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0.1. Introduccion

El objetivo de esta tesis es el teorema de convexidad de la aplicacién momento, el
enunciado 3.3.5. Este resultado fue probado por Atiyah (1982), y poco después por V.
Guillemin y S. Sternberg (1983). Mds concretamente queremos ver que la imagen de la
aplicacién momento de la accién de un toro sobre una variedad simpléctica compacta es
un politopo convexo, esto es, la intersecciéon de una cantidad finita de inecuaciones. Para
ello necesitamos saber antes que significan esto.

Una forma simpléctica, w, es una dos forma cerrada y no degenerada. Si tomamos
una variedad, M, que admita una de estas formas tendremos una variedad simpléctica y
el estudio de estas y sus morfismos (simplectomorfismo, difeomorfismos que conservan w)
sera la geometria simpléctica. Andlogamente a considerar la geometria Riemanniana como
el estudio de los objetos que conservan angulos y longitudes, la simpléctica sera el estudio
de los objetos que conservan la forma simpléctica y estos serdn sensibles la orientacion.
Estas dos geometrias pese a comenzar definiendo una forma bilineal, en el tangente y el
cotangente, posen muchas diferencias entre ellas. Para empezar mientras que una métrica
es admisible en toda variedad, una forma simpléctica solo se puede tener en variedades de
dimension par y orientables. Y con segundo grupo de De Rham no nulo si esta es compacta.
Se tiene por ejemplo que la Unica esfera que puede ser tratada como variedad simpléctica
es la 2—esfera. Otra de las caracteristicas tipicas de las variedades simplécticas es que
no tienen invariantes locales, menos la dimensién; esto es, a igual dimensién localmente
todas son simplectomorfas. El que no existan dichos invariantes nos permite un ntmero
tan grande de transformaciones. Si miramos las simetrias de una variedad riemanniana, es
decir que conserven angulos y distancias, nos podemos encontrar con que existen variedades
riemannianas que no admiten ninguna, mientras las simplécticas tienen un gran nimero.
El ntimero de simetrias, aquellas que conservan area y orientacién, no sélo hay siempre, si
no que hay una cantidad infinitas.

El comienzo de la geometria simpléctica esta estrechamente relacionado con la mecanica.
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El origen se puede situar hacia 1808 cuando Lagrange realiza sus estudios sobre la mecanica
celeste. En las ecuaciones que empled para definir el movimiento de los astros ya venia
implicita la idea. Este planteamiento fue extendido por Hamilton dando lugar a lo que
conocemos como mecanica Hamiltoniana. A finales del siglo XIX y principios del XX,
Jacobi, Liouville y Poisson, ente otros muchos, sentaron las bases. Pero no fue hasta 1939
que Weyl introdujo el término “simpléctica“, que no es otra cosa que la versién latina de
la palabra “compleja“.

El texto comienza planteando la geometria simpléctica a nivel de dlgebra lineal y mos-
trando algunos resultados basicos de esta y de geometria en general. Para nuestro teorema
hara falta algiin concepto méds, como el de grupo de Lie. Este es una variedad que es a la
vez grupo, siendo enlazadas ambas estructuras pidiendo que la inversa y el producto sean
diferenciables. El algebra de Lie asociada a un grupo serd la aproximacion infinitesimal de
ese grupo, dandonos un espacio vectorial con una forma bilineal antisimétrica que cumple
la féormula de Jacobi. Si a una estructura de dlgebra de Lie le anadimos la regla de Leibniz
se tiene un algebra de Poisson. Esta se define normalmente sobre las funciones y vendra de-
notada como (C*°(M), {}). Si un campo conserva nuestra forma simpléctica, £Lxw = 0, éste
se llamara simpléctico. El ser simpléctico se puede ver que es equivalente a que el producto
interno del campo en la forma sea una uno forma cerrada, ixw € Q! (M). Si pedimos

cerradas
algo mas fuerte, que i xw sea exacta tendremos un campo hamiltoniano.

En la segunda parte de la tesis se presentan las acciones en variedades simplécticas,
los casos mas destacados y una motivacién mecanica. Para hacernos una idea; si tenemos
la accién diferenciable de un grupo de Lie sobre una variedad,® : G O (M,w), esto nos
da un morfismo de grupos entre el grupo que actia y los difeomorfismos en la variedad.
La accién nos genera una accién infinitesimal, que a cada vector en el dlgebra de Lie,
v € g, nos induce un campo de la siguiente forma: vys(p) = %t:oq)ezp(—tv) (p) € x(M).
Si la variedad es simpléctica podemos considerar aquellas acciones tales que el morfismo
vaya a los simplectomorfismos. Esto nos es equivalente a que la accién infinitesimal nos
genere campos simplécticos. Incluso podemos buscar acciones de tal forma que generen
campos Hamiltonianos. En realidad no es algo tan fuerte como pudiera parecer ya que
localmente ambos campos son lo mismo. Si tomamos un abierto simplemente conexo de la
variedad y miramos la cohomologia de De Rham vemos que todos los simplécticos en el son
hamiltonianos. Que cada campo inducido por la infinitesimal sea hamiltoniano significa que
se le puede asociar una funcién de M. La aplicacién que a cada elemento del dlgebra de Lie le
da el campo inducido y de ese campo da la funcién que le corresponde se llama aplicacion
comomento si es un morfismo de algebras. Al dual de dicho morfismo, u : M — g*, lo
llamamos aplicacién momento. Que exista una es equivalente a que exista la otra y diremos
que la accién es hamiltoniana.

La tercera y tultima parte de la tesis supone la prueba del teorema de convexidad da la
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aplicacién momento, asi que su aplicacion el teorema de Schur-Horn, resultado anterior que
fue una de las motivaciones para este teorema. Dividiremos la prueba en tres partes. En
la primera veremos en la accién de un toro que la imagen de la aplicacién momento de los
puntos con un estabilizador comun serd la uniéon de una cantidad de componentes conexas,
donde cada una de ellas es la envoltura convexa de un conjunto de las imégenes de los puntos
fijos de la accién. Continuaremos comparando localmente, en un entorno de un punto fijo,
nuestra aplicacién momento con la de la accién a nivel lineal y viendo que su imagen difiere
en una traslacién. Esto nos permitird, con un poco de teoria de representaciones, enunciar
el teorema de convexidad de forma local, en los puntos fijos. Esto es, existe un entorno
tal que la imagen en el algebra sera la interseccién de un abierto y un cono centrado
en el punto. Para terminar la demostracién usaremos la teoria de Morse-Bott para ver
que cada componente de la aplicacion momento tendrda un Unico maximo local; lo cual
junto con una versién relativa del teorema local nos dara el teorema de convexidad, como
deseabamos. Terminaremos dando algunos ejemplos sencillos y usaremos nuestro teorema
para demostrar el teorema de Schur-Horn, que nos dice que



Capitulo 1

Geometria simpléctica lineal

La geometria simpléctica es el estudio de las variedades con una forma simpléctica, esto
es, con una forma diferencial no degenerada que sea cerrada. Ser una dos forma diferen-
cial lleva implicita la antisimetria. El ser cerrada es una propiedad local, mientras que el
ser no degenerada es puntual. Por tanto el estudio de ésta segunda es una propiedad de
algebra lineal el tangente. De ahi que empecemos por el estudio de los espacios vectoriales
simplécticos.

En esta primera parte veremos también algunas definiciones y resultados clasicos de geo-
metria simpléctica, asi como de grupos y algebras de Lie.

1.1. Espacios vectoriales simplécticos
Para empezar definiremos los conceptos mas destacados de la seccién para luego ver su
comportamiento.

DEFINICION 1. Forma bilineal antisimétrica: Es una forma bilineal definida en un
espacio vectorial V., Q:V x V = R, tal que:

Qv,w) = -Q(w,v) Yv,weV

DEFINICION 2. Forma simpléctica: Es una forma antisimétrica, 2, tal que es no gene-
rada, es decir:

YVoeV v#0 ,JweV tal que Q(v,w) #0



8 CAPITULO 1. GEOMETRIA SIMPLECTICA LINEAL

DEFINICION 3. Espacio vectorial simpléctico: Es la dupla (V,), donde V' es un espacio
y Q una forma simpléctica definida en €l.

Veamos a continuacién una forma estandar para las formas antisimétricas que nos
permitird expresar la forma en una base conveniente, ver que el Unico invariante es la
dimensién y caracterizar la no degeneracién de forma ficil. Denotaremos como V= el
ortogonal simpléctico de espacio vectorial V.

Teorema 1.1.1 (Forma estandar de una forma bilineal antisimétrica). 1.1Sea V' un espacio
vectorial, con dim(V') = 2n + k, con una forma bilineal antisimétrica Q2 en él, existe una
base U1y ..., Upy W,y ooy Wy, U, ..., U, de V' tal que:

Qui,v) = 0 YoeV
Qvi,v;) = Q(wj, wj) =0 Vi,J
Qvi,w;) = &

Demostracion. La prueba consiste en el proceso de Gram-Schmidt con la ortogonalidad da-
da por la forma simpléctica. Sea el conjunto de ortogonales a todov € V , lo denotamos como U =
{ueV :Qu,v) =0 ¥YveV}yun complementario W:

V=UacW.

Tomamos una base u1, ..., uy de U . Por ser W el complemento de U , Vw; € W\{0} Jv; €
WA\{0} tal que Q(v1,w;) # 0. Bajo producto por escalar podemos considerar Q(v,w;) = 1.

Definimos Wy = span{vi,w;} y su complementario en W, Wi+ = {w € W : Q(w,v) =
0 v € Wi}. Esto define una suma directa de W, W = W @ Wf‘, y luego procedemos

reiteradamente hasta llegar a la dimensién.

Sea v € Wi NWq, v = ajv + asw; se tiene:

Q(’U,’Ul) = Q(alvl,vl) + Q(agwl,vl) = a9

Qv,wy) = Qagvr, wr1) + Qagwr, w1) = ay

Luego v = ajas —agsa; = 0. Y W, ﬁVVlL = 0. Por otro lado sea v € W con Q(v,v1) = a1
y Q(v,w1) = ag, se tiene:
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v=0v+aw; —ajw + agv; —agv; = (V4 aqwi — agvy) + (—ajwy + agvy)
Qv+ ajwy — aguy,vy) = Qv,v1) + Qarwy, v1) — Q(agvy,v1) =0
Q(—ajwy + agvy,v1) = Q(—ajwy,v1) + Qagvi,v1) =0

Repetimos el proceso sobre el ortogonal. Sea wy € WlL y Uy € WlJ- tal que Q(vg, we) = 1.
Definimos Wy = span{vg, wy} y repetimos. Llegard el momento, por tener dimensién finita,
en el que el proceso pare. Y nos quedara:

V=UsW oW o - --oW,

como suma ortogonal simpléctica de W;’s con base {v;, w;} y Q(vi, w;) =1

La dimensién del subespacio U es fija, es un invariante k, al igual que 2n. Al minimo
2n lo llamamos rango.

Dado que estamos trabajando con una forma bilineal en un espacio vectorial, podemos
obtener un morfismo entre V' y su dual V* de la siguiente forma:

V =SV
v = Qv,-)

A veces a esta aplicacién se le cambia el signo. El niicleo de la aplicacién es el conjunto
de los vectores ortogonales a todos, V1. Nosotros sélo consideraremos el caso de que V sea
de dimension finita. Que este sea 0 es equivalente a que la aplicacién sea un isomorfismo
entre V y V* (siendo inyectiva y ambos de la misma dimensién es isomorfismo), 6 a que Q
sea una forma simpléctica (ya no serd degenerada).

En este caso dim(Ker(V — V*)) =0y 2n = dim(V), y todo espacio simpléctico (V, )
tendrd dimensién par.

A toda forma bilineal €2, en un espacio vectorial V', se le puede asociar una matriz dada
por los valores de una base, e, ..., e,, como entradas:
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Aij = Qei, ¢5)

Ademas en el caso de (V, Q) espacio simpléctico por el teorema de forma estdndar () se
puede tomar una base simpléctica, vy, ..., vywy, ..., w, tal que:

con u y v en coordenadas de la base.
DEFINICION 4. Simplectomorfismo: entre dos espacios simplécticos (V1,Q1) y (Va,Qs)

es un isomorfismo Vi ~ Vo que conserva la forma simpléctica, esto es:

©* Qe =M

En tal caso se dice que (V1,91) y (Va,Q2) son simplectomorfos

El prototipo de espacio simpléctico de dimensién 2n es (R%",Qq), con € esté definida
con base simpléctica:

V1 = €1,U2 =€3,...,Up = €p

W1 = €l4n,W2 = €24n,..., Wy = €2,

siendo los e; la base candnica.

Por el teorema de forma estandar () todo espacio simpléctico (V2", Q) es simplectomorfo
a (R?",€)) por un isomorfismo que lleve la base simpléctica en (V2" Q) a la canénica en
(R, Q).
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1.2. Subespacios de un espacio vectorial simpléctico

Sea W C V un subespacio del espacio vectorial V' con una forma antisimétrica, €2,
podemos restringir la forma a través de la inclusién ¢ : W < V y considerar la forma
i*Q = Qlw en W. En el caso simpléctico clasificaremos algunos subespacios posibles en
funcién segin su ortogonal en V. Su relacién con Ker(V — V*) se ve en el siguiente
resultado.

Proposicién 1.2.1. (V,Q) espacio vectorial y forma antisimétrica, con W subespacio. Se
verifica:

Ker(W = W*) =W nw.

Demostracion. Que e € Ker(W — W*) equivale a que e € V y YVw € W se tiene Q(e,w) =
0. Entonces e € W+,
Si e € WNW entonces Vv € V se tiene Q(e,v) = 0, entonces e € Ker(W — W*). O

Segun la restriccién de Q, en (V,Q) espacio vectorial simpléctico, al subespacio W' y
usando la proposiciéon anterior, distinguimos entre:

1. W es simpléctico si Q| es no degenerada, 6 equivalente W N Wt =o.
2. W es isotrépico si Q| = 0, esto es, W C W,

3. W es coisotrépico cuando su ortogonal simpléctico W es isotrépico, 6 equivalente
Wt cw.

4. W es lagrangiano si es coisotrépico e isotrépico a la vez, esto es, W+ = W.

Veamos ahora algunas de las propiedades de estos subespacios (hay otros posibles).
Consideremos siempre (V, Q) un espacio simpléctico, menos que se indique lo contrario.

Lema 1. Sea W subespacio de (V,2). Las siguientes afirmaciones son ciertas:

1. dim(W) + dim(W+) = dim(V).
2. (WHt =w.

3. W es lagrangiano < dim(W') = % y coisotropico < dim(W) = % e isotrdpico.
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Demostracion. 1. Por ser (V, ) simpléctico p es isomorfismo. Podemos identificar W+
con W°, el anulador de W en V*. Este tendra la dimensién complementaria de W
en V y dim(W) + dim(W+) = dim(V)

2. Si 2z € W por definicién de W, z € (W), Q(z,w) =0 Yw e Wt [z ¢ Wt
Luego (W)t =W.

3. Es directo de lo anterior y la definicién de lagrangiano.

1.3. Variedades simplécticas.

DEFINICION 5. forma simpléctica: en una variedad M es una dos forma diferencial,
w € O2(M), cerrada y tal que wy, es simpléctica ¥p € M.

Que la forma sea cerrada implica que es de De Rham, esto es, que varia suavemente
y estd en T, M. También cabe destacar que dim(7,M) = dim(M) y por tanto dim(M) es
par

DEFINICION 6. Variedad simpléctica: es la dupla (M,w) donde M es una variedad y w
una forma simpléctica en ella.

Cuando trabajamos con variedades simplécticas siempre estamos tratando de variedades
de dimensién par y orientables. Esto tdltimo se tiene por ser w” una forma volumen. A
continuacién damos algunos resultados directos de la definicién y algunos ejemplos. Mas
adelante veremos algunos mas.

DEFINICION 7. Simplectomorfismo: entre dos variedades simplécticas (My,w1) y (Ma,ws),
de igual dimension, es un difeomorfismo @ : M1 — My y tal que conserva la estructura
simpléctica de las variedades, esto es:

*
Y W2 = w1

Dado que conservan las formas simplécticas también conservaran w™. En particular los
simplectomorfismos son difeomorfismos que conservan el volumen.

Vimos que en una estructura simpléctica el tinico invariante era la dimensién, pero en
el caso de las variedades esto se reduce a algo local, que se vera méas adelante como conse-
cuencia del teorema de Darboux. Por tanto cuando trabajamos con variedades simplécticas
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localmente es 1itil pensar que estamos en R?" con coordenadas lineales (p1, ..., P, q1; s @n)
y la forma candnica wc a4y, definida:

n
woan = Y dpi A dg;.
i=1
Proposicién 1.3.1. Si (M",w) es una variedad simpléctica y compacta, se tiene:

1. H2(M,R) # 0.
2. H2j(M,R) #0 Y0 <j <n.

Demostracion. 1. Supongamos que el segundo grupo de cohomologia de De Rham es
nulo. Tomamos a € QY(M) tal que da = w. w"™ = d(a Aw A ... Aw) serd una forma
volumen y exacta a la véz, llegando asi a una contradiccién.

2. Razonamos igual para w* = da con a € QY(M) se tiene que w" = d(a A w"*)
serd volumen y exacta y volvemos a la misma contradiccion.

O]

A continuacién vamos a ver la generalizacién de que todos los espacios simplécticos de la
misma dimensién son simplectomorfos. Este es un hecho muy caracteristico de la geometria
simpléctica, ya que a diferencia de otras geometrias, como la riemanniana, dos variedades
simplécticas de la misma dimensién son localmente simplectomorfas. Esto nos permite con
frecuencia trabajar localmente con (R?™, (21,22, ..., Zn_1, %0, Y1,Y2; - -+, Yn—1,Yn)), ¥ cON
la forma )", dx; A dy;. Las coordenadas locales en las que toma dicha forma se llaman
coordenadas simplécticas o estandar. Esta generalizacion del caso lineal se conoce
como teorema de Darboux. La prueba de este se basa en la version relativa del teorema de
Moser. Este se demuestra por un argumento muy comun en simpléctica llamado el truco
de Moser, pero nos saltaremos su prueba.

Teorema 1.3.2 (Teorema relativo de Moser). Sea M con dos formas simplécticas definidas
en ellas wy y w1, y N una subvariedad compacta de M. Si¥p € N wy(p) = wi(p), entonces
existen entornos tubulares Uy y Uy de N, y ¢ : Uy — Uj difeomorfismo, tal que: p*w; = wy
y el siguiente diagrama conmuta

U() — Uy

io ™\ s
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. 0 i1 . . .
stendo N — Uy y N — Uy las inclusiones correspondientes

EL truco de Moser se usa para probar que entre dos formas simplécticas en una variedad
existe una familia de formas simplécticas suave que las une. Para ello se tiene que pedir
que tengan la misma clase de cohomologia de De Rham, lo que aqui nos viene dado por
coincidir en N.

Teorema 1.3.3 (Teorema de Darboux). Sea (M,w) una variedad simpléctica 2n-dimensional.
Vp € M, existe una carta en un entorno del punto, (U, 21,2, ..., Tn—1,Tn, Y1, Y2, - - - s Yn—15Yn)s
tal que la forma simpléctica tiene la forma

n
Z dx; N\ dy;
i=1
ésta se suele llamar carta de Darboux.

Demostracion. La prueba consiste en usar Moser relativo con N = p. Tomemos una base en
TyM y1,Y2, - . Yn—1, Yn tal que nos dé en un entorno de p las coordenadas (2, 25, ..., 2]_,

T YL, Yas - Yn_1,Y,) en las que
n
wip) = daf Adyil,
i=1

Ahora aplicamos Moser relativo aw y o’ = >"1" | dx Ady], que coinciden en p. Por este
teorema se tiene que existen Uy y U y un difeomorfismo ¢ : Uy — U tal que p(p) =py

" (Z dx} A dyé) =w
1=1

Se tiene: ¢* (3_1, dxi Ady)) = (3o, d(z) o) Ad(y; o ¢)). Estas nuevas coordenadas
nos dan localmente, en Up, la forma simpléctica como queriamos.

O
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1.4. Introduccién a grupos y algebras de Lie.

En ésta seccién definiremos lo que es un grupo de Lie, un dlgebra de Lie y enunciaremos
algunos teoremas de teoria clasica de Lie, sin demostraciéon. Para nuestro objetivo nos es
suficiente con considerar los casos reales y de dimensién finita.

Un grupo de Lie real no es mas que un grupo con estructura de variedad diferencial.
Obviamente tiene que haber un lazo entre ambas que haga compatibles las estructuras, éste
viene dado al pedir que la inversién y el producto sean las dos aplicaciones diferenciables,
es decir, suaves.

DEFINICION 8. Grupo de Lie: es un grupo G tal que tiene estructura de variedad dife-
rencial y se cumple que:

1. La inversion: a — a~* Va € G

2. El producto por un elemento a € G: b+ ab Vb € G

son funciones suaves

DEFINICION 9. Algebra de Lie real: es un espacio vectorial, g, con una operacion bilineal
{-,-} : 9 x g — R que cumple las siguientes propiedades:

1. Es antisimétrica: VX, Y € g {X, Y} = —{Y, X} .
2. Cumple la identidad de Jacobi: {X{Y,Z}} +{Z{X,Y}} +{Y{Z,X}} VXY, Z € g

Las notaciones g 6 Lie(G) son tomadas con frecuencia para designar al dlgebra asociada
a un grupo. A partir de un grupo de Lie podemos sacar su algebra de Lie, esto es la version
infinitesimal de dicho grupo de Lie. EL &algebra de Lie de un grupo contiene localmente
toda la informacion sobre la estructura del grupo. De ahi la relacién entre ambos.

Sea la traslaciéon a la izquierda L, : G — G , h — gh Vh € G. Llamamos vectores
invariantes por la izquierda a aquellos invariantes por esta aplicacién, esto es, X € y(M)
tal que dLy 0o X = X o Ly V. No es dificil comprobar que el conjunto de vectores por la
izquierda forma con el corchete de Lie de los vectores de la variedad un &algebra de Lie.
Ademss la aplicacién T,G — Lie(G) , v — dLy(v) nos da un isomorfismo entre el espacio
tangente al neutro y algebra de Lie del grupo.

Sabemos que a cada grupo de Lie le corresponde un algebra de Lie, pero no si al revés
también es cierto. Para ello se tiene el siguiente teorema de Lie que fue completado por
Cartan.
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Teorema 1.4.1. Cartan—Lie Para toda dlgebra de Lie real finito dimensional, g, existe
un grupo Lie real, G, tal que g = Lie(G). Y ademds al restringirnos a los grupos de Lie
reales simplemente conexos se tiene una biyeccion entre estos grupos y las dlgebras reales
finito dimensionales.

Dado un morfismo entre dos grupos de Lie, al tomar la diferencial en el neutro se
obtiene siempre un morfismo de dlgebras. Lo que no es cierto siempre es el contrario, pero
se tiene el segundo teorema de Lie.

Teorema 1.4.2. Sequndo Teorema de Lie Sean G y H, dos grupos de Lie con dlgebras
g y bh. Si suponemos que G es simplemente conezxo, para todo morfismo de dlgebras de Lie
b : g — § existe un morfismo de grupos ¢ : G — H del que ® es un levantamiento. Esto
es, conmuta con las exponenciales, ¢ o expg = expy o P y se tiene que dep = ®

Otro resultado que se usara mas adelante nos dice que un gran ntmero de las algebras
de Lie se pueden trabajar como grupos matriciales, lo que por ejemplo nos simplifica la
expresion de la exponencial. Entre ellas estan las nuestras, las dlgebras de Lie reales y finito
dimensionales.

Teorema 1.4.3. Teorema de Ado Toda dlgebra de Lie sobre un cuerpo de caracteristica
cero y de dimension finita se puede embeber dentro de un dlgebra de Lie matricial.

Por 1ltimo un criterio que nos facilita decir que un subgrupo de Lie sea un grupo de
Lie.

Teorema 1.4.4. Teorema de Cartan Todo subgrupo cerrado de un grupo de Lie es un
grupo de Lie.

1.5. Estructuras complejas

Existe una estrecha relacién entre la geometria simpléctica y la compleja, por medio de
las estructuras complejas compatibles. En un espacio vectorial complejo el producto por i,
la unidad imaginaria, es un endomorfismo tal que su cuadrado da —Id. Una generalizacion
de esto es la estructura compleja. Ademads el concepto de estructura compleja compatible
nos entrelazard en la variedad los conceptos de métrica, forma simpléctica y estructura
compatible de tal forma que dos de ellos determinan al tercero, pero no determinado de
forma univoca.

DEFINICION 10. Estructura compleja: en V es un endomorfismo J : V — V tal que:
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J?=—Id.

El par (V,J) es llamado espacio complejo

Todo espacio complejo (V,J) tiene dimensién par. Esto se ve tomando determinantes,
ya que nos sale det(.J)? = (—1)d1m(V)_

Ejemplo 1. El ejemplo mds sencillo es considerar R?", ¢ lo que es lo mismo C", tomando
como estructura compleja Jo(e) = ie 6 de forma matricial para R?":

0 —Id
Id 0
Para ver la relacion a partir de los espacios simplécticos tomemos Pi, ..., Pn, q1y -+, Gn

coordenadas lineales simplécticas, en R®™. Y dotémoslo ademds de forma simpléctica candni-
ca y métrica euclidea:

n
wo = dei A dg;.
=1

go = <'7 >
Visto en forma matricial en la base, nos queda:

Jo(u) = <10d _éd> +

e = o (1 30 (o

go(w,v) = (-v-)’ <Iod Iod> +

La relacion entre las tres se puede expresar como sigue:
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wo(u, v) = go(Jo(u),v)
Esta ultima relacion nos lleva al concepto de compatibilidad. En un espacio pueden
existir muchas estructuras complejas, a nosotros nos interesa que estén relacionadas con {2

DEFINICION 11. Estructura compleja compatible: para un espacio vectorial simplécti-
co, (V,w), es una estructura compleja, J, tal que:

gr(u,v) = Qu, J(v)), Yu,veV

es un producto interno en V.

El que sea una estructura compleja compatible es equivalente a que conserve la for-
ma simpléctica ( Q(u,v) = Q(J(u), J(v)) Yu,v € V ), esto es que sea simplectomorfismo, y
Qu, J(v)) > O0Vu,v € V — {0} . Aun que no se pueda tener la unicidad, si se puede ver la
existencia de estructura compleja compatible para un espacio simpléctico.

Proposicién 1.5.1. Sea (V,Q) un espacio vectorial simpléctico, siempre existe una es-
tructura simpléctica compatible con €.

Demostracion. Tomamos una base simpléctica p1, ..., pn, q1, .-, Gn, y definimos J tal que:

J(@) =pi, Ji) =—aq

Esto nos da que J es isomorfismo y J? = —Id. La base {J(p;),J(¢;)} es también
canénica y J isomorfismo simpléctico.

O]

Esta prueba depende de la base tomada. Podemos construir estructuras complejas sin
necesidad de fijar base y ademas se ve mejor el concepto de compatibilidad.

Tomamos producto interno positivo cualquier g en V. Existe una tinica aplicacién lineal
A:V =V tal que:

g(A(u),v) = Q(u,v).
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Y esta ademds cumple A* = —A.

g(A%u,v) = g(u, Av) = Q(v,u) = —Q(u,v) = Qu,v) = g(—Au,v)

Si A? = —Id hemos terminado. En caso contrario descomponemos como sigue. Se tiene
ue AA* es simétrica ositiva. Tiene por tanto una factorizacién
)

AA* = Bdiag(\i, A2, ..., A\n) B!

,con A;’'s los autovalores. Tomamos raices y nos queda v AA*, que es definida po-
sitiva y simétrica. Ahora tomamos la descomposicién polar de A, A = AA*J, con
J = (VAA*)7LA . No es dificil comprobar que esta .J resultante se una estructura compleja
compatible con €.

Asi dado una g y una €2 tenemos una J inducida. Y también se tiene el siguiente
resultado.

Proposicién 1.5.2. Sea (V,Q) un espacio simpléctico con una estructura compleja que
sea simplectomorfismo, J, la aplicacion

g:VxV — R
(u,v) — Qu,J(v))

es una forma bilineal simétrica.

Como la forma simpléctica es no degenerada, también lo serd la g definida. Y si se pide
(1.5), entonces es un producto interno.

A partir de © y una estructura compatible, J, podemos sacar una métrica g. De hecho a
partir de dos elementos de una terna de forma simpléctica, estructura compleja compatible
y métrica, (€2,J,¢g), podemos sacar un tercero. Esto no significa que si a partir de un
par (€2, g) usado en el procedimiento anterior de una J tal que luego con (£2,.J) podamos
recuperar g. Por lo general la g obtenida por Q(u, J(v)) no coincidira con la usada para
obtener J.

Pasemos a generalizar lo anterior a nivel de variedades simplécticas.

DEFINICION 12. Estructura casi compleja: en una variedad M es una aplicacion suave
que a cada punto le asigna una estructura compleja en el tangente:
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J:M — Endg(T,M)
r +— Jp: T .M—T.M
us Jp(u), con J2(u)=—Id

,esto es un campo de estructuras complejas en M. A (M, J) se lo llamaremos variedad
cast compleja.

DEFINICION 13. Estructura casi compleja compatible: Es una variedad simpléctica
(V,w) con una estructura casi compleja tal que g definida

e gy T MxT,M — R
(u , v) = go(u,v) = wy(u, J(v))

es una métrica riemanniana. El triplete (w, g, J) se llama Triplete compatible cuando

9(,) = w(-, J ()

Proposicién 1.5.3. Sea (M,w) variedad simpléctica y g métrica en M. Entonces existe
una estructura casi compleja compatible J en M.

Demostracion. Es como el caso lineal pero haciéndolo de forma suave. Una vez elegida
una métrica la descomposiciéon polar (1.5) es tnica. Siendo esta métrica suave en M la
construccién vale para una J suave en M. ]

Veamos ahora que las posibles estructuras complejas compatibles para una variedad
simpléctica dada no pueden ser demasiado distintas unas de otras.

Proposicién 1.5.4. Sea (M,w) una variedad simpléctica y Jo y J1 dos estructuras compa-
tibles con ella. Entonces 3J;,V0 <t < 1, familia suave de estructuras complejas compatibles
que lleva Jy a J1.

Demostracion. Tomando las dos métricas correspondientes por compatibilidad, gz, v g7,
y hacemos una combinacién convexa

th(" ) = (1 - t)gJo('a ) + thl('? )
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que nos da una familia suave de métricas. Y aplicando la descomposicién polar obte-
nemos una familia de J¢’s compatibles uniendo Jy a Jj.

O]

Corolario 1.5.5. El conjunto de estructuras cast complejas compatibles en una variedad
sitmpléctica es conero por caminos.

1.6. Grupo simpléctico

Volvamos otra vez a los espacio simplécticos para definir Sp(V'). Toda forma simpléctica
nos define una forma volumen. Todo endomorfismo que conserva una forma simpléctica
conservara también el volumen canénico. Un tal endomorfismo tendré determinante uno y
sera isomorfismo. Y por tanto, siendo un isomorfismo que conserva la forma simpléctica se
tiene que es un simplectomorfismo.

Al conjunto de dichos simplectomorfismos en V' lo denotamos Sp(V). Es claro que
es un grupo. Vimos antes que todos los espacios simplécticos de la misma dimension son
simplectomorfos y podemos trabajar como en (R?", Q). Lo mismo pasa con Sp(V), Asf que
nos referiremos al grupo simpléctico de una espacio de dimensién 2n como Sp(2n).

Para poder trabajar con Sp(2n) con més facilidad lo miramos como un grupo matricial.
Que sea ¢ : V — V un simplectomorfismo, con matriz asociada A, equivale a Q(u,v) =
Q(p(u)p(v)), que visto en forma matricial nos da:

AJ()At = J[) con JQ = <—?dn Ig”) (1.1)

Por tanto podemos definir el grupo simpléctico matricialmente como las matrices 2n x2n
que cumplen la ecuacién 1,1. Este grupo matricial es ademés un grupo de Lie con su
correspondiente algebra como vemos a continuacion.

Proposicién 1.6.1. Sp(2n) es un grupo de Lie de dimension n(2n + 1).

Demostracion. Sp(2n) es un subgrupo de GI(2n). La identificacién matricial se hace igua-
lando a constantes funciones diferenciables. Luego ademds de subgrupo es cerrado. Por
el teorema de Cartan se tiene que es un grupo de Lie. La dimensién coincide con la del
tangente, que veremos ahora con el algebra de Lie. ]
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El algebra de Lie de Sp(2n) es sp(2n) = {M € GL(n) : JoM! + MJy = 0}. Esto se ve
facilmente tomando una curva I +tM y tomando la derivada en 0 de la férmula 1,1.

Ya en capitulo anterior hicimos una identificacién entre Jy y el producto por la unidad
)}f _)3,/ vemos como se
relacién los subgrupos de GL(2n,R): Sp(2n),0(2n), GL(n,C)) y U(n).

compleja. Identificando la matriz compleja X + Y7 con la real
Proposiciéon 1.6.2.
Sp(2n)NO(2n) = Sp(2n)NGL(n,C) = GL(n,C)NnO(2n) = U(n)

Demostracion. La pertenencia cada uno de estos grupos lo podemos expresar matricial-
mente. Para Sp(2n) tenfamos M JoM! = Jy. Para los otros dos:

M e GL(n,C) <= MJy=JoM
MeO@2n) < MM=1

Calculando un poco con matrices sale que cuales quiera dos implican al tercero. Tome-
mos el caso Sp(2n) U O(2n). Si M € Sp(2n),

M = (g g) tal que A'C =C'A, B'D=D'B, A'D-C'B=1

teniendo para nuestro caso O



Capitulo 2

Acciones en variedades
simplécticas

En éste capitulo consideraremos las acciones en variedades, y dentro de ellas las que
conservan la estructura simpléctica. Para ello empezaremos viendo los campos que con-
servan esta estructura y que nos servirdn para ver si lo hacen las acciones, los campos
simplécticos. De entre ellos destacan los hamiltonianos, a los que exigiremos algo mas;
veremos que en realidad los campos simplécticos no son mas que aquellos que localmente
son hamiltonianos, y al restringirnos a estos iltimos las acciones que les asociamos (con
algin requisito més) son muy valiosas. A partir de ellas podemos construir nuevas varie-
dades simplécticas (reduccién), ver las simetrias de un sistema mecénico clasico é dar una
foliacion en variedades simplécticas del dual de un algebra de Lie.

2.1. Campos Hamiltonianos

En este capitulo consideraremos siempre que estamos trabajando una variedad simplécti-
ca (M,w).Denotaremos como x (M) los campos suaves en M, asi como 2" serdn nuestras
n—formas. En esta primera seccién definiremos los conceptos de campo simpléctico y ha-
miltoniano, que juegan un papel importante en las acciones en variedades simplécticas y en
los sistemas integrables en mecéanica. El primero se refiere a aquellos campos que conservan
la forma simpléctica, es decir, un campo X tal que Lxw = 0. La variacién de la forma
simpléctica es nula a lo largo de las curvas integrales de X. En el caso de que su flujo este
definido globalmente (M sea compacta o completa) este serd un simplectomorfismo de M
en si misma.

23
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El segundo supone un caso particular del anterior, si a caso mas importante. Siempre
que tengamos definida una forma bilineal no degenerada, ya sea un forma simpléctica
6 una métrica, en un espacio vectorial la aplicacién definida a continuacién nos dard un
isomorfismo con su dual. Igual que hicimos a nivel de algebra lineal definimos la aplicacién:

) — QY M) (2.1)
X — IxWw

En cada punto esta aplicacién es la que definimos a nivel lineal para w,. Vimos que era
un isomorfismo. Luego la nueva sera un isomorfismo punto a punto y por tanto también glo-
balmente. Ademds de un isomorfismo lineal sobre R, si tomamos una funcién f € C*°(M)
se tiene que p(f - X) = f - p(X), siendo un morfismo de C'*°(M)-médulos.

Por tanto, usando la inversa, a cada 1-forma « le asignamos X, el campo que por ¢ nos
da a. En caso que a = df, al campo Xgr, que denotamos Xy, serd el campo hamiltoniano
de la funcién f, y a esta su funcién hamiltoniana. Por ser isomorfismo la aplicacién 2.1
a cada f le corresponde un unico Xy, pero a la inversa f no serd tnica, ya que bajo suma
por constante df queda invariante.

Veamos ahora como se comportan estos campos. Tomemos una funcién f € C*°(M) y
su campo hamiltoniano X . Supongamos que Xy es completo y podemos tomar su flujo
p:R x M — M. Este nos da un grupo uniparamétrico de difeomorfismos que cumple:

d -1 _
%op = Xy

{ Po = Idum
Veamos que la forma simpléctica no varia a lo largo de las curvas integrales. Aplicando
la féormula de Cartan,

d . .
api‘w = p; Lx,;w = p; (dix,w +ix,dw) = 0.

La tltima igualdad se obtiene de dix,w = d o d(f). Es equivalente que ix,w sea una
forma cerrada a que w no varie con su flujo. Este caso es el de los campos simplécticos
(Lx, = %pf w = 0). Esto nos permite definir los campos Simplécticos y hamiltonianos
como sigue.

DEFINICION 14. Campos simpléctico: X, € x(M) tal que cumple una de las tres afir-
maciones equivalentes:
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1. EXaw =0

2. El flujo de X, ,pt, preserva w. En caso de que este definido globalmente el flujo, nos
da una familia de simplectomorfismos.

3. ix,w es una forma cerrada.

Todas estas afirmaciones son también ciertas para los campos hamiltonianos que defi-
nimos a continuacion.

DEFINICION 15. Campos hamiltonianos: X, € x(M) tal que cumple una de las dos
afirmaciones equivalentes:

1. ix,w es una forma ezvacta.
2. ix,w = df para alguna f € C>°(M). Siendo f llamada su funcion hamiltoniana

Observaciéon 1. Los campos hamiltonianos preservan sus funciones hamiltonianas.

Ly, f = iu,df = iy iz,w =0

Luego las funciones hamiltonianas son constantes en cada curva integral de Xy, es
decir, cada pi(p) Vp € M estd contenida en un conjunto de nivel de f: f(p) = (pi f)(p) =
fpi (D))

Observacién 2. A wveces a los simplécticos se los denomina localmente hamiltonianos.
Esto no es un idea muy descabellada si miramos su relacion a través de la Cohomologia de
De Rham. Si Hhp(M) = 0 todas las uno formas cerradas son automdticamente exactas
y por tanto todo campo simpléctico es hamiltoniano. Localmente toda variedad tiene un
abierto en el que se da este caso, luego siempre podemos pensar que para un entorno ambos
tipos de campo coinciden.

Pasamos a ver ahora la relacién que se establece entre estos campos y la mecanica, para
luego dar paso a su relacién con el corchete de Poisson.
La construccién de un campo hamiltoniano tiene como anélogo el gradiente, grad(f), en
geometria riemanniana. Tomando una métrica g en M y la aplicacién , v : x(M) —
QYM), X~ ix(g), definimos grad(f) = v=1(df).

Localmente podemos pensar en una variedad simpléctica como (R?", wcan) por el teore-
ma de Darboux. Tomando una parametrizacién local, (p1, ..., pn, q1, ---, @) €n una variedad
simpléctica (M,w) , con la aplicacién 2.1 en el caso simpléctico se obtiene los siguientes
resultados.
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Proposicion 2.1.1. Se cumple

0
) = —dg;, o(5z—)=dp;

o( 9

Op;

Demostracion.

n n

Z@% (2 dg; N d]%) = Z;iéfpi(d%) N dp; — dg; N i@%(dpi) = —dg;
1= 1=

E igual para el otro. O]

Saquemos ahora con lo anterior una expresiéon de Xy en funcién de f.

_ [ Of of " /9f O of 0
X 1 1 . ) = E — <
p=odf)=e (3pi dpi 0g; dqz> <3pz~ 0q;  0q; 8p,~) (2.2)
i=1

En coordenadas canénicas Xy se puede calcular mediante el productor matricial X; =
Jdf. Esta expresién da lugar a un sistema dindmico conocido como ecuaciones Hamilton,
que son al fin y al cabo el sistema que da las curvas integrales p; = (¢(t),p(t)) de Xy.

Estas ecuaciones aparecen con frecuencia en la mecdnica. Como en el hamiltoniano de
la energia con las leyes de Newton.

Para el caso del gradiente de f € C*°(M) en las coordenadas candnicas de la métrica
g, compatible, se obtiene

“/0f 9 Of O
d(f) = =
grad(f) ; <5Qi 9q; " op; 31%)
Sea J la estructura casi compleja estdandar tal que J(a%i) = 8?01- y J(E)?:»i) = —%,

sacamos J(X ) = grad(f).



2.1. CAMPOS HAMILTONIANOS 27

Pasamos a definir el corchete de Poisson y la relacion entre los campos hamiltonianos y
simplécticos como subalgebras de Lie. Buscamos un dlgebra que nos dé informacién sobre
estos campos y/é la estructura como variedad simpléctica dada por w.

Pasemos ahora a definir un édlgebra sobre las funciones C*°(M) por medio de la forma
simpléctica.

DEFINICION 16. Corchete de Poisson:Sean dos funciones f,g € C°>°(M), el corchete de
Poisson serd definido como la funcién

{fvg} = W(Xf’Xg)

Esta expresion puede aparecer cambiada de signo segin como se tome la forma simplécti-
ca en el espacio de fases. La expresion anterior puede ser expresada de formas equivalentes
que usaremos seguin nos convenga.

1,9} = w(Xy, Xy) = ix,w(-, Xy) = ix,(dg) = X;(g)

El corchete de Poisson es local. Este se puede restringir a cualquier abierto 6 usarlo en
gérmenes de funciones. Por la ecuacion 2.2 podemos expresarlo localmente como

B n af 89 8f 09
{f,9} = ; <8piaqi N 8%‘8]91')

Ahora veremos una proposicién que esclarece un poco mas la relacién con los campos
hamiltonianos. Y después que este corchete realmente nos define un algebra de Lie, y no
sblo eso si no que es también un algebra de Poisson. Ambas unidas nos dan un morfismo
de algebras.

Proposicién 2.1.2. Si X,Y € \SV"™(M), campos simplécticos en M, en una variedad
simpléctica (M,w), entonces [X,Y] serd un campo hamiltoniano. Y ademds, gracias a ser
w cerrada, se puede ver que w(Y, X) serd una de sus funciones hamiltonianas.

Demostracion. La prueba se basa en la siguiente formula de Cartan

i[X’y]oz = Lxiya— Lyixa = [Lx,iy]a, Va forma diferencial.



28 CAPITULO 2. ACCIONES EN VARIEDADES SIMPLECTICAS

Al igual que el resto de férmulas de Cartan se demuestra para funciones y 1-formas
y de ahi por linealidad para todo grado. En nuestro caso, siendo w cerrada se simplifica
obteniendo:

IxyWw = Lxiyw — Lyixw
= dixiyw +ixdiyw —iydixw — iyt xdw
= dw(Y, X))

Esto nos da la relacién X5 = —[Xy, Xg]

DEFINICION 17. Algebra de Poisson: Es un dlgebra de Lie (P,{}), que ademds cumple
la regla de Leibniz, esto es:

{f,gh}y ={f,gth+g{f h}

Proposicion 2.1.3. El corchete de Poisson sobre las funciones suaves nos da un dlgebra
de Poisson (C*(M),{}) de dimension infinita.

Demostracion. La antisimetria es directa de la forma simpléctica, al igual que el ser una
forma bilineal.
Para la ecuacién de Jacobi desglosamos los tres términos que aparecen en ella

{£i{g,n}} = Xp({g,h}) = X;(X,4(h))
{9:{n. f}} = Xy({h, [}) = =Xo(X;(h))
{h.{f,9}} Xpg(h) ==Xy, Xgl(h)

que sumados nos dan

{fv {ga h}} + {ga {h7 f}} + {hv {f)g}} = Xf(Xg(h)) - Xg(Xf(h)) - [Xf7 Xg](h) =0

Para terminar comprobamos la regla de Leibniz
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{fig-h} = w(Xyf, Xgn)
= ix,d(g-h)
= ix, (d(g)-h+d(h)-g)
= ix, (w(, Xg)h+w(, Xp)g)
= {f,gh} ={f.g}h +g{f,h}

O]

De lo anterior obtenemos el siguiente antimorfismo (tal y como hemos definido el cor-
chete, sino seria morfismo) de algebras de Lie

(@=(M),{--})
f
}

L1
>

{

Por otra parte restringiendo el corchete en los campos de la variedad a los simpléctico
(x°¥™(M)), y los hamiltonianos (x7*™(M)) y usando la proposicién 2.1.2 obtenemos las
siguientes inclusiones de algebras y subdlgebras de Lie.

(XHam(M)v [7}) - (XSym(M)’ [7]) - (X(M)> ['7 ])

2.2. Acciones en variedades.

Empezaremos desde una accién de un grupo de Lie G sobre una variedad M, que
denotaremos como G O M y a partir de ahi presentaremos la accién infinitesimal. Siempre
sobreentenderemos que dicha accién es diferenciable.

Un ejemplo conocido de una de estas acciones es el de un campo completo, X, en la
variedad. Siempre posemos integrar y obtener el flujo p : R x M — M. Fijando el punto,
p € M, nos da la curva integral que pasa por p en tiempo 0, esto es:
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Por otro lado si variamos sélo el ¢t nos da una familia de difeomorfismos,p; : M — M,
que es ademds un grupo uniparamétrico {p; : t € R}, denotando con frecuencia exp(tX)p; }
para indicar el campo. Es facil ver que p; o ps = pi4s ¥ p; 1 — p_,. Esto nos induce el
morfismo de grupos

Como cada campo completo nos induce una accién de R en M, y podemos sacar un
campo completo de cada accién de R, se obtiene la biyeccién

{X € x(M) completo } — {RO M}
X — exp(tX)=ps

d
Xp = %t:()\llt(p) — \I’t

Sea una accién ¥ : G O (M, w). Si no se especifica ésta serd una accién por la izquierda.
Se puede ver como la evaluacién evy : G x M — M tal que (g,p) — ¥(g,p) = Y4(p),
asi como tomar el difeomorfismo dado por cada elemento del grupo

G — Dif(M)
g — Ye()

dando asi un morfismo de grupos. Sea x € M un punto fijo de la accién. Podemos tomar
la diferencial de cada difeomorfismo dW, : T, M — T, M obteniendo la aplicacién

av .G — Autgp(T,M)
g — d¥,

Sea G O M una accién y X € g podemos inducir por la accién un campo en la variedad.

DEFINICION 18. Accidn infinitesimal 1): Sea una accion ¥V : G O M, de G un grupo de
Lie . Esta nos define la siguiente accion infinitesimal:
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donde el campo inducido por la accion nos viene definido bajando por la exponencial de
G, expg, y viendo como varia el difeomorfismo en cada punto

d

d
VM = %tzowewc(—tv) (p) = %tzo(epr(_tv) op)

Esta aplicacién sera un morfismo de algebras (antimorfismo al tomar ¢ en lugar de —t)
va que Y([X,Y]) = [¢(X),¥(Y)]. En la definicién hemos incluido que G sea simplemente
conexo, que no es necesario, pero esto nos permitira por el segundo teorema de Lie hacer el
camino contrario. Si tienes una accién infinitesimal ¢ : g — x(M) y Yo ¥ (v) es completo
entonces existe una accion ¥ : G x M — M de la que proviene.

2.3. Acciones simplécticas y hamiltonianas.

A partir de ésta seccién trabajaremos con variedades simplécticas (M,w). Definiremos
las acciones simplécticas, las que conserva w, y las hamiltonianas.

DEFINICION 19. Accidén simpléctica: es una accion diferenciable que preserva w
U : G — Symplec(M) C Dif(M).

esto es, actia por simplectomorfismos.

Si tenemos una accién simpléctica la accion infinitesimal nos generara campos simplécti-

COS. p p
v LyoweL  (pmyry= 2
ves m ¢ dttzo(pt J'w dttzow

Esto nos vuelve a dar una relacién biunivoca entre campos simplécticos completos y
acciones simplécticas de R en (M, w).

A nosotros nos interesan aquellas acciones que nos den campos hamiltonianos, vy €
xHem(M). Como vimos no resulta descabellado restringirnos a este tipo de acciones, al fin
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y al cabo localmente los dos tipos de campos son lo mismo. Estas acciones son precisa-
mente aquellas en las que existe una aplicacion momento. Definiremos el concepto por una
construccién que en realidad es el de comomento para dar paso a la definicién comun, con
la aplicaciéon momento.

Dada la accién simpléctica ¥ : G O (M,w), podemos tomar los morfismo de algebras
de Lie 7 : (COO(M)a {'7 }) - (X(M)a ['7 ])7 [ Xf yvig— XSym(M)7 VUM

DEFINICION 20. Accién hamiltoniana: Es una accidn simpléctica W : G O (M,w) para
la cual existe un morfismo de dlgebras pu* : g — C*°(M), que serd la dual de la aplicacion
momento, tal que T o u* = 1. Esto es:

preog — XSU(M) — C®(M)
v vy = Xp— f.

Visto con la forma significa i,,,w = df .

El que exista dicha aplicacién no implica que la 7 sea invertible, pero si nos dice que
cada campo simpléctico proviene de una funcién. Luego una acciéon hamiltoniana es aque-
lla simpléctica donde todos los campos generados por la infinitesimal son hamiltonianos.
La aplicacién p* es la comomento y su extrana notacién proviene de ser la dual de la
momento p. Esta tltima se saca como dual de la comomento. Para cada p € M tomamos
el elemento e € g*, tal que:

Dejando variar el p se obtiene

w:M — g*
p = ¢€p

En la préxima definicién usaremos la notacién p¥(p) = (u(p), v). para referirnos al valor
que toma el pairing entre un elemento de g*, u(p), y un vector v de g.

DEFINICION 21. Aplicacidon momento: Sea V : G O (M,w) hamiltoniana. Es la aplica-
cion p: M — g* tal que:
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1.VYveg vy = Xy ( estoes, u¥ es la funcion hamiltoniana de vyr).

2. p es G-equivariante: i(Vy(p)) = Adgu(p).

DEFINICION 22. Aplicacidon comomento: Sea V¥ : G O (M,w) una accién hamiltoniana.
Es una aplicacion p* : g — C*®(M) tal que p*[X,Y] = {p*(X),p*(Y)} vy el siguiente
diagrama conmuta:

C®(M) T X*V™(M)
N AV

0 equivalente: p*(v) = p¥ es la funcion hamiltoniana de vyy.

2.4. Representaciones adjunta y coadjunta

En ésta seccién veremos dos tipos de representaciones frecuentes en geometria simplécti-
ca. Mas tarde las usaremos en la aplicaciéon del teorema de convexidad del teorema de
Schurs. Para empezar recordemos que es una representacién. Sea G un grupo de Lie una
representacion en un espacio vectorial, V', es una accién G O V por isomorfismos 6 equi-
valente un morfismo de grupos G — GL(V).

Para todo grupo de Lie podemos tomar la acciéon suave por conjugacion G O G.

v:G — Dif(Q)
g +— g donde 1y(h) = ghg™' = Lyo R,-1(h) Vh € G.

Para cada 1 tomamos la derivada en la neutro, a la que denotamos como Ady = dc1),.
Y luego dejando variar la g se obtiene Ad.

Ad:G — GL(g) = GL(T.G)
g — Ady:T.G — T.G.
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Ad se conoce como representacién adjunta y nos da una accién G O g. Si ahora
hacemos la derivada en el neutro en G de la accién se obtiene ad = d.Ad

ad : g — End(g)

definida por (deAd)(X)(w) = &|—oAd(ezp(tX))w donde X, w € g. ad es una aplicacién
que en cada X te da Xj, su campo generado por la accién infinitesimal. Si uno se fija en el

ntcleo de Ad se ve Ker(Ad) = Z(G). Por tanto, se tiene el morfismo de grupos inyectivo
G/Z(G) — Aut(g).

La representacién adjunta esta estrechamente relacionada con la estructura de algebra
de g, como vemos a continuaciéon. Este resultado no es cierto para toda algebra de Lie,
se necesita que sea un grupo matricial, pero al trabajar con algebras de dimension finita
sobre R por el teorema de Ado nos sera siempre valido para nosotros.

Proposicion 2.4.1. Sean X,Y € g, donde g es un dlgebra de Lie de dimension finita sobre
R. Se tiene:

adx(Y) =[X,Y]

Demostracion. Por el teorema de Ado toda dlgebra de Lie de dimensién finita que esté sobre
un cuerpo de caracteristica cero (en nuestro caso R) se puede embeber en un dlgebra de
matrices cuadradas. Por tanto trabajemos como si fuera un algebra matricial.

adx(Y) = d(Ad)y (V)

d
= £|t:0 (Adexptx) (Y)

= %|t=0 (exp(tX)Yexp(tX)fl)
_ £|t=0 (exp(tX)Yexp(—tX))

= Zico (T+tX + o(2)Y (I — tX + o(t2)))
— |t o (Y +tXY + o(t*)Y)(I — tX + o(t?)))

d
Zrl=0 (V =YX +4XY + o(t%))

= (Y —tY X +tXY + o(t?)) [i=0
- [X,Y]
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O]

Para definir una accién de G en el dual, g*, usamos el pairing. Definimos la represen-
tacion coadjunta como la accion Ad* : G O g* definida por

(Ady(1),v)grxg = (I, Adg-1(v))grxg 1 € g"v € g.
esto induce una accién en g* como (Ad*)4(l) = l o Ad,-1. El tomar g~' es para ob-
tener una representacién por la izquierda: (Ad*),(Ad*), = (Ady—1)*(Adp-1)* = (Adp-1 0
Adg-1)" = (Adp-14-1)" = (Ad(gp)-1)" = (Ad)}),. Ddndonos al dejar variar la g el morfismo
de grupos
Ad* : G — GL(g").

Para obtener el andlogo de ad podemos tomar la diferencial en el neutro y proceder igual
que antes 6 por dualidad. En este segundo caso, siendo Xy« € x(g*) el campo inducido por
la accién infinitesimal se tiene:

(Xg)e,Y) = <§tt0(Ad*)ezp(—tX)<aY>
= (A ) o))
= (Al )G Y)
= (G Ay (V)
= (¢,adxY)

= (X Y]) = [X, Y](Q)

Las orbitas de la representacion coadjunta las llamamos 6rbitas coadjuntas y escri-
bimos para un ¢ € g*

Oc={Ad¢C: g€ G}

Ahora vamos a definir una forma simpléctica en 7O y esto lo hacemos a partir de una
definida en g. El tangente a la érbita nos vienen determinado por los generadores de la
accion fundamental, 7,0 = {X(() : X € g}. Xy nos denota los campos generados por
la infinitesimal en el dual del algebra de Lie.
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VX eg V¢ eg Xg(C) (exp(—tX)(), es el tangente a la drbita.

" dti—o
Proposicion 2.4.2. Sea ¢ € g* y sean X, Y € g. La dos forma en g*, w, definida como
we g xg— R tal que:

we(X,Y) = ((,[X,Y]), V(e g

nos define una forma simpléctica sobre las orbitas de la accion coadjunta, siendo asi sub-
variedades simplécticas de g*

Demostracion. Para comenzar dejamos uno de los campos variar; se tiene:

g —>T<O
X — Xg=(C)

Con lo anterior es facil ver que la forma que acabamos de definir es antisimétrica
y bilineal, por la definicién con el corchete de Lie. Miremos el nicleo para ver su no
degeneracién.

Ker(we) = {Xeg:VYeg:((,[X,Y]) =0}
= {Xeg: X (() =0}

Se tiene por tanto, que donde se anula son los campos inducidos nulos, luego esta
forma serd no degenerada. Ademads se puede ver que el nicleo es precisamente el algebra
del estabilizador. Expresamos la forma w, en funcién de como varfa Ad’

cap(—tx) ¥ Vemos que
sea nula significa que la variacion de Ad:xp(_ +x) €S cero, esto es X estd en el estabilizador,
como vemos a continuacién.

wC(Xv Y) = <Ca [X7 Y]>

d
= <Ca %t:Oadewp(tX) Y>
= <Ad* (—tX)C7Y> =0

erp
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También sabemos que la forma inducida depende de forma suave del punto , esto
estd claro Por cémo estd definida ((,[X,Y]). Llamamos w a la forma diferencial inducida
por w¢ en cada punto.

Para ver que es una forma cerrada tendremos que echar mano de un par de férmulas.
Ambas se pueden demostrar, al igual que el resto de férmulas de este tipo, viéndolo para
grado cero y uno, y generalizando por linealidad. Luego sélo basta verlo para estos dos
grados. Por ejemplo la formula de De Rham es

dw (X1, X2, ooy Xy Xng1) = (=)' Lx,w(X1, X0, .., X1, Xigt, oo, X, Xn1)
+ Z(_l)lJrjw([Xi?Xj]7"‘7Xn+1)
1<j

Para una 1-forma se tiene: da(X,Y) = X(a(Y)) — Y(a(X)) — «([X,Y]). Localmente
podemos presuponer que da = df A dg, luego LHS = df Ndg(X,Y) = df(X) Adg(Y) —
df(Y)Ndg(X) = X(f)Y (9) = X(9)Y (f) y RHS = X (fY(9)) —Y(fX(9)) — f[X,Y](g9) =
X(F)Y (g)+F(X (Y (9)) Y (/)X () F(Y (X () F (X (Y (9))+/(Y (X(9))) = X(F)¥ (g)—
Y(f)X(g). Y el caso de O-formas es inmediato. Para la férmula de Cartan, Lxiy —iyLx =
i[x,y], se demuestra igual.

Ahora usamos estas férmulas para ver que es cerrada la forma. Se tiene:

dw (Xg*,)/g*, Zg*) = EXH*W(Y;,*, Zg*) - C.P
(W([Xg+, Yg=], Zg+) — C.P)

Para el primer término se tiene:

— (W([Xge, Yg], Zge) — C.P) = (. [[X, Y], Z]) + C.P = 0.

Para el otro se tiene:
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Lx.w(Yg,Zg) = Lx.iz.iv,.

= iz |[Exgerivgew| T, ] @Y, )

g7 "g
= iZg* [iYg* ) ﬁXg*CU] + iZg*i[Xg* ’YE*]W + z[xg* ’Zg*]'i}/g*w)

= Lxpw (Ve Zg) +w (£x, Yo Zge ) + 0 (Yoo, £, 2 )

Los dos ultimos términos se anulan por la identidad de Jacobi de forma directa. El
primero metemos la derivada de Lie dentro y también por Jacobi da 0, como vemos a
continuacién.

(exp ), = (G oit2D)

¢ dt+=0
= ((,[Y.Z]) =0.

¢

O]

Por lo tanto con el método anterior podemos definir una forma simpléctica en las
orbitas coadjuntas de g*. Con esto las érbitas coadjuntas nos dan siempre subvariedades
simplécticas. En el caso concreto de u(n)* nos dan subvariedades simplécticas compactas.
Esto lo usaremos mas adelante para el teorema de Schur-Horn.

2.5. Reduccién simpléctica

En esta breve secciéon enunciaremos uno de los resultados junto con el teorema de con-
vexidad més importantes de acciones en simpléctica, la reduccion simpléctica 6 teorema de
Marsden-Weinstein-Meyers. Nuestro objetivo es cocientar y darle al espacio de érbitas una
estructura simpléctica; para ello usamos una acciéon G O (M,w) por simplectomorfismos.
El teorema nos dice que bajo ciertas condiciones podemos cocientar la preimagen de la
aplicacion momento de un punto,u~!(a), por el grupo resultando una variedad que admite
una estructura simpléctica tal que su pullback por la proyeccion coincide con la de la forma
simpléctica original restringida a y~!(a). La prueba de este enunciado requiere artilleria
pesada que no nos sera util mas adelante, y la omitiremos.
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Teorema 2.5.1. Sea (M,w,G,u) un G—espacio hamiltoniano, con G un grupo de Lie
compacto, yi : p~(a) <= M la inclusion. Supongamos que a es un valor reqular de i y Gy el
estabilizador por la accion coadjunta actia libremente sobre ' (a). Entonces su espacio de
orbitas, u='(a)/Gq, es una variedad que admite una tinica estructura simpléctica, denotada
(Myeq = 17 5a)/Gaywred, tal que i*w = T wpeq, donde © : p~t(a) — p=(a)/Gq es la
proyeccion candnica.

A la variedad (M, eq, wreq) se suele llamar reduccién 6 cociente simpléctico. Ahora
mostraremos un ejemplo que se usard mas adelante y que es importante, ya que normal-
mente a los espacios proyectivos se les da una estructura simpléctica por medio de la
reduccién.

Ejemplo 2. Espacios proyectivo simpléctico Sea la variedad simpléctica (C", wsrp),
con wstp la forma simpléctica canonica. Y tomemos la accion diagonal del circulo del
circulo, U(1) O C"*L, la aplicacién momento de esta accion serd:

1 n
W) =5 2
1=

Para esta accion el unico punto critico de la aplicacion momento es el 0. Podemos tomar
la preimagen de un valor reqular como % y la preimagen serdan todos aquellos puntos tal

que la norma sea 1, esto es S*" 1. Por tanto
1
Mfl(i)/gl — S2n+1/Sl — CP®

serd el cociente simpléctico, con forma simpléctica reducida.

Ahora vamos a ver como se trabaja la reduccién con el producto de dos grupos. Sea
G = G1 X Go un grupo formado por el producto de dos grupos de Lie compactos actuando
sobre una variedad simpléctica (M,w). El dlgebra de Lie de dicho grupo sera la suma
directa de g1 y g2 y analogamente para el dual.

Si es una accién hamiltoniana se tendrd una aplicacién momento p : M — g] X g3, que
se puede descomponer como p = ({1, f12), con p; : M — g¥. El que la aplicacién momento
sea equivariante hace que lo sean cada una de estas aplicaciones por separado respecto del
grupo compacto, esto es, u1 lo es de Ga, v a la inversa.

Reduzcamos (M,w) respecto de una de ellas en el origen, por ejemplo, la de G;. Si
suponemos que G actiia libremente sobre p;*(0) podemos reducir a (u;1(0)/G1,wred) =
(M1, w;. Y podemos obtener la aplicacién momento que tiene G2 cuando actiia sobre este
cociente.
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Proposicién 2.5.2. Sean G = G x Gy actuando en (M,w), siguiendo con la notacion
anterior, y sean la inclusidn i1 : ul_l(()) — M y la proyeccion candnica m : ul_l(O) — M.
Si G1 y Go son compactos y Gy actuando libremente sobre ,ul_l(()), entones se tiene que
existe Jo : My — g5 tal que:

1. Js es diferenciable y cumple Jo o mp = o o iy.
2. Jy es la aplicacion momento de la accion G O (My,w).

3. Si G actia de forma libre sobre 1u(0,0), entonces Ga lo hace sobre J2(0) y se tiene el
siguiente simplectomorfismo

J2(0)/G2 = 1(0,0)/G

Esta reduccién respecto de un subgrupo es una herramienta muy comin para la cons-
truccion de variedades simplécticas como es el caso de los proyectivos.

2.6. Ejemplos de acciones hamiltonianas

En ésta seccién se exponen algunos de los ejemplos méas usuales de acciones hamilto-
nianas. Daremos primero una motivacién fisica.
Una de las principales aplicaciones de los campos hamiltonianos, y en consecuencia tam-
bién de las acciones hamiltonianas, es la mecanica. Estos nos ayudan a describir un sistema
fisico.

Un sistema mecénico cldsico puede ser descrito por (T*M, H) donde H € C*°(T*M) es
una funcién hamiltoniana. El fibrado cotangente es canénicamente simpléctico. El campo
asociado Xy induce por la estructura simpléctica la ecuacién de movimiento

d

=X
dtpt H© Pt

Estas ecuaciones nos describen el movimiento de las particulas que serdn desplazadas
a través de las curvas integrales de Xp.

Tomamos como caso concreto R3, con coordenadas (1, ¥, z3) = = y el potencial V ().
Por la segunda ley de Newton una particula de masa m tiene su movimiento descrito por
i =-VV(z).

El momento del sistema serd p, con p; = ma; para ¢ = 1,2,3. El Hamiltoniano de este
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sistema es H(z,p) = 5=|z|*> + V(z), la suma de la energfa potencial y cinética. El espacio
de fases serd T*R> = R, con coordenadas (x1, z2, 23, p1, p2, p3). La segunda ley de Newton
nos da:

21l

dp; _mdiz _ _dV _ _dH
dt — dt dr; ~— dx;

de; 1, dH
dt _mpl_dpi

estas son las ecuaciones de Hamilton vistas en . Asi se ve que la energia, H, estd con-
servada por el movimiento.

Esta forma de plantear un sistema de movimiento tienes sus ventajas. En el tenemos
una EDO de primer orden en lugar de una de segundo orden. Por tanto, no nos es necesario
saber valores iniciales de las derivadas primeras para predecir su comportamiento futuro.
Nos da también una descripcién en independiente de las coordenadas ya que la forma
simpléctica es candnica, en este caso.

Lo anterior no es sélo aplicable al caso (T*M, H) si no que generalizamos a (M,w, H)
con H € C*°(M). En la fisica resultan interesantes las simetrias, que corresponden a
una accién de grupo, ya que conservan las cantidades. Aqui entra en juego la aplicacién
momento, que es considerada como la conservadora de cantidades.

Teorema 2.6.1. Sea (M,w, H) un sistema Hamiltoniano y p : M — g* la aplicacion
momento de G O M tal que H es invariante. Entonces p es constante a lo largo de las
curvas integrales de Xpgr, el campo hamiltoniano correspondiente.

Demostracion. Sea p; el flujo de Xp, y X un campo en M.

Cup) (V) = dulp) S pu(Y)

— w(Xnop,Vop)
= iXHw|pt (YM © pt)
= dH(pt)(Yu o pt)

d
= %|s=0H(€$P(3y)Pt) =0

Alternativamente se puede demostrar pasando a la interpretacién infinitesimal: £Lx,, uX =
ixydp® = {p*, Xy} = Ly H = 0. O

Esto nos dice que el campo Xy es tangente a los conjuntos de nivel de la aplicacion



42 CAPITULO 2. ACCIONES EN VARIEDADES SIMPLECTICAS

momento. Este resultado es una de las formas del teorema de Noether. Ahora veremos
algunos ejemplos habituales de aplicaciones momento.

Ejemplo 3. Momento angular (rotaciones en R?)

Tomemos como variedad M = RS = T*R3 con la forma simpléctica candnica, en RS.
Este era el modelo visto antes para el movimiento de particulas. A las coordenadas candni-
cas las volvemos a llamar (x,p) € R3 x R3, correspondientes a posicién y momento.

St buscamos que nuestro potencial sea invariante bajo rotaciones obtendremos una fun-
cion Hamiltoniana invariante por la accion SO(3) O R®, dada como:

R(z,p) = (Rx, Rp) con R € SO(3).

El grupo ortogonal especial tiene por dlgebra de Lie s0(3), formada por las matrices
antisimétricas. La accion infinitesimal resulta ser

vyp(z,p) = (exp(tv)z, exp(tv)p) = (v, vp) Yv € s0(3)

dti=o

La aplicacion momento resultante serd:

w((x,p))(v) = (p,vz)

El dlgebra s0(3) se puede identificar con R3 wia el isomorfismo

o:R¥ — s0(3)

Y1 0 —-y3 o
y2 | Y3 0 -
Y3 Y2 Y1 0

esto nos da

o:(yr=yxzyp(z,p)(y) =(p,yxz)=(TXpy).

Y por tanto, la aplicaciéon momento tendrd la forma:
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pw(w,p) =z X p.

Ejemplo 4. Momento lineal (traslaciones)
Sea M = R*", con la forma simpléctica candnica Y -, dg; Adp; y G = (R, +). Este se
puede interpretar como un espacio fase con n grados de libertad.

Definimos la accion v : G O R?™ por traslacion, como:

evy : R" xR — R
q q\ _ (a+p
@ (1) — w(f)-("27)

Luego como iypq, (dg; A dp;) = vdg;, la aplicacion momento resultante serd:

p:R™ — R”
(¢p) +— wulg,p)=p

tal que

1’ (q,p) = (u(g, p),v) =p-v.

Ddandonos asi el momento lineal.
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Capitulo 3

Teorema de convexidad de la
aplicacion momento

En este capitulo veremos el objetivo de este texto, en el se enuncia y da la prueba del
teorema de conexidad (3.3.5) y algunos ejemplos, entre ellos el teorema de Schur-Horn.
El resultado que buscamos se demostré por Atiyah [2] y Guillemin-Strenberg [8] casi a la
vez. La prueba seguiremos es la de estos ultimos que estd dividida en tres partes. En la
primera se enuncian algunas de las propiedades de la aplicacién momento y los puntos fijos
de la accién, asi como el caso concreto del toro. Luego se da una prueba local, alrededor de
los puntos fijos y una versién relativa, para ello compararemos la accién localmente con la
accién en el tangente, de la que obtendremos una expresion explicita y que su imagen sélo
difiere en una traslacion de la nuestra. Para terminar la demostracion usaremos la teoria
de Morse y la version relativa para ver que efectivamente la imagen es la envoltura convexa
de los puntos fijos de la accién.

En la dltima seccién del capitulo veremos el teorema de Schur-Horn 3.4.3. El Teorema
de Schur-Horn ya se conocia tiempo antes de que se demostrase el teorema de convexidad
de la aplicaciéon momento y fue una de las motivaciones para ello. Este es un teorema de
algebra lineal con una enunciado bastante sencillo; dice que a cada matriz hermitica H
con autovalores (A1, Ag, ..., A\p—1, Ap), su vector diagonal estard contenido en la envoltura
convexa de los vectores que tienen por entradas las permutaciones de estos autovalores.
Y al contrario, a cada vector de esta envoltura le corresponde la diagonal de una matriz
hermitica con estos autovalores.

45
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3.1. Propiedades generales de la aplicacion momento

En esta primera parte vamos a ver algunas de las propiedades de la aplicacién momento
de una accién hamiltoniana. En concreto vamos a caracterizar su comportamiento para
puntos con un mismo estabilizador. Sobre todo su imagen.

Para empezar supongamos que G es un grupo de Lie conexo y compacto, que actiia por
una accién hamiltoniana sobre una variedad simpléctica (M,w), con aplicacién momento

.

Teorema 3.1.1. Sea x € M, G, su estabilizador en G y g, la correspondiente dlgebra de
Lie. Entonces la imagen de d®, : T, — g* es el anulador de g, en g*

Demostracion. Sea v € M« : g — T, M la aplicaciéon que lleva cada v € g a la evalua-
cién en x del campo que genera por la accién infinitesimal. Y sea § : T, M — T, M* el
isomorfismo dado por i,w.

Como las componentes de la aplicacion momento son las funciones hamiltonianas de
los campos de la accién infinitesimal, d®¥ = i,:w, se tiene que av o 3 serd la traspuesta de
d®, : T, M — g. Luego la imagen de d®, vendra dada por el anulador del nticleo de a0 .
Este, estara formado por todos los vectores en g tal que v¥ se anule en x, es decir, el dlgebra
del estabilizador.

O

Corolario 3.1.2. La aplicacion momento es submersion en x € M es equivalente a que el
estabilizador de ese punto sea discreto.

Ahora daremos unos cuantos resultados (algunos sin prueba) sobre el papel del estabi-
lizador en las acciones en acciones de grupos compactos. Para fijar notacién G es un grupo
de Lie compacto y conexo que actiia sobre M , una variedad conexa diferencial cualquiera
de forma diferencial.

Proposiciéon 3.1.3. Si M es compacta, mdédulo conjugacion, existe solo un niumero finito

de estabilizadores de puntos de M en G.

Demostracion. Una prueba de este enunciado se puede encontrar en Mostow [12] 6 en Yang
[15]. O

Proposicién 3.1.4. Si H es un subgrupo cerrado de G y My = {x € M : G, = H}.
Entonces My es una subvariedad de M y el espacio tangente a My en x € My serd los
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vectores H-fijos en T, M. Ademds si M es compacta, My estard formada por un nidmero
finito de componentes conexas.

Demostracion. Una prueba de este enunciado se encuentra en Montgomery [11]. O

Ver Sternberg, pag. 212

Supongamos ahora que se trata de (M,w) sobre la que G actiia por una accién hamil-
toniana.

Lema 2. Sea (V,Q) espacio vectorial simpléctico y H un subgrupo compacto de Sp(V'). El
conjunto de vectores H-fijos en V., W, serd un espacio vectorial simpléctico.

Demostracion. Tomamos una métrica B H-invariante. Se tiene que 3! A : V — V tal que:
Vo,w eV B(v,w) = Qv, Aw).

y A es H-invariante. Si v € Wy Q(v,w) = 0 Yw € W, se tiene que Aw € W. Luego
B(v,w) =Q (v, Aw) = 0Vw € W y , por tanto, v = 0. O

Teorema 3.1.5. Sea H un subgrupo cerrado de G y sea Mg =x € M : G, = H. Entonces
My serd una subvariedad simpléctica de M.

Demostracion. Por la proposicion 3.1.4 se tiene que My sera subvariedad. Tomando T, My
como W en el lema 2 se tiene que ésta sera simpléctica. O

Teorema 3.1.6. Sea b el dlgebra de Lie de H y sea h° su anulador en el dual del dlgebra
de Lie, g*. Entonces cada componente conera de Mg serd llevada por ® a un espacio
afin en g* de la forma p + h°. Ademds si H es un subgrupo normal de G se tiene que
Q|rry, : My — p+b° es una submersion.

Demostracion. La primera parte del teorema es el teorema 3.1.1, que restringiéndonos a
x € My nos lleva la imagen al anulador de §°.

Como H es normal, es invariante por conjugacion y My se G-invariante. Entonces la
restriccion sigue siendo una acciéon hamiltoniana, y su aplicacién momento es:
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composicion de la inclusién con la aplicacién momento.Vv € g :

(Poi)’ = P01
i d(®¥ 01)
d(®’) o di

Tyw O di

=
B
O
~
<
Il

= iy(i*w)

siendo (Mp,i*w) la variedad simpléctica. Fijandonos que en cada punto de My el
estabilizador es H, al aplicar sobre esta el teorema 3.1.1 se tiene que (d®'), : T, M — bh*
es una aplicacién sobreyectiva.

O]

En el caso de que H = G, y éste sea un grupo abeliano, se tiene que ®(M¢) es discreto.
Si ademas la variedad es compacta podemos afirmar que hay una cantidad finita de dichos
puntos. En este caso, veremos mas adelante que seran los vértices de la imagen de la
aplicacién momento.

Para el caso més concreto de G = T" (un n-toro) y M una variedad compacta se puede
hacer una particion de M como suma disjunta. Por compacidad la proposicion 3.1.3 nos dice
que hay una cantidad finita, bajo conjugacion, de subgrupos estabilizadores T, 15, ..., T;,.

Renumerando de tal forma que se puedan tener T; = T} con ¢ # j, podemos suponer
que para 11,75, ..., Ty, los M7,’s son conexos. Luego:

Por ser todos subgrupos normales se tiene que los M7, son subvariedades simplécticas y
existe un vector a; € t* tal que ® lleva M7, a un abierto de a; +t; de t* por el teorema 3.1.6.
Ahora lo enunciamos como teorema para poder usarlo en la versién relativa del teorema
de convexidad local.

Teorema 3.1.7. Cada Mr, serd una subvariedad simpléctica de M. Y existe a; € t*, tal
que ® lleva Mr, a un subconjunto abierto de a; + t; en t*.

Ahora llamando vy, v, ..., v los vértices de ® : M — t*, se tiene el siguiente resultado.
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Teorema 3.1.8. ®(M;) es la union de un nimero de componentes conezxas, tal que cada
una es la envoltura convexa de conjunto de los v;’s.

Demostracion. Supongamos que T es un n-toro. Por lo anterior ®(Mry,) serd un punto
de, concretamente uno de los vértices. Supongamos como hipétesis de induccién que es
cierto para codim(T;) < m. Si codim(T;) = m se tiene que la imagen de My, es un abierto
contenido en a; + t' . Las componentes de su frontera estdn contenidas en [ J ; O(Mrj) tal
que T3 D T;. Por hipétesis de induccién se tiene el resultado para @(MTJ.) y por tanto para
O(Mr,). O

3.2. Teorema de convexidad local

En ésta segunda parte vamos a obtener la expresion de la aplicacién momento de la
accién hamiltoniana en un entorno de un punto fijo. Primero pasaremos a la accién en el
tangente por la exponencial para compararla con la de la accién lineal. Y luego, veremos
que la imagen de ésta se puede describir en pesos.

Seguimos en el caso de la accién de un grupo de Lie compacto y conexo, GG, sobre una
variedad M. El siguiente teorema al igual que en otros de formas locales se demuestra
usando el truco de Moser.

Teorema 3.2.1. Sean w, y w1 dos formas simplécticas G-invariantes definidas sobre M
y tal que wyg = w1 en x € M. Entonces existe un entorno de x G-invariante, Uy(z), y una
aplicacion G-equivariante V : (Uy, x) — (M, x) tal que V*w; = wy.

Demostracion. Sea w; = (t—1)wo+twi, Vi€ [0,1]. Esta serd una familia suave de formas
simplécticas (por linealidad y conmutacién con pullback).

Supongamos que existe p : UXR — M, isotopia, donde U es un entorno de z G-equivariante
y contractible tal que pfw; = wqg. Sea:

d
ﬂo -1

V= 0P VteR

Se tiene por la regla de la cadena que:
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Ahora supongamos que cumple dicha ecuacién en [0,1] para algin v;. Integrando se
tiene:

* *
PrWt = PoWo = Wo.

Por la forma de w; se tiene:

dwt
E = w1 — Wo.

Ademas ésta serd cerrada en U y (w1 — wp)z = 0. Por la formula de la homotopia en
un entorno, que se puede encontrar en las lecturas de Cannas [6], sec 6,3, existe una forma
wen U tal que wy —wp = dp , con p, = 0. Tomando la media sobre G' podemos suponer
ademads que u es G-equivariante. Aplicando la formula de Cartan tenemos:

Lvtwt = d(z‘vtwt) + ivtdwt
= d(ivzwt)
dwt
dt
Obtenemos asi la ecuacién de Moser i,,w; = —p. Como wy = omegay = wy en x
podemos suponer que w; no es degenerado en U, 6 en un subentorno Uy si fuese necesario.
Por tanto existe una unica solucién vy de la ecuacién. O

Ahora vamos a considerar el caso en que G O (M,w) es una acciéon hamiltoniana
con aplicacion momento ¢ : M — g*. Consideramos w; la forma simpléctica lineal en el
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tangente a x € M y ®; la aplicacion momento asociada a la accion G O T, M Con el
resultado anterior podemos pasar localmente de la forma G-equivariante el pullback de la
exponencial de la forma simpléctica en M y ver que su aplicacién momento difiere en una
traslacién de la aplicacién momento de la lineal.

Tomando una métrica G-equivariante se tiene en M en cada x € M el difeomorfismo
local G-equivariante dado por la exponencial en M. Luego 3Uy(0) entorno de 0 en T, M y
V(x) entorno de z en M tal que exp: Uy — V es un difeomorfismo G-equivariante.

Tomando wy = (exp)*w por el resultado anterior se tiene que existe Uy C V, entorno
deO0OaTl,MyV:Uy— T, M tal que ¥V*w; = wy.

Teorema 3.2.2. Las aplicaciones momento &g = ®oexp : Uy — ¢g* y ®1 : ¥ (Up) — ¢*
difieren en una constante.

Demostracion. Por la propiedad de las momentos i,,,w = d®“™ y tomando la diferencia
sale inmediato. O

Corolario 3.2.3. La imagen de las aplicaciones momento ®y : Uy — g* y ®1 : V(Up) — g*
son idénticas, modulo traslacion.

Podemos trabajar entonces, de forma localmente equivalente con ®, : T, M — g*. Por
ser la dimension el tUnico invariante en un espacio vectorial simpléctico podemos consi-
derar Sp(2n) en ((R)?n,wcan) 6 (C,wcrp). Donde la estructura casi compleja se puede
identificar con 1.

Para poder expresar de forma explicita la aplicacion momento vamos a usar pesos.
Asi que antes enunciaremos un par de lemas de algebra lineal que nos seran ttiles. Sea
A € End(V), un subespacio de los endomorfismos de V', un espacio vectorial sobre K.
Donde K denota el cuerpo de los nimeros reales, ¢ los complejos. Diremos que V es si-
multdneamente diagonalizable si existe una descomposicion en subespacios vectoriales

de V, V=@, Vitalque VA A: A|; = \1d; , \; e K.

Lema 3. Sea A € End(V), subespacio. Siv € V' es un autovalor simultdneo de todos los
elementos de A, entonces existe un | € A* tal que Av = A\(A)v VA€ A

Demostracion. Se tiene: N(A+ B)v = (A + B)v = Av + Bv = A(A)v + A(B)v. Luego se
cumple ]

Lema 4. Si A C End(V') subconjunto (no necesariamente subespacio). Que los elementos
sean simultdneamente diagonalizables equivale a que sean diagonalizables y conmuten dos
a dos.
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Demostracion. Sison simultdneamente diagonalizables es obvio que cumplen las dos cosas.
Por otra parte, sean A, B € End(V). Induccién: dim(V) =1 = es claro.

Sidim(V) =n>1=V =@, V; y se tiene Ker(A — \Idy) , V; subespacio de V' y
ademas A y B conmutan.

Si A es diagonalizable = también lo es Aly,. Luego Aly, y Bly, lo son. Por hipdtesis de
induccién son simultdneamente diagonalizables. Y por construccién con la suma directa
Alvig-ovi ¥ Blvig--ev, también lo son. O

A continuacién vamos a ver un algunas propiedades de Sp(T,M).

Lema 5. U(n) es un subgrupo mazimal compacto de Sp(2n).

Demostracion. Si W € Sp(2n) N O(2n):

b = <§ ;f) € GL(2n).

tal que X7Y = YTX y XTX 4+ YTY = 1 (el vector unitario), esto es ortogonal y
simpléctico. Es lo mismo que U = X + Y sea unitaria. Luego Sp(2n) N O(2n) = U(n).
Sea H C Sp(2n) un subgrupo compacto. Sea ¢ € Sp(2n) matriz simétrica y definida
positiva., tal que:

Yoy = VY EQG.

Una matriz ¢ se puede sacar como la promedio de ') de 1 € G. Usando la medida
de1 Haar para un grupo de Lie compacto.
2 seguird siendo simpléctica. Luego:

1 —1
veG = ppp2 € Sp(2n)NO(2n) =U(n).
y se tiene que G serd un subgrupo conjugado de U(n) O

Para cada p € T, M, tomamos ®o(p) € sp(T, M), tal que a cada elemento de sp(T, M)

le asigna la evaluacion del polinomio asociado en el punto p. Dejando variar la p se tiene
Dy : T, M — sp(T, M)*.

Lema 6. La aplicacion ®5 corresponde a la aplicacion momento de la accion lineal del
grupo simpléctico Sp(T, M) en T, M.
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Ahora un lema muy sencillo sobre aplicaciones momento, que nos dice como hacer una
momento por la inclusién del algebra

Lema 7. Sea la accion ® : G O (M,w) EA g*. Sea H C G subgrupo. Entonces la restriccion

a H de la accion, ¥ : H O (M,w) tiene por aplicacion momento (M,w) , g* . h*. Con
i: b — g, la inclusion de dlgebras de Lie.

Demostracion. Llamamos vy, ¥ v, a los campos inducidos por las correspondientes ac-
ciones infinitesimales: ¢ : g — x(M), v = vp y ¥ : b = x(M), v vp,. Y J' = (i0 J).
Con pocos célculos se tiene:

ix(van)]p = %hzo i{¥(exp(—tv),p)}

%hzo ®{i(exp(—tv),p)} = (var )p

Por ser la accién de G una accién hamiltoniana, no es dificil ver que también lo es la
de H. Se tiene J' = i,,, a. Veamos que J'(h§) = Adj J'(§). Haciendo el pairing, tenemos:

(J'(h€),v) = J"(hE)

= (ivp, @) (RE)

= (AdyJ'(€),v)
(J'(€), Adj-1v)
= {i(ad, 1v)a, @)

Aplicando el criterio infinitesimal al usar la férmula de Cartan (i,d = L, — di,):

LwM2 (i’UM2 ) = Z'wM2 (divM2 )
= luy, (—Z'UM2da) = —w(wiy,va)
= duy, (dJY) = (dJ% wu,)
= (iUM2w,wM2> = Wiylv, O

Usando la férmula de Cratan —da(X,Y) =Y (a(X)) — X(a(Y)) + a([ X, Y]) se tiene:
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—da(vny, waty) = —vag ((wary)) + War, (VM) + oy, wag, )

y de Lxiy —iyLx = i[x,y] Sacamos:

L), (ivM2 a) = bog, (LU)M2 @) + Uonry war,]

J[wzv]

Luego por el criterio es H-equivariante. La aplicacién momento resultante es Jy =
-k
i* o Jg.

O]

Corolario 3.2.4. ®; : T, M — g* es la composicion de i* : sp(T,M)* — g* con Py :
T, M — sp(T,M)*, donde i viene dada por la accion en el tangente.

Demostracion. Teniendo en cuenta las inclusiones G — Sp(T, M) y g — sp(T,M)a
prueba es inmediata con los dos lemas anteriores , Lema 6 y Lema 7. O

Ahora vamos a ver como se puede expresar ¢, a partir del hecho de ser una composicién
de la dual de la inclusién i* y la accién dada por Sp(2n). La imagen de la inclusién serd un
toro. Veamos como es la representacién de dicho toro. Como trabajar con todo sp(2n) no
es complicado buscamos un subgrupo de Lie en el que sea mas facil.

Sea la accién T O (V,w), con (V,w) espacio vectorial simpléctico, y sea J la estructura
compleja compatible. A nivel de algebra lineal vimos que (V,w,J) = (C",wsrp,i). Los
morfismos que respetan la forma simpléctica estardan en Sp(2n) y los que respetan la es-
tructura compleja compatible estardn en Gl,(C). Luego que respeten ambos significa que
estdn en U(n). Por tanto, una acciéon T O (V,w) que respete dichas estructuras se puede
ver también como un morfismo T — U(n).

Se tiene por ser T abeliano que Vt € T , ¢(t),or conmutan dos a dos. Y siendo ¢(t) €
U(n) estos seran diagonalizables. Luego aplicando los lemas vistos antes existe una des-
composicién V = P, V; tal que ¢(t)|v, = Agp)idy;.

Ahora pasemos al nivel de las algebras. Recordemos que dado un morfismo de grupos
de Lie ¥ : G — H este siempre se puede levantar a ¢ : g — b por medio de la



3.2. TEOREMA DE CONVEXIDAD LOCAL 95

composiciéon con las exponenciales. Para ir en direccién contraria tendriamos que usar el
segundo teorema de Lie.

¥

-

g )
iexpa lepr
G v, H

siendo ademés d. ¥ = 1.

En nuestro caso el diagrama es:

t—21l(n)
le:qur iempmn)
T

—¢>H

A nivel de algebras podemos razonar como antes. Sabemos que i(n) esta forma-
do por las matrices antihermiticas. Sea a : t — (n) un morfismo de algebras, co-
mo son diagonales y conmutan dos a dos las matrices antihermiticas se tiene: JV =
Docrom(iir) Va tal que VA en la imagen Aly, = a(A)Idy,.

Al escribir Hom(t,iR) estamos suponiendo que estos subespacios tiene dimensién com-
pleja uno. Lo cual, gracias al Lema de Schur, no es suponer mucho ya que «(A)Idy, en
un espacio de dimensién finita V,, se puede descomponer sucesivamente hasta que tenga la

dimensién deseada.
Miro la relacidon que se da entre ambos morfismo ¢ y «:

d

dleaprn(tA)ly,) = % dleapr(tA)1dly,

d

= e CTPU) (toy (A)) - Id|y,
d ths(A)

= * . Id — o (A)d
dt 0" Vo = &u(A)Ldlv,

dti=0

Por tanto se tiene que VA € t, ¢.(A) = a(A). En esto hemos utilizado que el dltimo
diagrama conmuta. Sea 8 = ¢ o expr y L = Ker(expr). Vemos que (3 tiene que ser trivial
en L: f(z) =1Vx € L. De hecho es ficil ver que 8 : t = U(V) es representacién de
grupos si y sélo si lo es 5. Y también que ¢ es irreducible (esto es, s6lo hay un dos espacios
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invariantes y uno es trivial) si y sélo si lo es f3.

Empecemos en el caso mas sencillo, supongamos que se trata del caso irreducible.
Por el Lema de Schur la representacion irreducible de un abeliano es de dimensién uno.
Asi B(A) , A € t, es la multiplicacién por un nimero complejo y para su representacién
tiene que cumplir (A + B) = 5(A) - 8(B). Luego una tal representacién se puede expresar
de la forma

B(A) = ¥4 con [ e t*

Para que sea trivial en L se tiene [(A) € Z VA € L. Luego ha de cumplirse que
le L*={let :l(x) € ZVx e L}. Nos queda el siguiente teorema.

Teorema 3.2.5. Una representacion unitaria irreducible del toro, ¢, estd definida por la
eleccion de l € L*

Seguimos en el caso irreducible. Vimos que sp(V') se puede identificar con los polinomios
cuadraticos en V. Recordemos que estamos mirando el toro formado por la imagen de la
inclusién en U(n) que a su vez estd en Sp(V'). Llamemos a este toro H. Por lo acabamos
de decir existen coordenadas simplécticas estandar (x,y) tal que:

:172+y2

2

h=R={a ta € R}

i* . . C
y con h* 2R — t* — 0, se tiene por el corolario que nos da ¢; como composicién que
esta es

=t (S52)

compuesta con la dual de la inclusiéon. Al introducir el i* aparecen los pesos que hemos
visto de la representacién y nos queda:

)= a (S

donde o € L*.
Ahora volvamos un poco para atrds. Estdbamos en U(n) para que se conserven w y J.
Teniamos también la descomposicion
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V:@Va

ac€Hom(t,iR)

y por Schur teniamos se tiene que dim(V,) = 1. Siendo este el caso por la férmula
que relaciona g ,w y J se tiene que si V,, V3, también son ortogonales simplécticos. Vv, €
Va y V’UB c Vﬁ

g — iw(Va,vg) = 0 = —iw(va, vg)

entonces (V,w) = (Va,, wWay ) X (V,w)(Vay, way) X - -+ X (Va,,, wa, ), €s una descomposicién
en espacios simplécticos. La aplicacién momento serd la de cada una de las correspondientes
a cada subespacio por cada coordenada. Por lo tanto recopilando lo anterior nos queda el
siguiente teorema

Proposicion 3.2.6. Sean ai, s, ...,apn € t* los pesos de la representacion de T en T, M.
Entonces, existen coordenadas simplécticas x1,Ta, ..., Tn, Y1, Y2, ..., Yn tales que la aplicacion
momento ®1 : T, M — g* se expresa de la forma:

(2,) Hzaﬂ;ﬁ)

Corolario 3.2.7. La imagen de ®1 serd la envoltura conica de los pesos:

n
S(O[l,O[Q, ...,Oln) — {Z S;Q; - S > O}
i=1

Teorema 3.2.8 (Teorema local de convexidad). Sea la accion hamiltoniana T O
(M,w), con T n-toro y (M,w) variedad simpléctica. Sea ® : M — t* su momento y x € M
un punto fijo por la accion. Entonces, existe un entorno U(z), en M y otro entorno V, de
(®(x)) en t* tal que:

e(U) =V N (P(x) + S(ai, az,...,an)) (3.1)
siguiendo con la notacion de antes en pesos.

Demostracion. Por el teorema 3.2.2, tenemos que localmente coinciden en T, M la aplica-
cién momento de la accién lineal y de la aplicacién momento de 1" llevada por la exponen-
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cial, bajo traslacion. Luego por el corolario inmediatamente anterior, el 3.2.7, se tiene el
resultado.

O]

Ya tenemos descrita localmente en los puntos fijos de la accién la imagen como un cono
con vértice la imagen de este punto. A continuacién, obtenemos una forma relativa de este
teorema para usarla méas adelante junto a la teoria de Morse para el teorema de convexidad.

Sea un punto con estabilizador H, p € H, no necesariamente fijo por la accién. restrin-
gimos la accién usando la dual de la inclusion de las algebras:

o [
Sy:M— g-— b*

Definimos S’(a1, ag, ..., ay) = (i*) "1 S(a1, ag, ...,a,)}. Esto es la preimagen por la i*
de la aplicacién momento dada por H en un entorno:

‘I)H(U) = ‘I)H(:E) + SH(al, a2, ..., an)

Ahora veamos que:

dU) =i Yoy (z) + Su(ar,as,...,an)}

= ®(x) + 5 (a1, a9, ..., o)

Para ello volvemos a usar la accién lineal simpléctica, en un entorno del origen del
tangente, para trabajar mejor.

Teorema 3.2.9. Existen entornos U(z) y V(®(x)), de x € M y su imagen en g* tal que:

OU) =V N (P(x)+ 5 (a1, a2, ....,an))

Demostracion. Consideramos sin pérdida de informacién el tangente T, M, de origen x €
M, con la forma simpléctica lineal, M un entorno suyo y la acciéon de H, la accién isotrépica
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lineal en el. Sea My el conjunto de puntos que tiene a H como estabilizador. My se puede
expresar como My = W N M, para W un subespacio vectorial de T, M.

Por 3.1.7 ® : M — bh* lleva My a un abierto del espacio afin ®(x)+h° como submersién
en 0. H actia de forma trivial sobre W y @ serd constante en el espacio afin a+W € T, M,
a € TyM. Luego a + W es llevado por ® a 7= 2(®x(a)) = h° + ¢ (con ¢ = ®(a)). Esta
serd una submersion cerca del 0 . Luego la imagen de a + W contendrd un entorno de q.
Como esto es cierto Va suficientemente cerca del 0, ® : M — h* tiene un entorno abierto
de ®(z) en su imagen en 7 H(®y(1)).

O]

3.3. Teorema de convexidad global

En esta parte usaremos la teoria de Morse-Bott para ver que ®V tiene un tinico maximo
local, para todo v perteneciente al algebra de Lie. Seguimos en el caso de una acciéon
hamiltoniana de G, grupo de Lie compacto, sobre la variedad simpléctica (M,w), con
momento ¢ : M — g*.

En una funcién suave f : M — R decimos que una valor, a, es un maximo local si
dxg € M y U, entorno de xp, tal que f(zg) =ay f(z) <a,VzeU.

Sea M una variedad conexa. Se dice que f : M — R es una funciéon de Morse-Bott si:

1. El conjunto de puntos criticos, C, esta formado por subvariedades conexas.

2. Hess(f), el Hessiano de f, es no degenerado en las direcciones normales Vp € C.

Se tiene ademds que el indice de f, i, serd constante en cada componente C; de C. El
indice de cada componente C; lo denotamos ;.
Ahora tomamos V f de una funcién de Morse-Bott, para una métrica dada de M. El flujo
es p: R x M — M. Para cada componente conexa C; definimos:

Wi={peM: ¢(p) —C; t— o0}

Por un resultado de Bott [4].

Teorema 3.3.1. Si f es un funcion de Morse-Bott cada W; es un fibrado sobre C; con
fibra una ij-celda tal que:
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dim W; = i; 4+ dim C}

y M se puede descomponer como una suma disjunta:

M= Jw

Corolario 3.3.2. 5i f : M — R es una funcion de Morse-Bott y el indice de cada compo-
nente conexa de los puntos criticos, ij, es par entonces alcanza un tinico mdximo local.

Demostracion. Sean C1,...,C) las subvariedades formadas por las componentes conexas
del conjunto de puntos criticos con maximo local f|c, = a; y Ck41, ..., Cn las restantes.

Por cémo hemos definido las W/s, los que tengan un méximo local tienen que ser de
dimensién par, y son abiertos de M.

La codimensién de W;, por Hess(f) no degenerado en la direccién de la normal tiene
que ser i_. Luego para k + 1,..., N la codimensién serd mayor que 0, 6 por hipétesis,
codim > 2. &szk W; es de codim > 2 y no desconecta a M ;M — Lﬂjzk W; es conexa y
unién de abiertos, luego k£ = 1. O

Con esto tenemos un criterio para una funcién de Morse-Bott tenga un tinico maximo
local. Ahora lo aplicamos a ®v.

Teorema 3.3.3. @Y es una funcion de Morse-Bott y los indices de sus variedades criticas
son pares.

Demostracion. Sea vy el campo generado por la v € g a través de la accién infinitesimal,
ysea p: R x M — M su flujo.

Si z es un punto critico , d®¥ = i,,, = 0, se tiene por ser no degenerado W que equivale
a vy(z) =0y el flujo es constante en x ,pi(x) =z Vt € R.
El flujo lineal es:

(dpt)g : TuM — T, M

Si le damos una métrica G—equivariante a M podemos intercambiar por exp, : T, M —>
M el flujo y el flujo lineal. Aqui estamos usando implicitamente el hecho de que R estd den-
tro de algo compacto, como es el estabilizador T, (T D T}, D R), que sabemos que lo sera.
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Sea W = Ker((dpt)z) , la exponencial lleva U N W a un entorno, V, de los puntos
donde se anula vy;. Estos vimos que son los puntos criticos de ®”. Luego las componentes
conexas seran subvariedades.

Veamos la paridad. Tomamos H = {exp(tv) : t € R} subgrupo uniparamétrico que
tiene a x como punto fijo. Sean a7, ...., &, los pesos correspondientes de la accién en T, M.

Con la inclusiéon i, de H en G se tiene & = 10 ® = @Y. Y aplicando la versién local
del teorema de convexidad local para puntos fijos restringiéndonos a H, en un entorno U,
se tiene:

(q) = (x) + > aglml* , geW.
P

Podemos asumir que 35,0 < j < d tal que o1 = a2 = ... = a, = 0. Luego el
Hess(PV) en z viene dado por la matriz diagonal:

a; 0 ..
00&20
0 .. 0 .
OOéjO
0 0 0 .
0 .. 0
0 0

Si lo miramos de forma compleja vemos en las entradas dos veces cada alfa, luego el
indice es dos veces el minimo de pesos negativos y por tanto sera par.

O]

Corolario 3.3.4. La funcion ®Y tiene un unico mdximo local.

Usaremos el lema anterior para obtener el teorema de convexidad para toda la imagen.
Ahora no consideramos sélo los puntos fijos por la accién si no la preimagen de puntos
frontera. Y con la versién relativa del teorema de convexidad local (3.3.5) y el Corolario
(3.3.5) veremos que esta dentro de todos los conos a la vez y tiene todos los puntos frontera
de esta interseccién. Luego es el politopo que definen dichos conos.

Teorema 3.3.5. [Teorema de convexidad de la aplicaciéon momento] La imagen de la
aplicacion momento ® : M — t*, de la accion T O (M,w), es un politopo convezo.
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Demostracion. Sea x € g* un punto de la frontera de ®(M) y p su preimagen por la
aplicacién momento. Sea H < G, el estabilizador de p y a1, ...,a, € h* los pesos de la
representacién de H en T, M.

Por la version relativa del teorema local de convexidad U (z) y V(p), entornos, tal que:

oU)=Vn(p+S(al,...an)).

Sea I, = (,v) : b* — R Vv € h ,y S; una componente de la frontera de
S'(a1, ..., ). Como S; tiene como maximo codim = 1 podemos tomar v tal que l,|g, =0
y Iy < 0 en el interior de S’(a1, ..., o). Luego si l,(x) = a se tiene:

O’ =(l,0d)(g)<a , VYgeU.

Esto es, tiene un méaximo local en ®Y. Por el Corolario es un méaximo absoluto, y
®V(M) < a. Repitiendo para todas las caras de S'(aq, ..., ) se tiene que ®(z) < p +
S’ (aqy ...y ). Y por tanto se tiene el resultado.

O]

3.4. Aplicaciéon del teorema de convexidad, el Teorema de
Schur-Horn

Empezaremos dando algunos ejemplos concretos del teorema de convexidad para seguir
con su aplicacién en la prueba del teorema de Schur-Horn. Para empezar veamos un par
de casos de acciones en proyectivos.

Ejemplo 5. S! ¢ CP!
Consideremos el 1—toro actuando en CP bajo la accion por rotaciones en una de las coor-
denadas,

(ewl, [zo,zl]) — [zo,ewlzl]

No se ha visto durante el texto, pero las acciones de grupos abelianos no nos dan aplica-
ctones momentos unicas, si no aplicaciones momentos unicas bajo suma de un constante,
ast que tomaremos la constante segun nos convenga. Para este resultado partiremos de una
accion en una variedad mds sencilla y por reduccion veremos nuestro caso.
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Vamos pensar antes en la accion S O ((CQ,wSTD) actuando de la misma forma, esto
es (€91, (21, 20)) — (€121, € 29) € C2. Donde wsrp = %Z?:l dzi Ndz; =) dx; Ndy; =
> ridriAdB;. Con esta dltima expresion y unos pocos cdlculos se puede ver que la aplicacion
momento, pu: C?> — R serd de la forma | | + cte :

oW Z ridr; A db;) Z ridr; N\ d6;(00;) Z ridr; = Z df;.

—r2

/ 2
. —Trs . .
luego como f! = z = —r;dr; se tiene f; = L. Que sea G-equivariante no nos
7 1 (2 ) 2

2
preocupa dado que es abeliano.

Si tomamos como constante % tendremos que = (0) = S3. Se tendrd, al cocientar por
el grupo, que el espacio de orbitas es S®/S' = CP*.

Ahora para nuestro caso consideremos la accion S' x S O (C?,wsrp), actuando por
rotaciones en cada coordenada, esto es, ((€'0,e1), (29, 21)) — ('%20,¢121) € C2. Por
la accion anterior, viendo que actia diagonalmente ( cada S' sobre un C), la aplicacion
momento serd p(Z) = Z(|zof* + [21]%) + 5. Por lo visto en reduccion simpléctica, el
espacio de drbitas reduciendo respecto del primer S' es CP, y tendremos en el la accion
1 x S* O CP! del principio. Y por aplicacidon momento:

p:CP — R
—|z* 1
2z T2

[207 Zl] —

que estd bien definida.
Los puntos fijos serdn [1:0] y [0: 1], y les corresponden por imdgenes en R%, 0 y — %

Esto nos da como envoltura convezxa el segmento [—%, O] de la recta real.

Ejemplo 6. T? O ((CIP’2,wCAN2) Consideremos el toro actuando en CP? bajo la accidn
por rotaciones en dos de las coordenadas,

(62617 6162 [Z07 21, Z2]> ? [’ZO? 6161 21, 6162 22]

Podemos reciclar lo usado anteriormente para T3 O (C3,wSTD). En este caso tenemos
también una accion diagonal tal que en cada C actia por rotaciones, y tomamos la aplica-
cion momento con = pam poder reducir. Hacemos reduccion respecto del primer St y nos
queda la accion que buscamos con momento:
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mu: CP? — R?
2 2

—&1 —Z)
21, 22, 28] = (ww)

Los puntos fijos serdn [1:0:0],[0:1:0] y [0:0:1], y les corresponden por imdge-
nes en R%, (0,0),(—3,0) y (0,—3). Esto nos da Por cémo envoltura conveza el siguiente
triangulo.

(12,0} (0:0) X

A continuacién vemos el teorema de Schur-Horn. Para demostrar este teorema vamos
a utilizar algunas de las cosas vistas para érbitas coadjuntas y las haremos un poco més
concretas para reducirnos al caso de la accién del toro sobre cada una de estas érbitas en

u(n).

Para empezar veremos algunas propiedades de este caso concreto. El dlgebra de Lie
de U(n), u(n), son las matrices antihermiticas. Consideremos la accién por conjugacién de
U(n) sobre las matrices hermiticas. Las matrices hermiticas las denotaremos por $):

$={BeM,:B" =B}

Dos caracteristicas destacadas de las matrices hermiticas son que sus autovalores son
todos reales y que siempre existe una factorizacion unitaria, como vemos a continuacion.

Lema 8. Sea B € ), todos sus autovalores son reales.

Demostracion. Sean A\ y vy, un autovalor y su correspondiente autovector de la matriz B.
Se tiene que:
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B’U)\ = )\’U)\
vy Buy = Avivy.
A A AUN

vyvy también es real y por tanto vy Bvy, ya que:

viBuy)" = viB*u\ = viBv
ADUN VB oy = vy By,

luego por esta tdltima ecuacion se tiene que A € R

Un razonamiento andlogo nos permite ver que para las antihermiticas se tiene que todos
los autovalores seran estrictamente imaginarios.

Lema 9. Sea B una matriz hermitica existe U, matriz unitaria, tal que U*BU es una
matriz diagonal formada por los autovalores de B, y las columnas de U serdn sus autovec-
tores.

Demostracion. Por el lema inmediatamente anterior sabemos que existe una matriz uni-
taria U tal que U*BU es triangular superior con los autovalores en la diagonal. Esta es la
factorizacién en forma de Schur. Mirando la adjunta:

(U*BU)* =U*B*U = U*BU.

luego sera hermitica. Siendo hemitica no puede tener ceros en el término (7,j) y no
tenerlos en el (j,7). Y por tanto es diagonal. Ahora:

BU = [U*BU|U

luego los elementos de la matriz diagonal U*BU son los autovalores de B, y U los
autovectores.

O
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Con lo anterior es facil ver que las 6rbitas de la accién U(n) O $ por conjugacién estan
formadas por las matrices con los mismos autovalores.

Hx={A € $H: sus autovalores son (A1, Az, ..., A\p—1,A\n) = A}

para cada A € R".

Ya vimos que a las érbitas de la representacién coadjunta se las puede dar una estructura
de variedad simpléctica. Ahora vamos analizar mas concretamente el caso de U(n). Como
acabamos de ver, los autovalores de las hermiticas y antihermiticas son reales y complejos
puros. La aplicacion

u(n) — 9
A — GA.

nos define un isomorfismo entre u(n) y . Ahora relacionamos la accién adjunta con la
coadjunta por medio de un producto interno U (n)—equivariante. Ya sabemos que la accién
adjunta, U(n) O u(n), es la conjugacién. Definamos en el dlgebra de Lie u(n) el producto
interno (A, B) = —tr(AB). La simetria es directa. Por otro lado tr(AB) = tr(AB) =
tr(ATBT) = tr((AB)T) = tr(BA) = tr(AB), nos da que es real. Si se toma AA = AZT,
se ve que todas las entradas son positivas y por tanto su traza. Luego es definido positivo.
Ademas este producto serd G-equivariante

Vge G, (gA,gB) = tr(gAg 'gBg')

(

= tr((gAB)g_l)

= tr(g_lgAB)
(

= tr(AB)

Como el producto interno que hemos definido es G-equivariante la accién que induce
en g* serd G-equivariante. A través de este producto interno podemos definir una forma
simpléctica en las érbitas de la accién coadjunta, en u(n)*. Nos saltaremos este paso ya que
la forma dada es la que nos parecié en la seccién de representaciones adjunta y coadjunta.

Con lo anterior tenemos un isomorfismo $) ~ u(n). Podemos conmutar la accién adjunta
con la coadjunta por el producto interno que hemos definido y que nos da un isomorfismo
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u(n) ~ u(n)*. Luego u(n) serd isomorfo al espacio matricial §), y ademds, viéndolo como
tal, la accién coadjunta serd la conjugacién en ).

Consideremos la estructura de variedad simpléctica que admiten la érbitas coadjuntas
en general. Ahora vamos a ver como restringir la accién a una de ellas, veremos que aun es
hamiltoniana, y que su aplicacién momento nos viene dada como la inclusion del algebras.
Luego aplicamos esto al caso concreto de T O O¢, con O¢ una 6rbita de la coadjunta en

u(n)*.

Sea O¢ la drbita coadjunta de ¢ € g*. La accién de G en ella, G O O, preserva la
forma simpléctica. De hecho, para cualquier grupo de Lie GG, es una acciéon hamiltoniana y
se tiene la siguiente proposicién.

Proposicién 3.4.1. La inclusion O < g* es la aplicacion momento de la accion de G
en O¢. Y por tanto es una accion hamiltoniana.

Demostracién. Para ver que p: O¢ — g%, la inclusién, es una aplicacién momento se tiene
que cumplir que

X .
d:u (p) = lXogwp(')
para todo vector tangente X de O. o) equivalente también

<d,UX>Y>|p = wp(X,Y)

Las campos inducidos por la accién infinitesimal son los que generan el tangente a la
orbita. Nos queda

(Xg=(€), Y) = (¢, [V, X])

Pero esto es precisamente lo que cumplen los campos generados por la accién infinite-
simal en g*. O

En nuestro caso vamos a trabajar con la accién del toro, T, sobre las érbitas de la
representacién coadjunta de U(n).
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Ya vimos que estas érbitas eran las matrices con los mismos autovalores, $). La re-
presentacién coadjunta nos daba precisamente la conjugacién, U(n) O u(n)*. Usando lo
anterior junto con el lema (7) se tiene la siguiente proposicién.

Proposiciéon 3.4.2. p : ) — R" (2 t"), tal que a cada matriz hermitica asocia su
diagonal como vector en R™, es la aplicacion momento de la accion T O Hy.

* es la aplicacién mo-

Demostracion. Por la proposicién anterior se tiene que £ < u(n)
mento de la accién de U(n).

Por el Lema (7) al restringirnos a la accién de T se tiene por momento

DS uln) S
con i la inclusién de algebras, t < u(n). Que t = R"™ es claro, ya que el n—toro es el
producto de n S! y el 4lgebra de este es R. T, como subgrupo de U(n), corresponde a
las matrices diagonales y unitarias, en la base canénica de C. La proyeccién u(n)* — t*

considerando u(n)* ~ $), por medio de A — —iA — tr(iA-), serd la proyeccién de una

matriz sobre las diagonales unitarias, que nos da su diagonal principal como vector en
R”™ O

Ya tenemos definida la aplicacién momento de la accion T O $,, en cada érbita. Y que
las 6rbitas ) son variedades simplécticas y compactas. Por tanto estamos en posicién de
aplicar nuestro teorema de convexidad.

Teorema 3.4.3 (Teorema de Schur-Horn). Sea H una matriz hemitica con autovalores
()\1, A2, A1, An) € R"y sea S = {()\0(1), /\0(2), s v)‘a(n—1)> )‘a(n))’J S Sn} La diago-
nal de H estard en la envoltura convexa de S, Conv(S). Por otra parte, cada punto de
Conv(S) corresponde a la diagonal de una matriz hemitica, conjugada de H.

Demostracion. Consiste en aplicar el teorema de convexidad, con la aplicacién momento
de T O $). Lo tnico que no es inmediato es que los puntos fijos sean S. Pero no es dificil
ver que una matriz hermitica que es fija por T equivale a que es diagonal. Luego S serdn
los puntos fijos.

O]

Pasamos a continuacién a ver un par de casos concretos de este teorema. Supongamos
que tenemos ) con A = (A1, A2, ..., A1, An) € R™, los autovalores y estos son distintos.
Como vimos los puntos fijos por la accion T O $, son las matrices diagonales con estos
autovalores permutados. Luego se tendréan n! puntos fijos.
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Antes de ver los ejemplos, recordemos que las érbitas de la representaciéon coadjun-
ta son variedades compactas. Siendo la aplicacién momento continua también lo serd la
imagen. Ademds se tiene que YA € $y, tr(A) = S1_, \; = C = cte. Por tanto u(£))
estard contenida en el hiperplano

1
{(.7}1,.1'2,"' yan — 1, x,) € R : sz = C}
i=1

Cualquier caso concreto tiene por tanto la forma de un politopo convexo y acotado, en
. , |
un hiperplano, que estard formado por la envoltura convexa de ml'mg'”-?:ﬁ T buntos,
Mol 1 )
donde m; es el nimero de veces que se repite el autovalor ;.

Ejemplo 7. Sea $12={A € $H: con autovalores 1,2}. La aplicacion momento, fi:

12 £ R2
a b ., (@
c d d
nos dard el siguiente segmento en el plano R?, contenido en la recta v +y = 3:

v

Ejemplo 8. Sea $123 = {A € $ : con autovalores 1,2,3}. La aplicacion momento
resultante es p : $H12 — R y nos da el siguiente hexdgono reqular contenido en el plano
T+y+z=06:
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