivos.

2.6. Ejemplos de acciones hamiltonianas

En ésta sección se exponen algunos de los ejemplos más usuales de acciones hamilto-
nianas. Daremos primero una motivación f́ısica.
Una de las principales aplicaciones de los campos hamiltonianos, y en consecuencia tam-
bién de las acciones hamiltonianas, es la mecánica. Estos nos ayudan a describir un sistema
f́ısico.

Un sistema mecánico clásico puede ser descrito por (T ∗M,H) donde H ∈ C∞(T ∗M) es
una función hamiltoniana. El fibrado cotangente es canónicamente simpléctico. El campo
asociado XH induce por la estructura simpléctica la ecuación de movimiento

d

dt
ρt = XH ◦ ρt

Estas ecuaciones nos describen el movimiento de las part́ıculas que serán desplazadas
a través de las curvas integrales de XH .

Tomamos como caso concreto R3, con coordenadas (x1, x2, x3) = x y el potencial V (x).
Por la segunda ley de Newton una part́ıcula de masa m tiene su movimiento descrito por
ẍ = −∇V (x).
El momento del sistema será p, con pi = mẋi para i = 1, 2, 3. El Hamiltoniano de este
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sistema es H(x, p) = 1
2m |x|2 + V (x), la suma de la enerǵıa potencial y cinética. El espacio

de fases será T ∗R3 ∼= R6, con coordenadas (x1, x2, x3, p1, p2, p3). La segunda ley de Newton
nos da:

�
dxi
dt

= 1
m
pi =

dH

dpi
dpi
dt

= md
2
x

dt
= −

dV

dxi
= −

dH

dxi

estas son las ecuaciones de Hamilton vistas en . Aśı se ve que la enerǵıa, H, está con-
servada por el movimiento.

Esta forma de plantear un sistema de movimiento tienes sus ventajas. En el tenemos
una EDO de primer orden en lugar de una de segundo orden. Por tanto, no nos es necesario
saber valores iniciales de las derivadas primeras para predecir su comportamiento futuro.
Nos da también una descripción en independiente de las coordenadas ya que la forma
simpléctica es canónica, en este caso.

Lo anterior no es sólo aplicable al caso (T ∗M,H) si no que generalizamos a (M,ω,H)
con H ∈ C∞(M). En la f́ısica resultan interesantes las simetŕıas, que corresponden a
una acción de grupo, ya que conservan las cantidades. Aqúı entra en juego la aplicación
momento, que es considerada como la conservadora de cantidades.

Teorema 2.6.1. Sea (M,ω,H) un sistema Hamiltoniano y µ : M −→ g∗ la aplicación

momento de G � M tal que H es invariante. Entonces µ es constante a lo largo de las

curvas integrales de XH , el campo hamiltoniano correspondiente.

Demostración. Sea ρt el flujo de XH , y X un campo en M .

d

dt
µ(ρt)(Y ) = dµ(ρt)

d

dt
ρt(Y )

= ω(XH ◦ ρt, Yµ ◦ ρt)

= iXHω|ρt(Yµ ◦ ρt)

= dH(ρt)(Yµ ◦ ρt)

=
d

ds
|s=0H(exp(sY )ρt) = 0

Alternativamente se puede demostrar pasando a la interpretación infinitesimal: LXHµ
X =

iXHdµ
X = {µX , XH} = LvXH = 0.

Esto nos dice que el campo XH es tangente a los conjuntos de nivel de la aplicación
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momento. Este resultado es una de las formas del teorema de Noether. Ahora veremos
algunos ejemplos habituales de aplicaciones momento.

Ejemplo 3. Momento angular (rotaciones en R3)

Tomemos como variedad M = R6 ∼= T ∗R3
con la forma simpléctica canónica, en R6

.

Este era el modelo visto antes para el movimiento de part́ıculas. A las coordenadas canóni-

cas las volvemos a llamar (x, p) ∈ R3 × R3
, correspondientes a posición y momento.

Si buscamos que nuestro potencial sea invariante bajo rotaciones obtendremos una fun-

ción Hamiltoniana invariante por la acción SO(3) � R6
, dada como:

R(x, p) = (Rx,Rp) con R ∈ SO(3).

El grupo ortogonal especial tiene por álgebra de Lie so(3), formada por las matrices

antisimétricas. La acción infinitesimal resulta ser

vM (x, p) =
d

dt t=0
(exp(tv)x, exp(tv)p) = (vx, vp) ∀v ∈ so(3)

La aplicación momento resultante será:

µ((x, p))(v) = �p, vx�

El álgebra so(3) se puede identificar con R3
v́ıa el isomorfismo

σ : R3
−→ so(3)




y1
y2
y3



 �−→




0 −y3 y2
y3 0 −y1
−y2 y1 0





esto nos da

σ : (y)x = y × x y µ((x, p))(y) = �p, y × x� = �x× p, y�.

Y por tanto, la aplicación momento tendrá la forma:
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µ(x, p) = x× p.

Ejemplo 4. Momento lineal (traslaciones)
Sea M = R2n

, con la forma simpléctica canónica
�

n

i=1 dqi ∧ dpi y G = (Rn,+). Éste se

puede interpretar como un espacio fase con n grados de libertad.

Definimos la acción ψ : G � R2n
por traslación, como:

evψ : Rn
× R2n

−→ R2n

(g,

�
q
p

�
) �−→ ψg

�
q
p

�
=

�
q + p
p

�

Luego como iv∂qi(dqi ∧ dpi) = vdqi, la aplicación momento resultante será:

µ : R2n
−→ Rn

(q, p) �−→ µ(q, p) = p

tal que

µv(q, p) = �µ(q, p), v� = p · v.

Dándonos aśı el momento lineal.
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Caṕıtulo 3

Teorema de convexidad de la
aplicación momento

En este caṕıtulo veremos el objetivo de este texto, en el se enuncia y da la prueba del
teorema de conexidad (3.3.5) y algunos ejemplos, entre ellos el teorema de Schur-Horn.
El resultado que buscamos se demostró por Atiyah [2] y Guillemin-Strenberg [8] casi a la
vez. La prueba seguiremos es la de estos últimos que está dividida en tres partes. En la
primera se enuncian algunas de las propiedades de la aplicación momento y los puntos fijos
de la acción, aśı como el caso concreto del toro. Luego se da una prueba local, alrededor de
los puntos fijos y una versión relativa, para ello compararemos la acción localmente con la
acción en el tangente, de la que obtendremos una expresión expĺıcita y que su imagen sólo
difiere en una traslación de la nuestra. Para terminar la demostración usaremos la teoŕıa
de Morse y la versión relativa para ver que efectivamente la imagen es la envoltura convexa
de los puntos fijos de la acción.

En la última sección del caṕıtulo veremos el teorema de Schur-Horn 3.4.3. El Teorema
de Schur-Horn ya se conoćıa tiempo antes de que se demostrase el teorema de convexidad
de la aplicación momento y fue una de las motivaciones para ello. Este es un teorema de
álgebra lineal con una enunciado bastante sencillo; dice que a cada matriz hermı́tica H
con autovalores (λ1, λ2, . . . , λn−1, λn), su vector diagonal estará contenido en la envoltura
convexa de los vectores que tienen por entradas las permutaciones de estos autovalores.
Y al contrario, a cada vector de esta envoltura le corresponde la diagonal de una matriz
hermı́tica con estos autovalores.

45
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3.1. Propiedades generales de la aplicación momento

En esta primera parte vamos a ver algunas de las propiedades de la aplicación momento
de una acción hamiltoniana. En concreto vamos a caracterizar su comportamiento para
puntos con un mismo estabilizador. Sobre todo su imagen.

Para empezar supongamos que G es un grupo de Lie conexo y compacto, que actúa por
una acción hamiltoniana sobre una variedad simpléctica (M,ω), con aplicación momento
Φ.

Teorema 3.1.1. Sea x ∈ M , Gx su estabilizador en G y gx la correspondiente álgebra de

Lie. Entonces la imagen de dΦx : Tx → g∗ es el anulador de gx en g∗

Demostración. Sea x ∈ M α : g → TxM la aplicación que lleva cada v ∈ g a la evalua-
ción en x del campo que genera por la acción infinitesimal. Y sea β : TxM → TxM∗ el
isomorfismo dado por ivω.

Como las componentes de la aplicación momento son las funciones hamiltonianas de
los campos de la acción infinitesimal, dΦv = iv�ω, se tiene que α ◦ β será la traspuesta de
dΦx : TxM → g. Luego la imagen de dΦx vendrá dada por el anulador del núcleo de α ◦ β.
Éste, estará formado por todos los vectores en g tal que v� se anule en x, es decir, el álgebra
del estabilizador.

Corolario 3.1.2. La aplicación momento es submersión en x ∈ M es equivalente a que el

estabilizador de ese punto sea discreto.

Ahora daremos unos cuantos resultados (algunos sin prueba) sobre el papel del estabi-
lizador en las acciones en acciones de grupos compactos. Para fijar notación G es un grupo
de Lie compacto y conexo que actúa sobre M , una variedad conexa diferencial cualquiera
de forma diferencial.

Proposición 3.1.3. Si M es compacta, módulo conjugación, existe sólo un número finito

de estabilizadores de puntos de M en G.

Demostración. Una prueba de este enunciado se puede encontrar en Mostow [12] ó en Yang
[15].

Proposición 3.1.4. Si H es un subgrupo cerrado de G y MH = {x ∈ M : Gx = H}.

Entonces MH es una subvariedad de M y el espacio tangente a MH en x ∈ MH será los
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vectores H-fijos en TxM . Además si M es compacta, MH estará formada por un número

finito de componentes conexas.

Demostración. Una prueba de este enunciado se encuentra en Montgomery [11].

Ver Sternberg, pag. 212

Supongamos ahora que se trata de (M,ω) sobre la que G actúa por una acción hamil-
toniana.

Lema 2. Sea (V,Ω) espacio vectorial simpléctico y H un subgrupo compacto de Sp(V ). El
conjunto de vectores H-fijos en V , W , será un espacio vectorial simpléctico.

Demostración. Tomamos una métrica B H-invariante. Se tiene que ∃! A : V → V tal que:

∀v, w ∈ V B(v, w) = Ω(v,Aw).

y A es H-invariante. Si v ∈ W y Ω(v, w) = 0 ∀w ∈ W , se tiene que Aw ∈ W . Luego
B(v, w) = Ω (v,Aw) = 0∀w ∈ W y , por tanto, v = 0.

Teorema 3.1.5. Sea H un subgrupo cerrado de G y sea MH = x ∈ M : Gx = H. Entonces

MH será una subvariedad simpléctica de M.

Demostración. Por la proposición 3.1.4 se tiene que MH será subvariedad. Tomando TxMH

como W en el lema 2 se tiene que ésta será simpléctica.

Teorema 3.1.6. Sea h el álgebra de Lie de H y sea h◦ su anulador en el dual del álgebra

de Lie, g∗. Entonces cada componente conexa de MH será llevada por Φ a un espacio

af́ın en g∗ de la forma p + h◦. Además si H es un subgrupo normal de G se tiene que

Φ|MH : MH → p+ h◦ es una submersión.

Demostración. La primera parte del teorema es el teorema 3.1.1, que restringiéndonos a
x ∈ MH nos lleva la imagen al anulador de h◦.
Como H es normal, es invariante por conjugación y MH se G-invariante. Entonces la
restricción sigue siendo una acción hamiltoniana, y su aplicación momento es:

MH

i

�→ M
Φ
→ g∗
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composición de la inclusión con la aplicación momento.∀v ∈ g :

(Φ ◦ i)v = Φv
◦ i

d(Φ ◦ i)v = d(Φv
◦ i)

= d(Φv) ◦ di

= ivω ◦ di

= iv(i
∗ω)

siendo (MH , i∗ω) la variedad simpléctica. Fijándonos que en cada punto de MH el
estabilizador es H, al aplicar sobre esta el teorema 3.1.1 se tiene que (dΦ�)x : TxM → h∗

es una aplicación sobreyectiva.

En el caso de que H = G, y éste sea un grupo abeliano, se tiene que Φ(MG) es discreto.
Si además la variedad es compacta podemos afirmar que hay una cantidad finita de dichos
puntos. En este caso, veremos más adelante que serán los vértices de la imagen de la
aplicación momento.

Para el caso más concreto de G = Tn (un n-toro) y M una variedad compacta se puede
hacer una partición de M como suma disjunta. Por compacidad la proposición 3.1.3 nos dice
que hay una cantidad finita, bajo conjugación, de subgrupos estabilizadores T1, T2, ..., Tn.

Renumerando de tal forma que se puedan tener Ti = Tj con i �= j, podemos suponer
que para T1, T2, ..., Tm los MTi ’s son conexos. Luego:

M =
m�

i=1

MTi

Por ser todos subgrupos normales se tiene que los MTi son subvariedades simplécticas y
existe un vector ai ∈ t∗ tal que Φ lleva MTi a un abierto de ai+t∗

i
de t∗ por el teorema 3.1.6.

Ahora lo enunciamos como teorema para poder usarlo en la versión relativa del teorema
de convexidad local.

Teorema 3.1.7. Cada MTi será una subvariedad simpléctica de M . Y existe ai ∈ t∗, tal
que Φ lleva MTi a un subconjunto abierto de ai + t◦

i
en t∗.

Ahora llamando v1, v2, ..., vk los vértices de Φ : M → t∗, se tiene el siguiente resultado.
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Teorema 3.1.8. Φ(Mi) es la unión de un número de componentes conexas, tal que cada

una es la envoltura convexa de conjunto de los vi’s.

Demostración. Supongamos que T es un n-toro. Por lo anterior Φ(MTi) será un punto
de, concretamente uno de los vértices. Supongamos como hipótesis de inducción que es
cierto para codim(Ti) ≤ m. Si codim(Ti) = m se tiene que la imagen de MTi es un abierto
contenido en ai + t∗

i
. Las componentes de su frontera están contenidas en

�
j
Φ(MT j) tal

que Tj ⊃ Ti. Por hipótesis de inducción se tiene el resultado para Φ(MTj ) y por tanto para
Φ(MTi).

3.2. Teorema de convexidad local

En ésta segunda parte vamos a obtener la expresión de la aplicación momento de la
acción hamiltoniana en un entorno de un punto fijo. Primero pasaremos a la acción en el
tangente por la exponencial para compararla con la de la acción lineal. Y luego, veremos
que la imagen de ésta se puede describir en pesos.

Seguimos en el caso de la acción de un grupo de Lie compacto y conexo, G, sobre una
variedad M . El siguiente teorema al igual que en otros de formas locales se demuestra
usando el truco de Moser.

Teorema 3.2.1. Sean ωo y ω1 dos formas simplécticas G-invariantes definidas sobre M
y tal que ω0 = ω1 en x ∈ M . Entonces existe un entorno de x G-invariante, U0(x), y una

aplicación G-equivariante Ψ : (U0, x) → (M,x) tal que Ψ∗ω1 = ω0.

Demostración. Sea ωt = (t−1)ω0+tω1, ∀t ∈ [0, 1]. Ésta será una familia suave de formas
simplécticas (por linealidad y conmutación con pullback).
Supongamos que existe ρ : U×R → M , isotoṕıa, donde U es un entorno de x G-equivariante
y contractible tal que ρ∗tωt = ω0. Sea:

vt =
dρt
dt

◦ ρ−1
t

∀t ∈ R

Se tiene por la regla de la cadena que:
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0 =
d

dt
(ρ∗tωt)

=
d

dt

�
Lvtωt +

dωt

dt

�

⇔ Lvtωt +
dωt

dt
= 0

Ahora supongamos que cumple dicha ecuación en [0,1] para algún vt. Integrando se
tiene:

ρ∗tωt = ρ∗0ω0 = ω0.

Por la forma de ωt se tiene:

dωt

dt
= ω1 − ω0.

Además ésta será cerrada en U y (ω1 − ω0)x = 0. Por la fórmula de la homotoṕıa en
un entorno, que se puede encontrar en las lecturas de Cannas [6], sec 6,3, existe una forma
µ en U tal que ω1 − ω0 = dµ , con µx = 0. Tomando la media sobre G podemos suponer
además que µ es G-equivariante. Aplicando la fórmula de Cartan tenemos:

Lvtωt = d(ivtωt) + ivtdωt

= d(ivtωt)

=
dωt

dt
= −dµ

Obtenemos aśı la ecuación de Moser ivtωt = −µ. Como ωt = omega0 = ω1 en x
podemos suponer que ωt no es degenerado en U , ó en un subentorno U0 si fuese necesario.
Por tanto existe una única solución vt de la ecuación.

Ahora vamos a considerar el caso en que G � (M,ω) es una acción hamiltoniana
con aplicación momento Φ : M → g∗. Consideramos ω1 la forma simpléctica lineal en el
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tangente a x ∈ M y Φ1 la aplicación momento asociada a la acción G � TxM Con el
resultado anterior podemos pasar localmente de la forma G-equivariante el pullback de la
exponencial de la forma simpléctica en M y ver que su aplicación momento difiere en una
traslación de la aplicación momento de la lineal.

Tomando una métrica G-equivariante se tiene en M en cada x ∈ M el difeomorfismo
local G-equivariante dado por la exponencial en M. Luego ∃U0(0) entorno de 0 en TxM y
V (x) entorno de x en M tal que exp : U0 → V es un difeomorfismo G-equivariante.

Tomando ω1 = (exp)∗ω por el resultado anterior se tiene que existe U0 ⊂ V , entorno
de 0 a TxM y Ψ : U0 → TxM tal que Ψ∗ω1 = ω0.

Teorema 3.2.2. Las aplicaciones momento Φ0 = Φ ◦ exp : U0 → g∗ y Φ1 : Ψ(U0) → g∗

difieren en una constante.

Demostración. Por la propiedad de las momentos ivMω = dΦvM y tomando la diferencia
sale inmediato.

Corolario 3.2.3. La imagen de las aplicaciones momento Φ0 : U0 → g∗ y Φ1 : Ψ(U0) → g∗

son idénticas, módulo traslación.

Podemos trabajar entonces, de forma localmente equivalente con Φ1 : TxM → g∗. Por
ser la dimensión el único invariante en un espacio vectorial simpléctico podemos consi-
derar Sp(2n) en ((R)2n, ωCAN ) ó (C, ωCID). Donde la estructura casi compleja se puede
identificar con i.

Para poder expresar de forma expĺıcita la aplicación momento vamos a usar pesos.
Aśı que antes enunciaremos un par de lemas de álgebra lineal que nos serán útiles. Sea
A ∈ End(V ), un subespacio de los endomorfismos de V , un espacio vectorial sobre K.
Donde K denota el cuerpo de los números reales, ó los complejos. Diremos que V es si-
multáneamente diagonalizable si existe una descomposición en subespacios vectoriales
de V , V =

�
i=1 Vi tal que ∀A ∈ A : A|i = λiIdi , λi ∈ K.

Lema 3. Sea A ∈ End(V ), subespacio. Si v ∈ V es un autovalor simultáneo de todos los

elementos de A, entonces existe un l ∈ A∗
tal que Av = λ(A)v ∀A ∈ A

Demostración. Se tiene: λ(A + B)v = (A + B)v = Av + Bv = λ(A)v + λ(B)v. Luego se
cumple

Lema 4. Si A ⊂ End(V ) subconjunto (no necesariamente subespacio). Que los elementos

sean simultáneamente diagonalizables equivale a que sean diagonalizables y conmuten dos

a dos.
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Demostración. Si son simultáneamente diagonalizables es obvio que cumplen las dos cosas.
Por otra parte, sean A,B ∈ End(V ). Inducción: dim(V ) = 1 ⇒ es claro.
Si dim(V ) = n > 1 ⇒ V =

�
i=1 Vi y se tiene Ker(A − λiIdV ) , Vi subespacio de V y

además A y B conmutan.
Si A es diagonalizable ⇒ también lo es A|Vi . Luego A|Vi y B|Vi lo son. Por hipótesis de
inducción son simultáneamente diagonalizables. Y por construcción con la suma directa
A|V1⊕···⊕Vk y B|V1⊕···⊕Vk también lo son.

A continuación vamos a ver un algunas propiedades de Sp(TxM).

Lema 5. U(n) es un subgrupo maximal compacto de Sp(2n).

Demostración. Si Ψ ∈ Sp(2n) ∩O(2n):

ψ =

�
X −Y
Y X

�
∈ GL(2n).

tal que XTY = Y TX y XTX + Y TY = 1 (el vector unitario), esto es ortogonal y
simpléctico. Es lo mismo que U = X + iY sea unitaria. Luego Sp(2n) ∩O(2n) = U(n).
Sea H ⊂ Sp(2n) un subgrupo compacto. Sea ϕ ∈ Sp(2n) matriz simétrica y definida
positiva., tal que:

ψtϕψ = ϕ ∀ψ ∈ G.

Una matriz ϕ se puede sacar como la promedio de ψtψ de ψ ∈ G. Usando la medida
de Haar para un grupo de Lie compacto.
ϕ

1
2 seguirá siendo simpléctica. Luego:

ψ ∈ G =⇒ ϕ
1
2ψϕ

−1
2 ∈ Sp(2n) ∩O(2n) = U(n).

y se tiene que G será un subgrupo conjugado de U(n)

Para cada p ∈ TxM , tomamos Φ2(p) ∈ sp(TxM), tal que a cada elemento de sp(TxM)
le asigna la evaluación del polinomio asociado en el punto p. Dejando variar la p se tiene
Φ2 : TxM → sp(TxM)∗.

Lema 6. La aplicación Φ2 corresponde a la aplicación momento de la acción lineal del

grupo simpléctico Sp(TxM) en TxM .
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Ahora un lema muy sencillo sobre aplicaciones momento, que nos dice como hacer una
momento por la inclusión del álgebra

Lema 7. Sea la acción Φ : G � (M,ω)
J
→ g∗. Sea H ⊂ G subgrupo. Entonces la restricción

a H de la acción, Ψ : H � (M,ω) tiene por aplicación momento (M,ω)
J
→ g∗

i
∗

� h∗. Con
i : h → g, la inclusión de álgebras de Lie.

Demostración. Llamamos vM1 y vM2 a los campos inducidos por las correspondientes ac-
ciones infinitesimales: φ : g → χ(M), v �→ vM1 y ψ : h → χ(M), v �→ vM2 . Y J � = (i ◦ J).
Con pocos cálculos se tiene:

i∗(vM2)|p =
d

dt
|t=0 i{Ψ(exp(−tv), p)}

=
d

dt
|t=0 Φ{i(exp(−tv), p)} = (vM1)p

Por ser la acción de G una acción hamiltoniana, no es dif́ıcil ver que también lo es la
de H. Se tiene J � = ivM2

α. Veamos que J �(hξ) = Ad∗
h
J �(ξ). Haciendo el pairing, tenemos:

�J �(hξ), v� = J �v(hξ)

= (ivM1
α)(hξ)

= �Ad∗
h
J �(ξ), v�

= �J �(ξ), Adh−1v�

= {i(Adh−1v)|M1
α}(ξ)

Aplicando el criterio infinitesimal al usar la fórmula de Cartan (ivd = Lv − div):

LwM2
(ivM2

) = iwM2
(divM2

)

= iwM2
(−ivM2

dα) = −ω(wM2 , vM2)

= iwM2
(dJv) = �dJv, wM2�

= �ivM2
ω,wM2� = wM2ivM2

α

Usando la fórmula de Cratan −dα(X,Y ) = Y (α(X))−X(α(Y )) + α([X,Y ]) se tiene:
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−dα(vM2 , wM2) = −vM2(α(wM2)) + wM2(α(vM2)) + i[vM2 ,wM2 ]
α.

y de LX iY − iY LX = i[X,Y ] sacamos:

LwM2
(ivM2

α) = ivM2
(LwM2

α) + i[vM2 ,wM2 ]
α

= J [w,v]

Luego por el criterio es H-equivariante. La aplicación momento resultante es JH =
i∗ ◦ JG.

Corolario 3.2.4. Φ1 : TxM −→ g∗ es la composición de i∗ : sp(TxM)∗ −→ g∗ con Φ2 :
TxM −→ sp(TxM)∗, donde i viene dada por la acción en el tangente.

Demostración. Teniendo en cuenta las inclusiones G �→ Sp(TxM) y g �→ sp(TxM)a
prueba es inmediata con los dos lemas anteriores , Lema 6 y Lema 7.

Ahora vamos a ver como se puede expresar φ1 a partir del hecho de ser una composición
de la dual de la inclusión i∗ y la acción dada por Sp(2n). La imagen de la inclusión será un
toro. Veamos como es la representación de dicho toro. Como trabajar con todo sp(2n) no
es complicado buscamos un subgrupo de Lie en el que sea más fácil.

Sea la acción T � (V, ω), con (V, ω) espacio vectorial simpléctico, y sea J la estructura
compleja compatible. A nivel de álgebra lineal vimos que (V, ω, J) ∼= (Cn, ωSTD, i). Los
morfismos que respetan la forma simpléctica estarán en Sp(2n) y los que respetan la es-
tructura compleja compatible estarán en Gln(C). Luego que respeten ambos significa que
están en U(n). Por tanto, una acción T � (V, ω) que respete dichas estructuras se puede
ver también como un morfismo T −→ U(n).

Se tiene por ser T abeliano que ∀t ∈ T , φ(t)
t∈T conmutan dos a dos. Y siendo φ(t) ∈

U(n) estos serán diagonalizables. Luego aplicando los lemas vistos antes existe una des-
composición V =

�
i
Vi tal que φ(t)|Vi = λφ(t)idVi .

Ahora pasemos al nivel de las álgebras. Recordemos que dado un morfismo de grupos
de Lie Ψ : G −→ H este siempre se puede levantar a ψ : g −→ h por medio de la
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composición con las exponenciales. Para ir en dirección contraria tendŕıamos que usar el
segundo teorema de Lie.

g
ψ ��

expG

��

h

expH

��
G Ψ �� H

siendo además deΨ = ψ.

En nuestro caso el diagrama es:

t
φ

∗
��

expT
��

U(n)

expU(n)

��
T φ �� H

A nivel de álgebras podemos razonar como antes. Sabemos que U(n) esta forma-
do por las matrices antihermı́ticas. Sea α : t −→ U(n) un morfismo de álgebras, co-
mo son diagonales y conmutan dos a dos las matrices antihermı́ticas se tiene: ∃V =�

α∈Hom(t,iR) Vα tal que ∀A en la imagen A|Vα = α(A)IdVα .

Al escribir Hom(t, iR) estamos suponiendo que estos subespacios tiene dimensión com-
pleja uno. Lo cual, gracias al Lema de Schur, no es suponer mucho ya que α(A)IdVα en
un espacio de dimensión finita Vα se puede descomponer sucesivamente hasta que tenga la
dimensión deseada.
Miro la relación que se da entre ambos morfismo φ y α:

d

dt t=0
φ(expTn(tA)|Vφ) =

d

dt t=0
φ(expTn(tA))Id|Vφ

=
d

dt t=0
expU(n)(tφ∗(A)) · Id|Vα

=
d

dt t=0
etφ∗(A)

· Id|Vα = φ∗(A)Id|Vα

Por tanto se tiene que ∀A ∈ t , φ∗(A) = α(A). En esto hemos utilizado que el último
diagrama conmuta. Sea β = φ ◦ expT y L = Ker(expT). Vemos que β tiene que ser trivial
en L : β(x) = 1 ∀x ∈ L. De hecho es fácil ver que β : t → U(V ) es representación de
grupos śı y sólo si lo es β. Y también que φ es irreducible (esto es, sólo hay un dos espacios
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invariantes y uno es trivial) śı y sólo si lo es β.

Empecemos en el caso más sencillo, supongamos que se trata del caso irreducible.
Por el Lema de Schur la representación irreducible de un abeliano es de dimensión uno.
Aśı β(A) , A ∈ t, es la multiplicación por un número complejo y para su representación
tiene que cumplir β(A+B) = β(A) ·β(B). Luego una tal representación se puede expresar
de la forma

β(A) = e2πil(A) con l ∈ t
∗

Para que sea trivial en L se tiene l(A) ∈ Z ∀A ∈ L. Luego ha de cumplirse que
l ∈ L∗ = {l ∈ t∗ : l(x) ∈ Z ∀x ∈ L}. Nos queda el siguiente teorema.

Teorema 3.2.5. Una representación unitaria irreducible del toro, φ, está definida por la

elección de l ∈ L∗

Seguimos en el caso irreducible. Vimos que sp(V ) se puede identificar con los polinomios
cuadráticos en V . Recordemos que estamos mirando el toro formado por la imagen de la
inclusión en U(n) que a su vez está en Sp(V ). Llamemos a este toro H. Por lo acabamos
de decir existen coordenadas simplécticas estándar (x, y) tal que:

h ∼= R = {a
x2 + y2

2
: a ∈ R}.

y con h∗ ∼= R i
∗
→ t∗ → 0, se tiene por el corolario que nos da φ1 como composición que

esta es

(x, y) �→ l

�
x2 + y2

2

�

compuesta con la dual de la inclusión. Al introducir el i∗ aparecen los pesos que hemos
visto de la representación y nos queda:

(x, y) �→ α

�
x2 + y2

2

�

donde α ∈ L∗.
Ahora volvamos un poco para atrás. Estábamos en U(n) para que se conserven ω y J .
Teńıamos también la descomposición
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V =
�

α∈Hom(t,iR)
Vα

y por Schur teńıamos se tiene que dim(Vα) = 1. Siendo este el caso por la fórmula
que relaciona g ,ω y J se tiene que si Vα⊥Vβ , también son ortogonales simplécticos. ∀vα ∈

Vα y ∀vβ ∈ Vβ

g − iω(vα, vβ) = 0 = −iω(vα, vβ)

entonces (V, ω) = (Vα1 , ωα1)×(V, ω)(Vα2 , ωα2)×· · ·×(Vαk , ωαk), es una descomposición
en espacios simplécticos. La aplicación momento será la de cada una de las correspondientes
a cada subespacio por cada coordenada. Por lo tanto recopilando lo anterior nos queda el
siguiente teorema

Proposición 3.2.6. Sean α1, α2, ..., αn ∈ t∗ los pesos de la representación de T en TxM .

Entonces, existen coordenadas simplécticas x1, x2, ..., xn, y1, y2, ..., yn tales que la aplicación

momento Φ1 : TxM → g∗ se expresa de la forma:

(x, y) �→
�

αi(
x21 + y21

2
)

Corolario 3.2.7. La imagen de Φ1 será la envoltura cónica de los pesos:

S(α1, α2, ..., αn) = {

n�

i=1

siαi : si ≥ 0}

Teorema 3.2.8 (Teorema local de convexidad). Sea la acción hamiltoniana T �
(M,ω), con T n-toro y (M,ω) variedad simpléctica. Sea Φ : M → t∗ su momento y x ∈ M
un punto fijo por la acción. Entonces, existe un entorno U(x), en M y otro entorno V , de

(Φ(x)) en t∗ tal que:

Φ(U) = V ∩ (Φ(x) + S(α1, α2, ..., αn)) (3.1)

siguiendo con la notación de antes en pesos.

Demostración. Por el teorema 3.2.2, tenemos que localmente coinciden en TxM la aplica-
ción momento de la acción lineal y de la aplicación momento de T llevada por la exponen-
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cial, bajo traslación. Luego por el corolario inmediatamente anterior, el 3.2.7, se tiene el
resultado.

Ya tenemos descrita localmente en los puntos fijos de la acción la imagen como un cono
con vértice la imagen de este punto. A continuación, obtenemos una forma relativa de este
teorema para usarla más adelante junto a la teoŕıa de Morse para el teorema de convexidad.

Sea un punto con estabilizador H, p ∈ H, no necesariamente fijo por la acción. restrin-
gimos la acción usando la dual de la inclusión de las álgebras:

ΦH : M
Φ
→ g

∗ i
∗

� h
∗

Definimos S�(α1, α2, ..., αn) = (i∗)−1{S(α1, α2, ..., αn)}. Esto es la preimagen por la i∗

de la aplicación momento dada por H en un entorno:

ΦH(U) = ΦH(x) + SH(α1, α2, ..., αn)

Ahora veamos que:

Φ(U) = i−1
{ΦH(x) + SH(α1, α2, ..., αn)}

= Φ(x) + S�(α1, α2, ..., αn)

Para ello volvemos a usar la acción lineal simpléctica, en un entorno del origen del
tangente, para trabajar mejor.

Teorema 3.2.9. Existen entornos U(x) y V (Φ(x)), de x ∈ M y su imagen en g∗ tal que:

Φ(U) = V ∩ (Φ(x) + S�(α1, α2, ..., αn))

Demostración. Consideramos sin pérdida de información el tangente TxM , de origen x ∈

M , con la forma simpléctica lineal, M un entorno suyo y la acción de H, la acción isotrópica
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lineal en el. Sea MH el conjunto de puntos que tiene a H como estabilizador. MH se puede
expresar como MH = W ∩M , para W un subespacio vectorial de TxM .

Por 3.1.7 Φ : M → h∗ lleva MH a un abierto del espacio af́ın Φ(x)+h◦ como submersión
en 0.H actúa de forma trivial sobreW y ΦH será constante en el espacio af́ın a+W ∈ TxM ,
a ∈ TxM . Luego a + W es llevado por Φ a π−1(ΦH(a)) = h◦ + q (con q = Φ(a)). Ésta
será una submersión cerca del 0 . Luego la imagen de a +W contendrá un entorno de q.
Como esto es cierto ∀a suficientemente cerca del 0, Φ : M → h∗ tiene un entorno abierto
de Φ(x) en su imagen en π−1(ΦH(x)).

3.3. Teorema de convexidad global

En esta parte usaremos la teoŕıa de Morse-Bott para ver que Φv tiene un único máximo
local, para todo v perteneciente al álgebra de Lie. Seguimos en el caso de una acción
hamiltoniana de G, grupo de Lie compacto, sobre la variedad simpléctica (M,ω), con
momento Φ : M −→ g∗.

En una función suave f : M −→ R decimos que una valor, a, es un máximo local si
∃x0 ∈ M y U , entorno de x0, tal que f(x0) = a y f(x) ≤ a, ∀x ∈ U .

Sea M una variedad conexa. Se dice que f : M −→ R es una función de Morse-Bott si:

1. El conjunto de puntos cŕıticos, C, esta formado por subvariedades conexas.

2. Hess(f), el Hessiano de f, es no degenerado en las direcciones normales ∀p ∈ C.

Se tiene además que el ı́ndice de f , if , será constante en cada componente Cj de C. El
ı́ndice de cada componente Cj lo denotamos ij .
Ahora tomamos ∇f de una función de Morse-Bott, para una métrica dada de M . El flujo
es ϕ : R×M → M . Para cada componente conexa Ci definimos:

Wi = {p ∈ M : ϕt(p) → Ci, t → ∞}

Por un resultado de Bott [4].

Teorema 3.3.1. Si f es un función de Morse-Bott cada Wj es un fibrado sobre Cj con

fibra una ij-celda tal que:
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dimWj = ij + dimCj

y M se puede descomponer como una suma disjunta:

M =
�

i

Wi

Corolario 3.3.2. Si f : M → R es una función de Morse-Bott y el ı́ndice de cada compo-

nente conexa de los puntos cŕıticos, ij, es par entonces alcanza un único máximo local.

Demostración. Sean C1, ..., Ck las subvariedades formadas por las componentes conexas
del conjunto de puntos cŕıticos con máximo local f |Ci = ai y Ck+1, ..., CN las restantes.

Por cómo hemos definido las W �
i
s, los que tengan un máximo local tienen que ser de

dimensión par, y son abiertos de M .

La codimensión de Wi, por Hess(f) no degenerado en la dirección de la normal tiene
que ser i−. Luego para k + 1, ..., N la codimensión será mayor que 0, ó por hipótesis,
codim ≥ 2.

�
j≥k

Wj es de codim ≥ 2 y no desconecta a M ;M −
�

j≥k
Wj es conexa y

unión de abiertos, luego k = 1.

Con esto tenemos un criterio para una función de Morse-Bott tenga un único máximo
local. Ahora lo aplicamos a Φv.

Teorema 3.3.3. Φv
es una función de Morse-Bott y los ı́ndices de sus variedades cŕıticas

son pares.

Demostración. Sea vM el campo generado por la v ∈ g a través de la acción infinitesimal,
y sea ρ : R×M → M su flujo.

Si x es un punto cŕıtico , dΦv = ivM = 0, se tiene por ser no degenerado W que equivale
a vM (x) = 0 y el flujo es constante en x ,ρt(x) = x ∀t ∈ R.
El flujo lineal es:

(dρt)x : TxM −→ TxM

Si le damos una métricaG−equivariante aM podemos intercambiar por expx : TxM −→

M el flujo y el flujo lineal. Aqúı estamos usando impĺıcitamente el hecho de que R está den-
tro de algo compacto, como es el estabilizador Tp (T ⊃ Tp ⊃ R), que sabemos que lo será.
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Sea W = Ker((dρt)x) , la exponencial lleva U ∩ W a un entorno, V , de los puntos
donde se anula vM . Estos vimos que son los puntos cŕıticos de Φv. Luego las componentes
conexas serán subvariedades.

Veamos la paridad. Tomamos H = {exp(tv) : t ∈ R} subgrupo uniparamétrico que
tiene a x como punto fijo. Sean α1, ...., αn los pesos correspondientes de la acción en TxM .

Con la inclusión i, de H en G se tiene ΦH = i ◦ Φ = Φv. Y aplicando la versión local
del teorema de convexidad local para puntos fijos restringiéndonos a H, en un entorno U ,
se tiene:

Φv(q) = Φv(x) +
n�

k=1

αk|zk|
2 , q ∈ W.

Podemos asumir que ∃j, 0 ≤ j ≤ d tal que αj+1 = αj+2 = ... = αn = 0. Luego el
Hess(Φv) en x viene dado por la matriz diagonal:





α1 0 ..
0 α2 0 ..
.. 0 ... 0 ..

.. 0 αj 0 ..
.. 0 0 0 ..

.. 0 ... 0
.. 0 0





Si lo miramos de forma compleja vemos en las entradas dos veces cada alfa, luego el
ı́ndice es dos veces el mı́nimo de pesos negativos y por tanto será par.

Corolario 3.3.4. La función Φv
tiene un único máximo local.

Usaremos el lema anterior para obtener el teorema de convexidad para toda la imagen.
Ahora no consideramos sólo los puntos fijos por la acción si no la preimagen de puntos
frontera. Y con la versión relativa del teorema de convexidad local (3.3.5) y el Corolario
(3.3.5) veremos que está dentro de todos los conos a la vez y tiene todos los puntos frontera
de esta intersección. Luego es el poĺıtopo que definen dichos conos.

Teorema 3.3.5. [Teorema de convexidad de la aplicación momento] La imagen de la

aplicación momento Φ : M → t∗, de la acción T � (M,ω), es un poĺıtopo convexo.
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Demostración. Sea x ∈ g∗ un punto de la frontera de Φ(M) y p su preimagen por la
aplicación momento. Sea H ≺ G, el estabilizador de p y α1, ..., αn ∈ h∗ los pesos de la
representación de H en TxM .
Por la versión relativa del teorema local de convexidad ∃U(x) y V (p), entornos, tal que:

Φ(U) = V ∩ (p+ S�(α1, ..., αn)).

Sea lv = �·, v� : h∗ −→ R ∀v ∈ h , y Si una componente de la frontera de
S�(α1, ..., αn). Como Si tiene como máximo codim = 1 podemos tomar v tal que lv|Si = 0
y lv < 0 en el interior de S�(α1, ..., αn). Luego si lv(x) = a se tiene:

Φv = (lv ◦ Φ)(q) ≤ a , ∀q ∈ U.

Esto es, tiene un máximo local en Φv. Por el Corolario es un máximo absoluto, y
Φv(M) ≤ a. Repitiendo para todas las caras de S�(α1, ..., αn) se tiene que Φ(x) ≤ p +
S�(α1, ..., αn). Y por tanto se tiene el resultado.

3.4. Aplicación del teorema de convexidad, el Teorema de
Schur-Horn

Empezaremos dando algunos ejemplos concretos del teorema de convexidad para seguir
con su aplicación en la prueba del teorema de Schur-Horn. Para empezar veamos un par
de casos de acciones en proyectivos.

Ejemplo 5. S1 � CP1

Consideremos el 1−toro actuando en CP bajo la acción por rotaciones en una de las coor-

denadas,

�
eiθ1 , [z0, z1]

�
�−→

�
z0, e

iθ1z1
�

No se ha visto durante el texto, pero las acciones de grupos abelianos no nos dan aplica-

ciones momentos únicas, si no aplicaciones momentos únicas bajo suma de un constante,

aśı que tomaremos la constante según nos convenga. Para este resultado partiremos de una

acción en una variedad más sencilla y por reducción veremos nuestro caso.
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Vamos pensar antes en la acción S1 � (C2, ωSTD) actuando de la misma forma, esto

es (eiθ1 , (z1, z2)) �−→ (eiθ1z1, eiθ1z2) ∈ C2
. Donde ωSTD = i

2

�2
i=1 dzi ∧ dzi =

�
dxi ∧ dyi =�

ridri∧dθi. Con esta última expresión y unos pocos cálculos se puede ver que la aplicación

momento, µ : C2 → R será de la forma
−|z|2
2 + cte :

ixCω(
�

ridri ∧ dθi) = −

�
ridri ∧ dθi(∂θi) = −

�
ridri =

�
dfi.

luego como f �
i
=

�
−r

2
i

2

��
= −ridri se tiene fi =

−r
2
i

2 . Que sea G-equivariante no nos

preocupa dado que es abeliano.

Si tomamos como constante
1
2 tendremos que µ−1(0) = S3. Se tendrá, al cocientar por

el grupo, que el espacio de órbitas es S3/S1 = CP1
.

Ahora para nuestro caso consideremos la acción S1 × S1 � (C2, ωSTD), actuando por

rotaciones en cada coordenada, esto es, ((eiθ0 , eiθ1), (z0, z1)) �−→ (eiθ0z0, eiθ1z1) ∈ C2
. Por

la acción anterior, viendo que actúa diagonalmente ( cada S1 sobre un C), la aplicación

momento será µ(Z) = −1
2 (|z0|2 + |z1|2) +

1
2 . Por lo visto en reducción simpléctica, el

espacio de órbitas reduciendo respecto del primer S1 es CP1
, y tendremos en el la acción

1× S1 � CP1
del principio. Y por aplicación momento:

µ : CP −→ R

[z0, z1] �−→
−|z1|2

2|z|2
+

1

2

que está bien definida.

Los puntos fijos serán [1 : 0] y [0 : 1], y les corresponden por imágenes en R2
, 0 y −

1
2 .

Esto nos da como envoltura convexa el segmento
�
−

1
2 , 0

�
de la recta real.

Ejemplo 6. T2 � (CP2, ωCAN2) Consideremos el toro actuando en CP2
bajo la acción

por rotaciones en dos de las coordenadas,

�
eiθ1 , eiθ2 [z0, z1, z2]

�
�−→

�
z0, e

iθ1z1, e
iθ2z2

�

Podemos reciclar lo usado anteriormente para T3 � (C3, ωSTD). En este caso tenemos

también una acción diagonal tal que en cada C actúa por rotaciones, y tomamos la aplica-

ción momento con
1
2 para poder reducir. Hacemos reducción respecto del primer S1 y nos

queda la acción que buscamos, con momento:
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mu : CP2
−→ R2

[z1, z2, z3] �−→

�
−z21
|z|2

,
−z22
|z|2

�

Los puntos fijos serán [1 : 0 : 0] , [0 : 1 : 0] y [0 : 0 : 1], y les corresponden por imáge-

nes en R2
, (0, 0), (−1

2 , 0) y (0,−1
2). Esto nos da Por cómo envoltura convexa el siguiente

triangulo.

A continuación vemos el teorema de Schur-Horn. Para demostrar este teorema vamos
a utilizar algunas de las cosas vistas para órbitas coadjuntas y las haremos un poco más
concretas para reducirnos al caso de la acción del toro sobre cada una de estas órbitas en
u(n).

Para empezar veremos algunas propiedades de este caso concreto. El álgebra de Lie
de U(n), u(n), son las matrices antihermı́ticas. Consideremos la acción por conjugación de
U(n) sobre las matrices hermı́ticas. Las matrices hermı́ticas las denotaremos por H:

H = {B ∈ Mn : B
T
= B}.

Dos caracteŕısticas destacadas de las matrices hermı́ticas son que sus autovalores son
todos reales y que siempre existe una factorización unitaria, como vemos a continuación.

Lema 8. Sea B ∈ H, todos sus autovalores son reales.

Demostración. Sean λ y vλ, un autovalor y su correspondiente autovector de la matriz B.
Se tiene que:
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Bvλ = λvλ

v∗
λ
Bvλ = λv∗

λ
vλ.

v∗
λ
vλ también es real y por tanto v∗

λ
Bvλ, ya que:

(v∗
λ
Bvλ)

∗ = v∗
λ
B∗vλ = v∗

λ
Bvλ

luego por esta última ecuación se tiene que λ ∈ R

Un razonamiento análogo nos permite ver que para las antihermı́ticas se tiene que todos
los autovalores serán estrictamente imaginarios.

Lema 9. Sea B una matriz hermı́tica existe U , matriz unitaria, tal que U∗BU es una

matriz diagonal formada por los autovalores de B, y las columnas de U serán sus autovec-

tores.

Demostración. Por el lema inmediatamente anterior sabemos que existe una matriz uni-
taria U tal que U∗BU es triangular superior con los autovalores en la diagonal. Esta es la
factorización en forma de Schur. Mirando la adjunta:

(U∗BU)∗ = U∗B∗U = U∗BU.

luego será hermı́tica. Siendo hemı́tica no puede tener ceros en el término (i, j) y no
tenerlos en el (j, i). Y por tanto es diagonal. Ahora:

BU = [U∗BU ]U

luego los elementos de la matriz diagonal U∗BU son los autovalores de B, y U los
autovectores.
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Con lo anterior es fácil ver que las órbitas de la acción U(n) � H por conjugación están
formadas por las matrices con los mismos autovalores.

Hλ = {A ∈ H : sus autovalores son (λ1, λ2, . . . , λn−1, λn) = λ}

para cada λ ∈ Rn.

Ya vimos que a las órbitas de la representación coadjunta se las puede dar una estructura
de variedad simpléctica. Ahora vamos analizar más concretamente el caso de U(n). Como
acabamos de ver, los autovalores de las hermı́ticas y antihermı́ticas son reales y complejos
puros. La aplicación

u(n) −→ H

A �−→ iA.

nos define un isomorfismo entre u(n) y H. Ahora relacionamos la acción adjunta con la
coadjunta por medio de un producto interno U(n)−equivariante. Ya sabemos que la acción
adjunta, U(n) � u(n), es la conjugación. Definamos en el álgebra de Lie u(n) el producto
interno �A,B� = −tr(AB). La simetŕıa es directa. Por otro lado tr(AB) = tr(AB) =

tr(ATBT ) = tr((AB)T ) = tr(BA) = tr(AB), nos da que es real. Si se toma AA = AA
T
,

se ve que todas las entradas son positivas y por tanto su traza. Luego es definido positivo.
Además este producto será G-equivariante

∀g ∈ G , (gA, gB) = tr
�
gAg−1gBg−1

�

= tr
�
(gAB)g−1

�

= tr
�
g−1gAB

�

= tr (AB)

Como el producto interno que hemos definido es G-equivariante la acción que induce
en g∗ será G-equivariante. A través de este producto interno podemos definir una forma
simpléctica en las órbitas de la acción coadjunta, en u(n)∗. Nos saltaremos este paso ya que
la forma dada es la que nos pareció en la sección de representaciones adjunta y coadjunta.

Con lo anterior tenemos un isomorfismo H � u(n). Podemos conmutar la acción adjunta
con la coadjunta por el producto interno que hemos definido y que nos da un isomorfismo
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u(n) � u(n)∗. Luego u(n) será isomorfo al espacio matricial H, y además, viéndolo como
tal, la acción coadjunta será la conjugación en H.

Consideremos la estructura de variedad simpléctica que admiten la órbitas coadjuntas
en general. Ahora vamos a ver como restringir la acción a una de ellas, veremos que aun es
hamiltoniana, y que su aplicación momento nos viene dada como la inclusión del álgebras.
Luego aplicamos esto al caso concreto de T � Oζ , con Oζ una órbita de la coadjunta en
u(n)∗.

Sea Oζ la órbita coadjunta de ζ ∈ g∗. La acción de G en ella, G � Oζ , preserva la
forma simpléctica. De hecho, para cualquier grupo de Lie G, es una acción hamiltoniana y
se tiene la siguiente proposición.

Proposición 3.4.1. La inclusión Oζ

i

�→ g∗ es la aplicación momento de la acción de G
en Oζ . Y por tanto es una acción hamiltoniana.

Demostración. Para ver que µ : Oζ → g∗, la inclusión, es una aplicación momento se tiene
que cumplir que

dµX(p) = iXOζ
ωp(·)

para todo vector tangente X de Oζ . Ó equivalente también

�dµX , Y �|p = ωp(X,Y )

Las campos inducidos por la acción infinitesimal son los que generan el tangente a la
órbita. Nos queda

�Xg∗(ζ), Y � = �ζ, [Y,X]�

Pero esto es precisamente lo que cumplen los campos generados por la acción infinite-
simal en g∗.

En nuestro caso vamos a trabajar con la acción del toro, T, sobre las órbitas de la
representación coadjunta de U(n).
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Ya vimos que estas órbitas eran las matrices con los mismos autovalores, Hλ. La re-
presentación coadjunta nos daba precisamente la conjugación, U(n) � u(n)∗. Usando lo
anterior junto con el lema (7) se tiene la siguiente proposición.

Proposición 3.4.2. µ : Hλ −→ Rn (∼= tn), tal que a cada matriz hermı́tica asocia su

diagonal como vector en Rn
, es la aplicación momento de la acción T � Hλ.

Demostración. Por la proposición anterior se tiene que Hλ �→ u(n)∗ es la aplicación mo-
mento de la acción de U(n).
Por el Lema (7) al restringirnos a la acción de T se tiene por momento

Hλ

i1
�→ u(n)∗

i
∗
�→ t

∗

con i la inclusión de álgebras, t �→ u(n). Que t ∼= Rn es claro, ya que el n−toro es el
producto de n S1 y el álgebra de este es R. T, como subgrupo de U(n), corresponde a
las matrices diagonales y unitarias, en la base canónica de C. La proyección u(n)∗ → t∗

considerando u(n)∗ � H, por medio de A �→ −iA �→ tr(iA·), será la proyección de una
matriz sobre las diagonales unitarias, que nos da su diagonal principal como vector en
Rn

Ya tenemos definida la aplicación momento de la acción T � Hλ, en cada órbita. Y que
las órbitas Hλ son variedades simplécticas y compactas. Por tanto estamos en posición de
aplicar nuestro teorema de convexidad.

Teorema 3.4.3 (Teorema de Schur-Horn). Sea H una matriz hemı́tica con autovalores

(λ1, λ2, · · · , λn−1, λn) ∈ Rn
y sea S = {(λσ(1), λσ(2), · · · , λσ(n−1), λσ(n))|σ ∈ Sn}. La diago-

nal de H estará en la envoltura convexa de S, Conv(S). Por otra parte, cada punto de

Conv(S) corresponde a la diagonal de una matriz hemı́tica, conjugada de H.

Demostración. Consiste en aplicar el teorema de convexidad, con la aplicación momento
de T � Hλ. Lo único que no es inmediato es que los puntos fijos sean S. Pero no es dif́ıcil
ver que una matriz hermı́tica que es fija por T equivale a que es diagonal. Luego S serán
los puntos fijos.

Pasamos a continuación a ver un par de casos concretos de este teorema. Supongamos
que tenemos Hλ con λ = (λ1, λ2, . . . , λn−1, λn) ∈ Rn, los autovalores y estos son distintos.
Como vimos los puntos fijos por la acción T � Hλ son las matrices diagonales con estos
autovalores permutados. Luego se tendrán n! puntos fijos.
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Antes de ver los ejemplos, recordemos que las órbitas de la representación coadjun-
ta son variedades compactas. Siendo la aplicación momento continua también lo será la
imagen. Además se tiene que ∀A ∈ Hλ, tr(A) =

�1
i=1 λi = C = cte. Por tanto µ(Hλ)

estará contenida en el hiperplano

�
(x1, x2, · · · , xn− 1, xn) ∈ Rn :

1�

i=1

xi = C

�

Cualquier caso concreto tiene por tanto la forma de un poĺıtopo convexo y acotado, en
un hiperplano, que estará formado por la envoltura convexa de n!

m1!m2!···mn−1!mn!
puntos,

donde mi es el número de veces que se repite el autovalor λi.

Ejemplo 7. Sea H1,2 = {A ∈ H : con autovalores 1, 2}. La aplicación momento, µ:

H1,2
µ
→ R2

�
a b
c d

�
�−→

�
a
d

�

nos dará el siguiente segmento en el plano R2
, contenido en la recta x+ y = 3:

Ejemplo 8. Sea H1,2,3 = {A ∈ H : con autovalores 1, 2, 3}. La aplicación momento

resultante es µ : H1,2 → R3
y nos da el siguiente hexágono regular contenido en el plano

x+ y + z = 6:
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