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Summary

A Lie group is a natural object in differential geometry, and its infinitesimal counter part
is called a Lie algebra, which is purely algebraic. In chapter 1, we start by introducing the
basics of Lie groups and Lie algebras. Along the way, we exhibit various properties of Lie
groups and Lie algebras, with an emphasis on their correspondences. As an application,
we also introduce the notion of principal bundle, in an extensive manner.

Given any finite dimensional Lie algebra, there exists a unique simply connected Lie
group whose Lie algebra is isomorphic to the given one. This is known as Lie’s III
theorem (Theorem 2.29). We give a detailed discussion of its proof in Chapter 2, following
Duistermaat-Kolk’s construction in 1999 [9].

In chapter 3, we turn to the discussion of Lie groupoids and Lie algebroids, which
are natural generalizations of Lie group and Lie algebra. Surprisingly, on Lie groupoids
and Lie algebroids, Lie’s III theorem does not hold. Determining whether a Lie algebroid
originates from a Lie groupoid is called the integration problem. We shall briefly discuss
the Crainic and Fernandes [5] solution (Theorem 3.21) to the integration problem, which
generalized the Duistermaat-Kolk construction. We end this chapter by discussing gauge
groupoids and gauge algebroids, which are closely related to principal bundles.

Motivated by the example of gauge algebroids, we study a more general class, namely
the transitive Lie algebroids in Chapter 4. The theory of transitive Lie algebroids was
developed by Mackenzie [26], among which we discuss the local trivial property (Lemma
4.7) and gauge transformations on trivial algebroids (Proposition 4.13). The main theme
of chapter is to demonstrate the relationship between principal bundles and transitive
Lie algebroids, and we will prove that any integrable transitive Lie algebroid is a gauge
algebroid (Lemma 4.6), which comes from a principal bundle. Inspired by the classification
of principal bundles over the 2-sphere (Theorem 4.15, we classify (framed) transitive Lie
algebroids over the 2-sphere (Theorem 4.16), expanding the sketch in Meinrenken’s notes
[28], and provide an alternative construction for the existing proof in [29]. We derive a
corollary for the classification of (non framed) Lie algebroids over the 2-sphere (Corollary
4.17). Then we relate the above classification results by giving a topological interpretation
of the gauge algebroid of a principal bundle (Proposition 4.19), following [28][29]. As an
application, we state and prove the necessity of the integrability condition (Proposition
4.21), followed by a brief introduction on Mackenzie’s non-constructive proof. Finally in
Section 4.7, We use the example of prequantization algebroids TM × R to illustrate the
theory: we discuss the non-integrability of the Almeida-Molino example [1], and give an
explicit construction of integration assuming the integrability condition.

In Chapter 5, we discuss a new and elementary construction of integration of transitive
Lie algebroids, due to Meinrenken [29]. By choosing a splitting of a transitive Lie alge-
broid, one can describe the algebroid structure by a direct sum of the tangent bundle and
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and the isotropy bundle TM ⊕h, which can be seen as a generalization of the case of pre-
quantization algebroid. When the integrability condition is satisfied, the algebroid data
on isotropy bundle can be transferred to groupoid data, namely the parallel transport
and the holonomy. The groupoid is constructed by these data (Theorem 5.20). We finish
the chapter by a computational comparison between Meinrenken’s construction and the
preceding constructions, on the integration of prequantization algebroids (Corollary 5.25).

We list our contributions here:

• The proof of Proposition 3.33 and Corollary 3.34, where we prove a general fact:
the Lie algebroid of a gauge groupoid is a gauge algebroid.

• The proof of Lemma 4.6, showing gauge algebroids can be integrated to gauge
groupoids only.

• The proof of well-definedness and injectivity in Theorem 4.16 on the classification
of framed transitive Lie algebroids over S2.

• The statement and proof of Corollary 4.17, where we apply Theorem 4.16 to give a
classification in the non framed case.

• The statement and proof of Proposition 4.26, and the following 3 corollaries, where
we study a non trivial example by computations.

• The proof of Proposition 5.9 and Lemma 5.11, where we fill in some technical details
omitted in Meinrenken’s paper [29].

• The statement and proof of Proposition 5.24 and Corollary 5.25, where we apply
Meinrenken’s integration [29] to the example mentioned above, and compare it to
the existing construction [6].

Marco Zambon

Marco Zambon
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Chapter 1

Lie groups and Lie algebras

In the following two chapter, we introduce basics on Lie groups and Lie algebras, and
prove the Lie’s fundamental theorems (Theorem 1.15, Theorem 1.21, Theorem 2.29). The
notion of principal bundles described in Section 1.5 will be useful throughout of this thesis.

1.1 Basic constructions
In Lie theory, we would like to do calculus on algebraic objects such as groups. In this
section we introduce some basic definitions, following (Chapter 7 & 8, [21]). A Lie group
is a group as well as a (finite-dimensional) smooth manifold such that the group structure
is compatible with the smooth structure. To be more precise, we have the following
definition.

Definition 1.1. A group G is a Lie group if G is a manifold such that the multiplication
map m : G× G → G and the inversion map i : G → G are both smooth. A morphism
between Lie groups is a group morphism which is smooth, i.e. it is compatible with both
group and smooth structures.

Example 1.2. Here are some examples for Lie groups:

• GL(n,R) = {A ∈ Mat(n,R)| det(A) ̸= 0}.

• GL(n,C) = {A ∈ Mat(n,C)| det(A) ̸= 0}.

• SL(n,R) = {A ∈ Mat(n,R)| det(A) = 1}.

• O(n) = {A ∈ Mat(n,R)|A−1 = AT}.

• U(n) = {A ∈ Mat(n,C)|AAT
= I}.

Remark 1.3. Although most of the simple examples of Lie groups are ‘matrix groups’, it
is not the case for all of them. This is a deep problem, and see [16] for further discussion.

Given a Lie group G, we are interested in the following maps which are called trans-
lations. For any g ∈ G, the map Lg : G → G : h 7→ gh is called left translation, and
Rg : G → G : h 7→ hg is called right translation. It is easy to see that both maps are
diffeomorphisms. Now we consider a family of vector fields that is invariant under the
pushforward of the right translation map. These vector fields are called left invariant
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2 CHAPTER 1. LIE GROUPS AND LIE ALGEBRAS

vector fields and form a linear subspace of X(M), denoted as XL(M). Note that the
operation of the bracket of vector field preserves the left invariant vector fields, i.e. the
bracket of left invariant vector fields is still left invariant. Moreover, we may observe that
any left invariant vector field is determined by its value at the identity; and conversely,
any tangent vector at the identity gives rise to a left invariant vector field by applying
left transitions. Therefore, we get

Proposition 1.4. There exists a linear isomorphism TeG→ XL(G) mapping v to the left
invariant vector field ←−v , where ←−v |g = TRgv, ∀g ∈ G.

Now we can transport the bracket on the left invariant vector fields to TeG, which
makes it into a Lie algebra.

Definition 1.5. A Lie algebra g is a vector space, together with a bilinear, skew sym-
metric map called the Lie bracket [ , ] : g × g → g satisfying the Jacobi identity. A
morphism of Lie algebras is a linear map between Lie algebras that preserves the brack-
ets.

Example 1.6. Below are some examples of Lie algebras:

• gl(n,R) = Mat(n,R). This is the Lie algebra of GL(n,R). The case for GL(n,C) is
analogous.

• o(n) = {A ∈ Mat(n,R)|A+ AT = 0}. This is the Lie algebra of O(n).

• u(n) = {A ∈ Mat(n,C)|A+ A
T
= 0}. This is the Lie algebra of U(n).

Remark 1.7. Unlike Lie groups, every (finite dimensional) Lie algebra come from gl(n,C)
or gl(n,R) (as a Lie subalgebra, see Definition 1.12). This is Ado’s theorem. However,
the proof is quite involved, see ([18], Appendix B) for detailed discussions.

Remark 1.8. Given a mophism of Lie groups Φ : G → H, it is clear that Φ∗ := (dΦ)e :
TeG → TeH is a morphism of Lie algebras. We shall prove a converse statement in
Theorem 1.21.

Finally we introduce the exponential map. Let G be a Lie group, and g be its Lie
algebra. Given a vector v ∈ TeG, we know that it determines a left invariant vector field
on G, which is complete, i.e. its flow exists for any time t. Therefore, we may take the
integral curve of the left invariant vector field starting at e, which is a map γv : R → G
and γ′v(0) = v.

Proposition 1.9. The integral curve γv is the unique morphism of Lie groups (R,+)→ G
with γ′v(0) = v. We define the exponential map of G to be exp : g→ G, v 7→ γv(1).

For a proof of the above proposition, see ([21], Theorem 20.1). The exponential
map possesses lots of interesting properties, for example, it is a diffeomorphism from
a neighborhood of 0 in TeG to a neighborhood of e in G. We shall use this in later
sections.
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1.2 Lie subgroups and Lie subalgebras
In this section, we discuss Lie subgroups and Lie subalgebras, following (Chapter 19,
[21]). Recall that an immesed submanifold is a manifold, not necessarily with subspace
topology, such that the inclusion map is an immersion. A Lie subgroup is a group version
of immersed submanifolds.

Definition 1.10. Suppose H, G are Lie groups, and that f : H → G is a morphism of
Lie groups, as well as an injective immersion, then we say H is a Lie subgroup of G.

Example 1.11. The Lie group O(n) is a Lie subgroup of GL(n,R); the Lie group U(n)
is a Lie subgroup of GL(n,C).

Recall that bracketing of left invariant vector fields is still left invariant. We charac-
terize this phenomenon as being a Lie subalgebra (although in our definition, the space
of vector fields will normally be finite dimensional).

Definition 1.12. Given Lie algebras h ⊂ g, if ∀η, ζ ∈ h, we have [η, ζ] ∈ h and h is a
linear subspace, then we say h is a Lie subalgebra of g.

Example 1.13. The Lie algebra o(n) is a Lie subalgebra of gl(n,R); the Lie algebra u(n)
is a Lie subalgebra of gl(n,C).

Example 1.14. If f : G→ H is a Lie group morphism, then ker(f) is a Lie subgroup of
G with Lie algebra ker(f∗).

The Lie subgroups and Lie subalgeras are corresponded via the following theorem, we
will use the notion of foliations in Section 6.3.

Theorem 1.15. Given a Lie group G, there exists a bijection between the set of connected
Lie subgroups of G, and the set of Lie subalgebras of TeG.

Proof. [21] Suppose h is a Lie subalgebra of g. Then h induces a distribution D by left
translations,

Fx = (Lx)∗h.

This distribution is involutive: take any basis for h. With the help of the left transla-
tion maps, we get a global frame for F , which we denote as (X1, . . . , Xk). Then by natu-
rality of Lie brackets we have [Xi, Xj] ∈ h for all i, j ∈ {1, . . . , k}. Then for A =

∑
iA

iXi

and B =
∑

iB
iXi, we have [A,B] =

∑
i,j A

iBj[Xi, Xj] + Ai(XiB
j)Xj − Bj(XjA

i)Xi,
which is clearly again a section for F . This shows F is an involutive distribution.

Let S be the foliation determined by D, by the Frobenius’ theorem 6.2 since D is
invariant under the left translations, so does S, i.e. ∀g, g′ ∈ G, we have that Lg(Sg′) = Sgg′ .
Now let H = Se, and we show that H is the Lie subgroup of G whose Lie algebra is
h. First we observe that TeH = TeSe = De = h, thus if H is a Lie group, then it
has Lie algebra h. Next we show that H is a subgroup: for any h, h′ ∈ H, we have
hh′ = Lh(h

′) ∈ Lh(H) = Sh = H, and h−1 = h−1e ∈ Lh−1(H) = Lh−1(Sh) = H.
Furthermore, the structure maps of H are smooth since they are just ones for G with
restricted domains and codomains ([21], Theorem 19.17). Hence H is a Lie subgroup of
G with desired Lie algebra.

We omit the proof of uniqueness, the interested readers can refer to ([21], Theorem
19.26) for a proof.
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1.3 Actions
Now we introduce Lie group and Lie algebra actions, which is useful in the proof of the
correspondence of morphisms (Theorem 1.21), as well as in defining the notion of principal
bundles in Section 1.4. The main reference for this section is (Chapter 20, [21]).

Definition 1.16. Given any Lie group G and a manifold M , a smooth right action
of G on M is a smooth map θ : M × G → M, and such that p(gh) = (pg)h, for any
p ∈ M, g, h ∈ G.. Here, we write pg as θ(p, g). Similarly, we can define smooth left
actions.

Example 1.17. Any Lie group G admits actions on itself. Let g be any element in G.
The right translation Rg : h 7→ hg induces a right action G × G → G; similarly, the left
translation Lg : h 7→ gh and the conjugation Cg : h 7→ ghg−1 induce left actions.

Definition 1.18. Given a smooth right action θ : M × G → M, the infinitesimal
generator θ̂ : TeG→ X(M) is given by

X ∈ TeG 7→ X̂ ∈ X(M), X̂|p :=
d

dt
(p · exp(tX))|t=0.

More generally, we will call any Lie algebra morphism g→ X(M) a Lie algebra action on
M . This action is complete if for any X ∈ TeG, the vector field X̂ is complete, i.e. its
flow is defined for any time t.

Remark 1.19. Let θ : M × G → G be a smooth right action. For any p ∈ M, define
θp : G→M, g 7→ pg. Then for any X ∈ TeG, the left invariant vector field

←−
X and X̂ are

θp-related, i.e. (θp)∗(
←−
X |g) = X̂|θp(g), for any g ∈ G..

The following result is called the fundamental theorem on Lie algebra actions. For a
proof, see ([21], Theorem 20.16).

Theorem 1.20. Let M be a manifold, G be a simply-connected Lie group, and g = TeG.
If θ̂ : g → X(M) is complete, then there exists a unique right G-action on M whose
infinitesimal generator is θ̂.

Now we turn to the morphisms and prove the correspondence theorem.

Theorem 1.21. Suppose G,H are Lie groups and G is simply connected. Let g and h
be the Lie algebras of G, H, respectively. For any Lie algebra morphism ϕ : g→ h, there
exists a unique Lie group morphism Φ : G→ H such that Φ∗ = ϕ.

Proof. [21] Note that we can identify the Lie algebra h with the left-invariant vector fields
XL(H). As a result, the morphism ϕ : g→ h ⊂ X(H) defines a Lie algebra action, which
is complete. By Theorem 1.20, it corresponds to a unique right G-action θ : H ×G→ H
on H. Then we get a smooth map θe : G→ H.

By Remark 1.19, for each h ∈ H,X ∈ g, the vector fields
←−
X and X̂ are θh-related. Thus

by naturality, θh takes integral curve of
←−
X , namely exp(tX), to the integral curve of X̂.

Thus, we know that θ(h, exp(tX)) is an integral curve of X̂. Applying the above argument
to Lh instead of θh, we get that Lh(θ(e, exp(tX)) = θ(h, exp(tX)). Now replacing h by
θ(e, g), we get θe(g)θe(exp(tX)) = θe(g · exp(tX)). Since G is connected, it is generated
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by the any open neighborhood containing the identity element, thus in particular, it is
generated by the image of exp. This shows that θe : G→ H is a morphism.

We need to see that (θe)∗ = ϕ. For this, we use the fact that ϕ can be seen as the
infinitesimal generator of θ. For any X ∈ g, we have

ϕ(X) =
←−−−
ϕ(X)|e =

d

dt
θ(e, exp(tX))|t=0 = d(θe)e(X),

i.e. (θe)∗X = ϕ(X). Thus we have constructed a desired Lie group morphism.
The uniqueness of such morphism follows from the following commutative diagram:

g h

G H

ϕ

exp exp

θe

where (θe)∗ = ϕ. If there is another morphism Φ : G → H with Φ∗ = ϕ, then
using the diagram and the fact that the exponential is a diffeomorphism between an open
neighborhood of 0 and an open neighborhood of e, we see that θe coincides with Φ on
an open neighborhood of identity in G. This shows they coincide everywhere, since G is
generated by the identity neighborhood. This shows uniqueness.

1.4 Adjoint representation
Now we turn to the adjoint representations, by which we can represent Lie group or Lie
algebra elements as certain type of linear transformations. Let V be a vector space, denote
GL(V ) to be the set of linear automorphisms of the vector space V. It is clear that this is
a Lie group. Its Lie algebra is gl(V ), the set of all linear endomorphisms of V . The main
reference for this section is (Chapter 20, [21]).

Definition 1.22. A representation of a Lie group G is a morphism of Lie groups
ρ : G → GL(V ). A representation of a Lie algebra g is a morphism of Lie algebras
ϕ : g→ gl(V ).

Remark 1.23. If a representation of a Lie group is faithful, i.e. ρ : G → GL(V ) is
injective, then G ∼= ρ(G) ⊂ GL(V ). Thus, elements in G can be seen as matrices.

Example 1.24. Consider S1 ∼= U(1) := {eit|t ∈ R}. Below is a representation

ρ : S1 → GL(R2), eie 7→
(
cos(t) −sin(t)
sin(t) cos(t)

)
.

Moreover, ρ∗ is a representation for the Lie algebra u(1) = R.

Let g be a Lie algebra (so in particular, a vector space), let Aut(g) denote the set of
isomorphisms of Lie algebras. It is easy to see that this is a Lie subgroup of GL(g).

Definition 1.25. Given g ∈ G, we define Adg := (Cg)∗ : g→ g. This give rise to a map
Ad : G→ Aut(g), which is called the adjoint representation of G.
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Similarly, let Der(g) be the set of derivations, i.e. ϕ ∈ gl(g) such that ϕ([X, Y ]) =
[ϕ(X), Y ] + [X,ϕ(Y )]. This is a Lie subalgebra of gl(g).

Definition 1.26. Given X ∈ g, we can define adX : g→ g, adX(Y ) = [X, Y ]. Again, ad
can also be seen as a map g→ Der(g), called the adjoint representation of g.

Remark 1.27. The two representations are related by that Ad∗ = ad, where Ad is for
G, and ad is for g = TeG. This provides us a ‘bridge’ between the group structure in G
and the brackets of TeG.

Now given a finite dimensional Lie algebra h, we denote the image of the map ad to
be ad(h), which is a Lie subalgebra of gl(h). By Theorem 1.15, it corresponds to a unique
Lie subgroup of GL(h). Note the existence of this Lie subgroup does not rely on the fact
that the Lie algebra h corresponds to a Lie group.

Definition 1.28. We denote the unique Lie subgroup of GL(h), whose Lie algebra is
ad(h), to be Ad(h).

Now we see some applications of the adjoint representation.

Definition 1.29. Given a Lie group G, the center of G is Cent(G) := {g ∈ G : gh =
hg,∀h ∈ G}. Given a Lie algebra g, the center of g is Cent(g) := {X ∈ g : [X, Y ] =
0,∀Y ∈ g}.

Remark 1.30. Given a connected Lie group G with Lie algebra g, then Cent(G) is the
kernel of the adjoint representation Ad : G → GL(g). Similarly, Cent(g) is the kernel of
ad . Thus, as in Example 1.14, Cent(G) is a Lie subgroup of G with Lie algebra Cent(g).

Definition 1.31. Let g be a Lie algebra. A linear subspace h of g is called an ideal if
for all X ∈ h, Y ∈ g, we have [x, y] = 0.

The proof of the following proposition can be found in ([21], Theorem 20.28).

Proposition 1.32. Let H be a connected normal Lie subgroup of a connected Lie group
G, with Lie algebras h, g, respectively. Then H is a normal subgroup of G if and only if
h is an ideal of g.

1.5 Principal bundles
In this section we introduce the notion of principal bundles, which is a special class of
fiber bundles, with a Lie group acting on each fiber. As we will see in the later chapters,
the principal bundles play an important role in the study of transitive Lie algebroids. The
main references are [17][37].

Definition 1.33. Let θ :M ×G→M be a smooth right action. The action is free if for
any m ∈M , g ∈ G, we have: mg = m ⇐⇒ g = e.

Let X, Y be topological spaces. A continuous map f : X → Y is proper if the
preimages of compact sets are compact.

Definition 1.34. A smooth action θ : M ×G→ M is proper if the map θ : G×M →
M ×M : (m, g) 7→ (mg,m) is proper.
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Definition 1.35. [17] Let K be a Lie group. A principal K-bundle consists of a base
M , which is a smooth manifold, and a smooth manifold P , called the total space of the
bundle, and a smooth projection π : P →M , with an action of K on P satisfying:

• The Lie group K acts freely on P .

• The manifold M is the quotient of P by the equivalence relation defined by the
K-action, and π : P →M maps q ∈ P to its equivalence class.

• The manifold P is locally trivial in the following sense: for each x ∈M , there exist
a neighborhood U of x and a diffeomorphism

φ : π−1(U)→ U ×K

of the form φ(p) = (π(p), ψ(p)) which is K-equivariant, i.e. φ(pg) = (π(p), ψ(p)g)
for all g ∈ K.

Remark 1.36. If we only require M to be a topological space instead of being a manifold,
and all the maps above to be continuous instead of being smooth, then we call P a
continuous principal K-bundle.

Remark 1.37. [37] Any smooth action of a Lie group K on a manifold M , which is
free and proper, induces a principal G-bundle on M over M/K. To obtain the local
trivializations for the principal bundle, one can apply a version of tubular neighborhood
theorem ([35], Theorem 6.4.3). Conversely, any principal K-bundle P includes the data
of a free K-action on P . One can show that this action is always proper.

Example 1.38. Here are some examples for principal bundles.

• Given any manifold M and Lie group K, we may consider the action of K on M×K,
given by right multiplications. This principal K-bundle, M×K, is called the trivial
bundle.

• Embed S1 in C, and S3 in C2, and define an action of S1 on S3 by S1 × S3 →
S3, (eiθ, (z1, z2)) 7→ (eiθz1, e

iθz2). This is a principal S1-bundle over S2, called the
Hopf fibration. It is easy to see that the quotient of S3 by this action is CP 1. We
shall continue our discussion on the Hopf fibration in Example 1.45.

Definition 1.39. Suppose P , Q are principal K-bundles. A diffeomorphism f : P → Q
is an isomorphism of principal bundles if it is equivariant to the K-actions, i.e.
∀g ∈ K, p ∈ P, we have f(pg) = f(p)g.

Remark 1.40. It is easy to show that a principal bundle admits a global section if and
only if is (isomorphic to) a trivial bundle.

We can establish the notion of connections on principal bundles, which is an Ehres-
mann connection (see Section 6.2), but compatible with the action.

Definition 1.41. Let π : P → M be a principal K-bundle, a principal bundle con-
nection is an Ehresmann connection Γ = {Hu|u ∈ P}. such that the K-action on P
preserves the horizontal subspaces, i.e. HRg(u) = (Rg)∗uHu,∀g ∈ K, u ∈M.
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Remark 1.42. On principal bundles, there is an equivalent way to describe the connec-
tions, namely by using the connection 1-form ω ∈ Ω1(P ), which satisfies (Rg)

∗ω =

Ad(g−1) ◦ ω, and w(X̂) = X, ∀X ∈ g. Here, X̂ is the vector field on P given by
X#

u := d
dt
(u · exp(tX))|t=0, as in Definition 1.18.

We shall sketch the equivalence of the two different definitions: given a connection
form, we can define the horizontal subspaces by Hu := ker(ωu). Conversely, with the
horizontal subspace given, ∀v ∈ TuP , we can take ωu(v) to be the unique X ∈ g such that
X̂u is the vertical component of v, and recover the connection form ω.

Definition 1.43. Given a principal K-bundle π : P →M with connection, let c : [0, 1]→
M be a smooth path with c(0) = p ∈ M , then for each choice of u ∈ Pp, there exists a
unique path c̃ : [0, 1] → P of c, such that c̃ is tangent to the connection, π ◦ c̃ = c and
c̃(0) = u. We call c̃ the horizontal lift of c.

The cocycle definition
The reference for this subsection is [37]. There is an alternative description for principal
bundles, which is insightful, called the cocycle definition. Given a manifold M , and a
principal K-bundle P over M . Pick a (locally finite) open cover {Uα} of M , such that
for any index α, there exists a trivialization of P over {Uα} given by fα : PUα → Uα ×K.
Now suppose Uα ∩ Uβ ̸= ∅, then we get a transition map fα ◦ f−1

β |Uα∩Uβ
: Uα ∩ Uβ ×K →

Uα ∩ Uβ ×K. Now the equivariance of the trivializations implies the equivariance of the
transition maps, and in this case, it is equivalent to a map gαβ : Uα ∩ Uβ → K.

By considering all α, β, such that Uα ∩ Uβ ̸= ∅, we get a family of the transition
functions {gαβ}, called the clutching functions. This family of functions satisfies the
following three properties:

• gαα = e.

• gαβ = g−1
βα .

• gαβgβγ = gαγ, whenever Uα ∩ Uβ ∩ Uγ ̸= ∅.

Conversely, the covering of M , as well as the family {gαβ} satisfying the above three
properties always defines a principal K-bundle. We shall describe the converse procedure
in details. Consider the space

E =
⋃
α

Uα ×K/ ∼

where if x ∈ Uα ∩ Uβ, then (x, k) ∈ Uα × K is identified with (x, gαβ(x)k) ∈ Uβ × K.
We haven’t shown that the construction above is a smooth bundle (e.g. E is a smooth
manifold). However, it is clear that E is a continuous principal bundle as in Remark
1.36. According to [32], if K is a Lie group, then each continuous K-bundle over a
manifold corresponds to a smooth principal bundle. And the smooth bundles are smoothly
isomorphic if and only if they are continuously isomorphic. Thus we do get a smooth
principal K-bundle.

If the original data of clutching functions came from locally trivializations of a bundle,
then the construction recovers the bundle. Therefore we can describe principal bundles
by using the clutching functions. This definition is called the cocycle definition, or the
clutching construction. We will use this in Section 4.3.
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Example 1.44. ([37], Section 10.3.1) Let π : E →M denote any vector bundle with rank
n. Let PGL(E) be the submanifold in

⊕
nE consisting of all the n-tuples (e1, · · · , en) such

that these elements are in the same fiber, and they form a basis of the fiber, as a vector
space. Given any element (e1, · · · , en) ∈ PGL(E), we can apply a linear transformation in
GL(n,Rn) to get all the other possible basis. Thus PGL(E) is a principal GL(n,Rn)-bundle,
with the bundle projection PGL(E) →M , mapping a basis to their common base point in
M . This principal bundle is called the frame bundle of E.

Now we look at PGL(E) from the cocycle point of view. First, pick a family of local
trivializations of the vector bundle E that covers the base M . Similar to the cocycle
definition above, by comparing the trivializations ϕα : E|Uα → Uα × Rn and ϕβ : E|Uβ

→
Uβ × Rn, we get transition functions gαβ : Uα ∩ Uβ → GL(n,Rn). Observe that each of
these local trivializations of E identifies E|Uα with Uα×Rn, and thus identifies (

⊕
nE)|Uα

with Uα×
⊕

nRn. And thus identifies PGL(E) with Uα×GL(n,Rn) ⊂ Uα×
⊕

nRn. Under
this identification, one sees that the transitions functions of PGL(E) is the same as those
of the vector bundle E. To be more precise, when taking the same family of transition
maps for PGL(E) and E ′, then E ∼= E ′.

Example 1.45. We revisit Example 1.38 and describe the Hopf fibration by the cocycle
definition. Again, embed S3 in C2. Let V0 = {[x : y] ∈ C2 : x ̸= 0} and V1 = {[x : y] ∈ C2 :
y ̸= 0}. Cover CP 1 with two charts ϕ0 : V0 → C, [x : y] 7→ y

x
, and ϕ1 : V1 → C, [x : y] 7→ x

y
.

The bundle projection of the Hopf bundle is given by p : S3 → CP 1, (x, y) 7→ [x : y].
We may write down the local trivializations for the principal bundle, namely

ψ0 : p
−1(V0)→ V0 × S1, [x : y] 7→ ([x : y],

x

|x|
),

and
ψ1 : p

−1(V1)→ V1 × S1, [x : y] 7→ ([x : y],
y

|y|
).

Compute the ψ0 ◦ψ−1
1 on the overlap, and identify (V0 ∩ V1) with ϕ1((V0 ∩ V1)) = C \ {0}

(ϕ0((V0 ∩ V1), respectively) on the left (right) hand side, the transition map is then given
by

Ψ : C \ {0} × S1 → C \ {0} × S1, (x, y) 7→ (
1

x
, y

x

|x|
).

We can identify S2 with CP 1 = C ∪ {∞}, as follows: recall that C is diffeomorphic
to U+ := {(z, d) ∈ C × R : d > −1}, and U− := {(z, d) ∈ S2 ⊂ C × R : d < 1}, via the
stereographic projections. Then we get natural diffeomorphisms V0 ∼= U+ and V1 ∼= U−,
which give rise to a well-defined diffeomorphism S2 ∼= CP 1.

By viewing S2 as CP 1, we can translate the transition data back to S2 ⊂ C × R and
get the transition S1-valued function:

g : U+ ∩ U− → S1, (z, d) 7→ z

|z|
.

For any m ∈ Z, we may also take gm : U+ ∩ U− → S1. Then each of these gm also
defines a principal S1-bundle, by the cocycle definition. In Section 4.3, we will see that
these bundles are mutually non-isomorphic and, are the only principal S1-bundles over
S2, up to isomorphism.





Chapter 2

Integration of Lie algebras

We have seen several results on correspondences in Lie theory, for example, Theorem 1.14
on subgroups and subalgebras, Theorem 1.20 on actions, Theorem 1.21 on morpisms, etc.
There is another fundamental result, stating that every (finite-dimensional) Lie algebra
integrates to a Lie group, i.e. it is the Lie algebra of some Lie group. This is usually
referred to as Lie’s III theorem. One way to show this is to use Ado’s theorem mentioned
in Remark 1.7. In this chapter, we follow a different approach given by Duistermaat and
Kolk in 1999 ([9], Section 1.14), which make use of path spaces in the construction of
integration. One significance of this construction is that it generalizes to the case of Lie
groupoids and Lie algebroids, see Section 3.4.

2.1 Path space of manifolds
The main reference for the first four sections of this chapter is ([9], Section 1.13). Let
M be a connected, smooth manifold and x0 ∈ M . We denote P (x0,M) as the space of
all continuous paths in M starting at x0, and call it the path space. We assign the
compact open topology (see Section 6.5) on P (x0,M). Usually, P (x0,M) will not be a
finite dimensional manifold, but we can consider the quotient space under path-homotopy,
i.e. homotopy fixing end points.

Definition 2.1. For any γ ∈ P (x0,M), we write [γ] for the equivalence class under
path-homotopy, and define M̃ to be the collection of equivalence classes in the path space
P (x0,M).

There is a natural projection map, and path-connectedness ofM yields the surjectivity:

π : [γ]→ γ(1) : M̃ →M.

Theorem 2.2. The topological space M̃ is a simply connected smooth manifold, with
π : M̃ →M the covering map. We call the smooth manifold M̃ the universal covering
manifold.

Proof. [9] We first show that M̃ is a smooth manifold. To do this, we make use of the
tubular neighborhood theorem (see for example Theorem 6.24 of [21]), which enable us
to identify a neighborhood of the diagonal ∆ := {(x, x)|x ∈ M} ⊂ M × M with a
neighborhood of the identity section in TM .

11
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Let x1 ∈ M , choose an open neighborhood V in M with {x1} × V ⊂ ∆. Pick any
γ ∈ P (x0,M) with γ(1) = x1. For small δ, we have that (δ(t), x) ∈ ∆, for all t ∈
[1 − δ, 1], x ∈ V. Using tubular neighborhood theorem, we can get for any x ∈ V a path
γx, such that it coincides with γ for t ∈ [0, 1− δ], and γx(1) = x. This defines a map from
V to P (x0,M), which is smooth in the sense of Banach manifold. And it descends to a
map s : V → M̃ , by taking the path-homotopy class. These maps can be taken as charts
of M̃ , and one can show that this give rise to a manifold structure.

Note that π ◦ s = idM , so π is a local diffeomorphism and a smooth covering map.

To show that M̃ is simply connected, we consider ˜̃
M , the equivalence classes of paths in

M̃ . The projection π : M̃ → M induces a map between P (x̃, M̃) and P (x,M), where

π(x̃) = x. It descends to a map π̃ :
˜̃
M → M̃ , which is a homeomorphism. Further, one

can show that π̃ coincides with the projection πM̃ :
˜̃
M → M̃ , which is obtained from

replacing M by M̃ , and πM̃ by π. Then πM̃ being bijection implies that M̃ is simply
connected.

Remark 2.3. Indeed, the universal covering M̃ of M can be seen as a principal bundle
over M . Let π : M̃ →M be the covering projection.

A diffeomorphism h : M̃ → M̃ is called a covering transformation if π ◦ h = π.
Denote the set of all covering transformation with respective to π to be Autπ(M̃). It can
be interpreted as a zero-dimensional Lie group, acting smoothly, freely and transitively
on each fiber π−1(m),m ∈ M ([21], Proposition 7.23). It’s easy to see that as groups,
Autπ(M̃) ∼= π1(M,m).

We shall see that M̃ is a principal Autπ(M̃)-bundle over M : it’s clear that the group
acts on M̃ and the quotient space can be identified with M . For the local trivializations,
note that locally, π is a diffeomorphism. This gives us the choice for a local zero section
in M̃ , which is equivalent to a local trivialization. Thus, M̃ is a principal bundle.

Definition 2.4. Let M be a connected manifold. For l ∈ N, x0 ∈ M , we will use
P (x0,M) ∩ C l to denote the paths in P (x0,M) of class C l.

Remark 2.5. We assign P (x0,M) ∩ C l with the C l topology. The inclusion:

P (x0,M) ∩ C l([0, 1],M)→ P (x0,M),

induces a homeomorphism of the quotients. For more details, see ([9], Theorem 1.13.1).

2.2 Path space of Lie groups
Let G be a connected Lie group. We already saw in previous chapters that under path-
homotopy, the space of paths starting at a fixed point can be considered as the universal
covering manifold. Let e ∈ G be the identity and P (G) := P (e,G).

Definition 2.6. Provided with the canonical pointwise multiplication (γ · γ′) (t) = γ(t)γ′(t),
(t ∈ [0, 1]), P (G) becomes a group, called the path group of G.

Remark 2.7. The path component of [e]

P (G)0 = {γ ∈ P (1, G) | γ ∼ e}
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is closed and normal in P (G).
Further, γ′ ∼ γ in P (G) if and only if γ′ ∈ γP (G)0, so that:

G̃ := P (G)/P (G)0,

is the universal covering manifold of G

It is a classical result that when we are taking the universal covering of a Lie group,
the covering is also a Lie group. For a detailed proof for the results below, see ([9],
Proposition 1.13.4; [21], Theorem 7.7).

Proposition 2.8. G̃ is a Lie group, with the induced group structure from P (G), and
smooth structure described in Theorem 2.2. Moreover, the G̃ covers G, and the covering
map is a Lie group morphism.

Example 2.9. Take G = S1, with multiplication defined by eixeiy = ei(x+y). Then
P (G)/P (G)0 ∼= R, the isomorphism is given by R→ P (G)/P (G)0, t 7→ [(s 7→ eist)]. In
general, the universal covering of H = Tn is P (H)/P (H)0 = Rn.

Remark 2.10. All statements remain valid if P(G), Λ(G) are replaced by P (G) ∩ C l,
Λ(G) ∩ C l, respectively, and the equivalence is replaced by smooth homotopy with fixed
end points in P (G) ∩ C l, l ∈ Z≥0.

2.3 Path space of Lie algebras
Given any connected Lie group G, we know that the space of equivalence classes of paths
can be seen as its universal covering. Now we shall see that the universal covering can also
be described using paths in Lie algebras. This description will provide us the candidate
of simply-connected integration of Lie algebras.

Definition 2.11. Suppose G has Lie algebra g, which can be identified with TeG. Let
P (g) denote the space of all continuous curves δ : [0, 1] → g, and we call it the path
space of Lie algebra g.

We can consider the following map:

D : P (G) ∩ C1 → P (g) : γ 7→ Dγ

where Dγ(t) = d
ds
(γ(s)γ(t)−1)|s=t, i.e. applying D is the same as translating the tangent

vector back to e.

Proposition 2.12. The map D is a bijection.

Proof. Given δ ∈ P (g) denote by Fδ : G× [0, 1]→ TG the map

Fδ(g, t) = (dRg) δ(t).

We may regard Fδ as a time dependent vector field on G. Note that δ = Dγ if and only if

γ̇(t) = Fδ(γ(t), t), γ(0) = e.
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Thus injectivity of D follows from uniqueness of solutions to ODEs.
To show that D is surjective, we need to see that the solution of the above ODE can

be defined on [0, 1]. For fixed δ, let Φs,t(x) be the time-dependent flow of Fδ which is x
at time s; then γ(t) = Φ0,t (e) is a solution of Dγ = δ.

By the fundamental theorem on time-dependent vector fields ([21], Theorem 9.48),
there exists an open subset I ⊂ [0, 1] × [0, 1], such that Is := {t : (s, t) ∈ I} is an open
interval in [0, 1] containing s, and Φs(t, e) : Is → G is the unique maximal integral curve
of Fδ. It is clear that Φs,t(e) is defined on I. Observe that for all x ∈ G, we may define
Φs,t(x) := Φs,t(e)x. Therefore Φs,t(x) is defined for all (s, t) ∈ I. As a consequence, for all
(s, u), (u, t) ∈ I, let x = Φu,t(e), then Φs,y(x) is an integral curve in the variable y. Again
by the fundamental theorem on time-dependent vector fields, this implies that (s, t) ∈ I.
It follows that if (0, s), (s, t) ∈ I then (0, t) ∈ I. Hence (0, t) ∈ I for every t ∈ [0, 1], i.e.
γ(t) = Φ0,t (e) is defined on I. Thus D is surjective.

As for topology, it is shown in ([9], Theorem 1.13.4) that

Proposition 2.13. The map D is a homeomorphism from P (G) ∩ C1 with C1 topology
onto P (g) with C0 topology.

Now we would like to see how do the product on P (G) behaves when being transported
to P (g).

Lemma 2.14. ∀γ, γ′ ∈ P (G), we have

D(γγ′)(t) = D(γ)(t) + Ad(γ(t))D(γ′(t)

Proof. The identity follows from

d

dt
(γ(t)γ′(t)) =

(
Tγ(t)R (γ′(t))

) dγ
dt

(t) +
(
Tγ′(t)L(γ(t))

) dγ′
dt

(t)

=
(
Tγ(t)R (γ′(t)) ◦ T1R(γ(t))

)
Dγ(t)

+
(
Tγ′(t)L(γ(t)) ◦ T1R (γ′(t))

)
Dγ′(t)

= (T1R (γ(t)γ′(t))) (Dγ(t) + Ad(γ(t))Dγ′(t)).

Now we denote P (g)0 as the image of P (G)0 under the bijection D. Therefore, we can
transport the topological and smooth structure on G̃ to P (g)/P (g)0. We will come back
to this result in later sections.

2.4 The intrinstic description

In this section we follow [9] and give alternative descriptions for the group structure on
P (g), as well as P (g)0, which is independent of the choice (or existence) of the Lie group
G.

Proposition 2.15. For any γ ∈ P (1, G) ∩ C1 and t ∈ [0, 1], we have Ad γ(t) = ADγ(t).
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Here, given any δ ∈ P (g), let Aδ ∈ C1([0, 1], gl(g)) (defined in Section 1.4) be the
solution A of the differential equation, with initial condition:

dA

dt
(t) = ad δ(t) · A(t), A(0) = idg.

Proof. We check that

d

dt
Ad γ(t) =

d

dh

∣∣∣∣
h=0

Ad
(
γ(t+ h) · γ(t)−1

)
◦ Ad γ(t) = adD γ(t) ◦ Ad γ(t),

Ad γ(0) = Ad e = I

and this shows that A : t 7→ Ad γ(t) is the solution to the differential equation with initial
conditions.

Remark 2.16. We know that the equivalence relation in P (G) ∩ C1 is by definition the
same as the existence of a continuous path-homotopy. We claim that: this is equivalent
to the existence of a C1-homotopy keeping the end points fixed. The idea of the proof is
to make use of the tubular neighborhood theorem, then locally we can always construct
a smooth homotopy by considering the neighborhood in the tangent bundle.

Remark 2.17. A similar argument shows: if there is a continuous homotopy between
smooth maps, then there is a smooth homotopy. This is called Whitney’s approximation
theorem. For more discussion, see ([21], Theorem 6.21).

Now we would like to translate the description of the equivalence relation on P (G)∩C1

to P (g). The proof can be found in ([9], Proposition 1.13.4).

Lemma 2.18. P (g)0 ≡ D (P (G)0) is the set of δ ∈ P (g) such that there is a map ϵ 7→ δϵ
such that δ0 = δ and δ1 = 0 and obeys the following equation:∫ 1

0

Aδϵ(t)
−1∂δϵ(t)

∂ϵ
dt = 0.

Remark 2.19. As an application, we can give a new proof for Theorem 1.21 on the
correspondence of morphisms, following [31]. Let G be a simply-connected Lie group and
H a connected Lie group, with Lie algebras g and h, respectively. Suppose ϕ : g →
h is a Lie algebra morphism, then we want to show that there is a unique Lie group
homomorphism f : G→ H such that ϕ = (df)e.

Suppose first H is simply-connected, then we define f =: P (g)→ P (h) by f(δ) = ϕ◦δ.
Since ϕ is a Lie algebra morphism we have that adf(δ) ◦ ϕ = ϕ◦ adδ. Then Af(δ) ◦ ϕ and
ϕ◦Aδ satisfy the same differential equation in Proposition 2.15 with the same initial value,
therefore they coincide. Write δ = Dγ and δ′ = Dγ′. By Lemma 2.14 and Proposition
2.15, f is a group homomorphism:

f(D(γγ′)) = f(Dγ) + ϕ ◦ ADγDγ
′ = f(Dγ) + Aϕ◦Dγ(ϕ ◦Dγ′) = f(D(γ))f(D(γ′)).

By Lemma 2.18, δ0 ∼ δ1 implies f (δ0) ∼ f (δ1), and therefore f induces a map
f : G = P (g)/P (g)0 → P (h)/P (h)0 = H which is a homomorphism, here we used
Proposition 2.8. One can further show f is a Lie group morphism lifting ϕ.
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2.5 Integration of Lie algebras

We sketch a proof of Lie’s III theorem (Theorem 2.29): given any Lie algebra, there
exists a simply connected Lie group whose Lie algebra is the given Lie algebra. The main
reference is ([9], Section 1.14) and notes by Moreira [31].

Recall that given a Lie group G with Lie algebra g, it admits a universal covering G̃,
which is isomorphic to P (g)/P (g)0 as groups. Therefore, given any Lie algebra h, it is
natural to guess that P (h)/P (h)0 is the simply connected Lie group integrating h, with
the correct topological and smooth structure on it.

P (g) as a Banach Lie group

Although we consider the quotient space of the path space as a candidate for our simply
connected integration, which we shall see that has a structure of finite dimensional man-
ifold, it is not the case for the path space itself, since it is in general infinite dimensional.
To solve this, we use the notion of Banach manifold, and show that the group structure
is compatible with the smooth structure in the Banach sense.

Definition 2.20. A Banach Lie group is a group that also has a Banach manifold
structure, and such that the multiplication and inversion of the group are smooth maps,
in the sence of Section 6.4.

Now we describe the smooth structure on P (g). First, since g is finite dimensional
vector space, it is a Banach space with any norm ∥ ∥. Then for a continuous path
δ : [0, 1]→ g, we define its norm to be the maximum of the function ∥δ∥. This makes the
vector space P (g) in to a Banach space. Note that the topology induced by this norm is
the same as the C0-topology we considered in Proposition 2.13.

Proposition 2.21. Let g be a finite-dimensional Lie algebra. For δ, δ′ ∈ P (g), define the
product and inverse in P (g) by:

(δ · δ′) (t) = δ(t) + Aδ(t)δ
′(t) (t ∈ [0, 1]),

δ−1(t) = −Aδ(t)
−1δ(t)

where Aδ is defined in Proposition 2.15. This makes P (g) a Banach Lie group.

Proof. First we show that the map A : P (g) → P (gl(g)) is a smooth map, which will
imply that the smoothness of the structure maps. Recall that A is the solution of the
differential equation

dA

dt
(t) = ad δ(t) ◦ A(t), A(0) = idg.

Here ad δ(t) takes value in gl(g), and ◦ means matrix multiplication. Since the differential
equation depends smoothly on the coefficients, we know that the map A is smooth.

Moreover, the image of Aδ always lies in ad(g) ⊂ GL(g) (defined in Definition 1.28).
Indeed, it is easy to see that ad δ(t) = D′ ◦ Aδ(t), where D′ : P (GL(g)) → P (gl(g)) is
defined in the same way as D, but we replace G by GL(g). Thus Aδ = (D′)−1 ◦ ad, so
Aδ(t) ∈ Ad(g), for all t ∈ [0, 1].
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Now we shall see that the product is also smooth. It suffices to show the smoothness
of the second term in the product. Suppose the derivative of A at δ1 ∈ P (g) is the linear
map λ : P (g)→ P (gl(g)). Then we have

∂Aδ(t)δ
′(t)

∂δ
|(δ1,δ2) = λ_(δ2).

where λ_(δ2) is a linear map P (g) → P (g). In view of the smooth condition defined
in Section 6.4, the smoothness of the multiplication map is clear. Similarly, the inverse
mapping is also smooth.

By the fact Aδ(t) ∈ Ad(g), one can verify by computation

Aδ·δ′(t) = Aδ(t) ◦ Aδ′(t) (t ∈ [0, 1]).

This further implies the associativity of the product in P (g), which makes (P (g), ·) a
Banach Lie group, with δ(t) = 0(t) ≡ 0 as the identity element.

The proof of the following proposition can be found in ([9], Proposition 1.14.1).

Proposition 2.22. The Lie algebra of P (g), denoted P (g)alg, is the space P (g), provided
with the bracket:

[X, Y ](t) =
d

dt

[∫ t

0

X(s)ds,

∫ t

0

Y (s)ds

]
(X, Y ∈ P (g), t ∈ [0, 1])

The subgroup P (g)0

In this section we establish P (g)0 (defined in Lemma 2.18) as a Lie subgroup of P (g).
Similar to what we did before, we want the definition of P (g)0 to be ‘intrinstic’, i.e. not
depending on the existence of G.

Given a Banach Lie group G, a Banach Lie subgroup of G is a Banach Lie group
H admitting an injective inclusion map H ↪→ G such that the induced map on the Lie
algebras is an embedding.

As we shall expect, P (g)0 is a Banach Lie subgroup:

Proposition 2.23. P (g)0 is a connected normal Banach Lie subgroup of P (g) with cor-
responding Lie algebra

P (g)alg0 =

{
X ∈ P (g)alg :

∫ 1

0

X(s)ds = 0

}
.

Proof. ([9], 1.14.1) First we note that P (g)0 is connected by definition. Now denote
av : P (g)alg → g to br the averaging map, given by

av(X) =

∫ 1

0

X(t)dt.

By Proposition 2.22, it is clear that av is a Lie algebra homomorphism, hence

ker(av) =

{
X ∈ P (g)alg :

∫ 1

0

X(s)ds = 0

}
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is an ideal (see Definition 1.31) of P (g). Consider the left-invariant distribution on P (g)
given by Dδ = (dLδ) (ker(av)) ⊂ TδP (g), for any δ ∈ P (g). This distribution is involu-
tive and the maximal integral submanifold through the zero path is a Lie subgroup of
P (g). Here we use that Frobenius’ theorem (Theorem 6.2) can be generalized to Banach
manifolds (see [20], Chapter 6).

We show that P (g)0 is the maximal connected integral manifold. Note that (dLδ)X(t) =
Aδ(t)X(t), for all X(t) ∈ P (g)alg: we may represent X(t) as the derivative of a family of
paths Γs(t) ∈ P (P (g)), with d

ds
Γs(t)|s=0 = X(t). Then Lδ(Γs) = δ + Aδ(Γs). It follows

that
(dLδ)X(t) =

d

ds
(δ + Aδ(Γs))|s=0 =

d

ds
(Aδ(Γs))|s=0 = Aδ(t)X(t).

Hence, the definition of P (g)0 says that δ ∈ P (g)0 if and only if there is a path δϵ in P (g)
from δ to 0 such that ∫ 1

0

Aδϵ(t)
−1∂δϵ(t)

∂ϵ
dt = 0.

This is equivalent to (dLδc)
−1 dδs

dϵ
∈ ker(av), that is, such that dδs

dϵ
∈ D for every ϵ. This

shows that P (g)0 is the maximal integral submanifold tangent to D, where the maximality
follows from the fact the P (g) is a Lie subgroup. In view the proof of Theorem 1.15, we
have that P (g)0 is the connected Lie subgroup of P (g) with Lie algebra P (g)alg0 = ker(av).
Moreover, since the Lie algebra ker(av) of P (g)0 is an ideal, by Proposition 1.32, the Lie
subgroup P (g)0 is a normal subgroup.

The quotient group P (g)/P (g)0

Since av is surjective, it induces an isomorphism of Lie algebras P (g)alg /P (g)alg
0
∼= g. We

expect that P (g)/P (g)0 is a Banach Lie group with Lie algebra P (g)alg /P (g)alg
0 , which

implies that P (g)/P (g)0 is a (finite-dimensional) Lie group integrating g.

Definition 2.24. A smooth map F :M → N between manifolds is an embedding if it
is a homeomorphism onto its image, and an immersion.

Definition 2.25. Suppose H is a Banach Lie subgroup of G. If the inclusion H ↪→ G is
an embedding we say that H is an embedded (Banach) Lie subgroup.

The following lemmas are taken from ([13], Lemma 2.17, Corollary 2.21). The proofs
are quite involved.

Lemma 2.26. If G is a Banach Lie group and N is a normal embedded Lie subgroup
of G then G/N can be given a Banach Lie group structure compatible with the quotient
topology. Moreover, the Lie algebra of G/N is identified with g/n where g and n are the
Lie algebras of G and N .

Lemma 2.27. If f : G → H is a smooth homomorphism of Banach Lie groups and
T ⊆ H is an embedded Lie subgroup of H, then f−1(T ) ⊆ G is an embedded Lie subgroup
of G.

Proposition 2.28. The Banach Lie group P (g)0 is an embedded Lie subgroup of P (g).
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Proof. We shall sketch the construction of the morphism in Lemma 2.26, which enable us
to view P (g)0 as the kernel, following [31].

Consider the morphism of Banach Lie group π : P (g)→ Ad(g), δ 7→ Aδ(1), and define
P (g)1 = ker(π). Then we know it is embedded Lie subgroup, and its Lie algebra is given
by {X ∈ P (g)alg : av(X) ∈ z}, where z is the center of g. Since π is surjective, we get an
isomorphism of Lie groups Ad(g) ∼= P (g)/P (g)1.

Using the fact that the second homotopy group of a Lie group is trivial ([9], Theorem
1.14.2), one can show that the identity component (P (g)1)◦ is simply-connected (i.e. the
connected component of the identity element). We can integrate the morphism of Lie
algebras av : P (g)alg1 → z to a morphism of Lie groups ϕ : (P (g)1)

◦ → Z. Then the
Lie algebra of ker(ϕ) coincides with P (g)0. Since P (g)0 is a connected Lie subgroup of
P (g), by Theorem 1.15, we conclude that P (g)0 coincides with the identity component of
ker(ϕ). This shows that P (g)0 is an embedded Banach Lie subgroup.

Theorem 2.29. P (g)/P (g)0 is a simply connected Lie group and it integrates g.

Proof. By the surjectivity of av : P (g)alg → g, we have that P (g)alg /P (g)alg
0
∼= g. Since

P (g)0 is an embedded Banach Lie subgroup of P (g), we can apply Lemma 2.26 to conclude
that the quotient P (g)/P (g)0 is the (Banach) Lie group integrates g.

For simply connectedness, let G = P (g)/P (g)0, then we have

G = P (g)/P (g)0 ∼= P (G)/P (G)0 = G̃.

The second equivalence stands for homeomorphism induced by D, which is mentioned in
Proposition 2.13 (defined in Section 2.3). The last equality follows from Remark 2.7, and
G̃ is the universal covering. Hence G is simply connected.





Chapter 3

Lie groupoids and Lie algebroids

Lie groupoids and Lie algebroids are natural generalizations of Lie groups and Lie algebras.
In this chapter, we discuss basic definitions and first examples of Lie groupoids and Lie
algebroids. We discuss in Section 3.4 the Lie correspondence, which generalizes various
results we have seen in the previous chapters, and motivates our detailed discussion for
transitive Lie algebroids in later chapters. In the last section, we introduce the gauge
groupoid and algebroid, which has a close relation with principal bundles, and play an
important role in the later chapters.

3.1 Notion of groupoid

The reference for this section is [11]. The notion of groupoid occurs naturally in mathe-
matics. Let us first consider an example from topology. Suppose we have a topological
space X, then we look at the set of isomorphism classes of continuous paths under path-
homotopy (by abuse of notation, we use ‘path’ to denote the path-homotopy class of
paths). There is an interesting structure on this set: we can define the ‘composition’ of
elements to be concatenation of paths; at each point of X, there is the constant path,
whose composition with any path starting at this point is path-homotopic to the given
path; and for each path there is a well-defined ‘inverse’, namely, its composition with
the original path is path-homotopic to the constant path. This structure is not a group
structure, since not any two paths are ‘composable’, however, one recovers the fundamen-
tal group by restricting our attention to a fixed point i.e. loops. This structure on the
topological space, which is a generalization of the group structure, is called a groupoid
structure. The notion of groupoid is first introduced by H. Brandt [2] in 1926.

Definition 3.1. [11] A groupoid consists of a set G (the set of arrows) and a set M
(the set of objects), equipped with the following structure maps, satisfying the law of
composition, associativity, units and inverses:

• the source and the target maps

s, t : G −→M,

associating to each arrow g its source object s(g) and its target object t(g). Given
g ∈ G, we use y g←− x to indicate that g is an arrow from x to y.

21
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• the composition map
m : G2 −→ G,

is defined on the set G2 of composable arrows:

G2 = {(g, h) ∈ G × G : s(g) = t(h)}.

For a pair (g, h) of composable arrows, m(g, h) is the composition g ◦ h. We also
use the notation m(g, h) = gh.

• the unit map
u :M −→ G,

which sends x ∈ MG to the identity arrow 1x ∈ G at x. We will often identify 1x
and x, and call them the units.

• the inverse map
i : G −→ G,

which sends an arrow g to its inverse g−1.

The structure maps satisfies:

• law of composition: if x g←− y
h←− z, then x gh←− z.

• law of associativity: if x g←− y
h←− z

k←− u, then g(hk) = (gh)k.

• law of units: x 1x←− x and, for all x g←− y, 1xg = g1y = g.

• law of inverses: if x g←− y, then y g−1

←− x and gg−1 = 1y, g
−1g = 1x.

We call G a groupoid over M.

Example 3.2 (The fundamental groupoid). We can rephrase the example mentioned in
the beginning using the language of Definition 4.1. Given a topological space X, we can
consider the set Π(X), consisting of the path-homotopy classes of continuous paths in X,
relative to the same end points. We consider X to be the set of objects, and Π(X) as the
set of arrows joining the objects, along with the structure maps:

• s[γ] = γ(0), t[γ] = γ(1), where γ is any continuous path in X.

• Two homotopy classes of paths [γ1], [γ2] is composable if and only if γ1(0) = γ2(1).
In this case, m([γ1], [γ2]) is defined to be [γ1 ∗ γ2], here ∗ stands for concatenation
of paths.

• i([γ]) = [γ], here γ is any continuous path in X, and γ is the inverse path.

One advantage of working with the fundamental groupoid is that one can get rid of the
choice of base points. Notably, there is also a groupoid version of Serfert-van Kampen
Theorem. For more discussion on this topic, see [3].
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3.2 Lie groupoids

The reference for this section is [11]. In differential geometry, we introduce the notion
of Lie groups in order to do calculus on groups: it have compatible group and smooth
(manifold) structures in the sense that the composition and inverse map of the group
are smooth maps. Analogously, we can define the Lie groupoid, as follows. It was first
introduced by Ehresman in the 1950s [10].

Definition 3.3. A Lie groupoid is a groupoid (G,M) such that G is a possibly non-
Hausdorff smooth manifold, M is smooth manifold, the structure maps s, t are smooth
submersions, and m,u, i are smooth maps.

Remark 3.4. Note that the smoothness is not defined for m : G2 −→ G unless G2 is a
smooth manifold. This is guaranteed by s, t being smooth submersions.

Remark 3.5. There is a good reason why we do not expect G to be Hausdorff: we
would like to include the family of foliation groupoids, which is non-Hausdorff in general.
In addition, similar to Lie groups, we can find a universal covering of a Lie groupoid
(see Section 4.10 of [28]). However, this construction relies on foliation groupoids, and
the universal covering groupoid can be non-Hausdorff even if the given Lie groupoid is
Hausdorff.

Example 3.6. Here are some simple examples of Lie groupoids:

• A manifold M is a Lie groupoid over M . Just take s = t = u = i = idM , and
m(x, y) is defined only when x = y ∈M . In this case, m(x, x) = x.

• A Lie group G is a Lie groupoid. We set the set of objects to be a singleton, and
define s, t to be the same constant mapping from the Lie group to the single point.
Note that any pair of elements in the Lie group is composable, so the map m is
defined on G×G. The map u maps the singleton to the identity of Lie group, and
i is defined in the same way as the inversion map of G.

• Given a manifold M , the manifold M×M is a groupoid with the following structure
maps. For (m′,m) ∈ M ×M , we have s(m′,m) = m, and t(m′,m) = m′. The
composition map, m is defined for two arrows (m′

1,m1), (m
′
2,m2) ∈ M ×M , if and

only if m1 = m′
2. If so, (m′

1,m1)(m
′
2,m2) = (m′

1,m2). The units are given by the
diagonal embedding of M into M ×M , and i(m′,m) = (m,m′). This groupoid is
called the pair groupoid, denoted as Pair(M).

Definition 3.7. A morphism of Lie groupoids F : H → G is a smooth map such that

F (h1 ◦ h2) = F (h1) ◦ F (h2)

for all (h1, h2) ∈ H2. If F is an injective immersion, we say that H is a Lie subgroupoid
of G.
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Figure 3.1: Visualisation of pair groupoid.

3.3 Lie algebroids
In this section we follow [11] to study the notion of Lie algebroids. The concept of a Lie
algebroid was introduced by J. Pradines [34]. It is a vector bundle, with a bracket similar
to that of the tangent bundle.

Definition 3.8. A Lie algebroid over a manifold M consists of a vector bundle A
together with a bundle map ρA : A → TM and a Lie bracket [ , ]A on the space of
sections Γ(A), satisfying the Leibniz identity

[α, fβ]A = f [α, β]A + LρA(α)(f)β,

for all α, β ∈ Γ(A) and all f ∈ C∞(M). Note that here LXf = X(f) = f∗X, for any
vector field X. We will also write ρ for the anchor, and [ , ] for the bracket when it is
clear that which algebroid we are referring to.

Remark 3.9. Here, ‘Lie bracket’ means that it is a map from Γ(A)×Γ(A) to Γ(A), such
that it is bilinear, skew symmetric, and satisfies the Jacobi identity. To be more precise,
for any sections α, β, γ ∈ Γ(A) and any a, b ∈ R,

• [aα + bβ, γ] = a[α, γ] + b[β, γ].

• [α, β] = −[β, α].

• [[α, β], γ] + [[β, γ], α] + [[γ, α], β] = 0.

Example 3.10. Here are some simple examples of Lie algebroids:

• Given a manifold M, we can consider it as a vector bundle of rank 0, so it becomes
a Lie algebroid with the trivial bracket.

• A vector space can be seen as a vector bundle over a single point. Thus a Lie algebra
can be seen as a Lie algebroid with the Lie bracket.

• Given a manifold M , the tangent bundle is a Lie algebroid. Take ρTM = idTM , and
let the bracket be the bracket of vector fields. It is easy to see that the Leibniz rule
holds.
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Next we define the notion of Lie subalgebroid, following Meinrenken [28]. We will
make use of the following notation, for a vector bundle V → M with given subbundle
W → N , we define:

Γ(V,W ) = {σ ∈ Γ(V )| σ|N ∈ Γ(W )}

The map Γ(V,W )→ Γ(W ) is surjective, with kernel Γ (V, 0N) consisting of sections of V
whose restriction to N vanishes.

Definition 3.11. A subbundleB → N of a Lie algebroidA→M is called a Lie subalgebroid
if it has the following two properties:

• ρA(B) ⊆ TN ,

• Γ(A,B) ⊆ Γ(A) is a Lie subalgebra.

Remark 3.12. A Lie subalgebroid B of A inherits a unique Lie algebroid structure, in
such a way that the restriction map Γ(A,B)→ Γ(B) preserves Lie brackets.

Now we define morpisms between Lie algebroids A → M and B → N . Note that
for the case that the vector bundle map, whose base map between the base manifolds is
a diffeomorphism, the notion of morphism of Lie algebroids can be defined easily: we
just need to make sure that it preserves the anchor and the brackets. However, similar
approach does not apply to the general case since we cannot push forward sections of A
to get sections of B. Therefore we need the following definition, which coincides with our
intuitive definition when the base map is a diffeomorphism.

Definition 3.13. Let A → M and B → N be two Lie algebroids. A morphism of Lie
algebroids ϕ : B → A is a vector bundle morphism whose graph

Gr(ϕ) ⊆ A×B

is a Lie subalgebroid of the direct product (the direct product of algebroids is defined
naturally [28]).

3.4 Lie theory of Lie groupoids and Lie algebroids
Since Lie groupoids and Lie algebroids are generalizations of the notion of Lie groups and
Lie algebras, they share many common properties. It is well-known that in a Lie group,
any open neighborhood of the identity generates the identity component, which is a con-
nected Lie group. Similarly, according to Mackenzie [26], a neighborhood of the identity
section of a Lie groupoid, which is symmetric and fibrewise open, also generates the iden-
tity component subgroupoid. Another property of a Lie group is that any subgroup which
is also an embedded submanifold, is automatically a Lie subgroup. The groupoid version
of this result is stated in Theorem 4.12 of [28].

However, one should not expect the theory of Lie groupoids and Lie algebroids to be
completely parallel to that of Lie groups and Lie algebras. For example, unlike the case
of Lie groups, a bijective morphism of Lie groupoid is not necessarily an isomorphism.

One thing that is particularly nice and important is the Lie group - Lie algebra corre-
spondence. This is summarized as Lie’s I, II, & III theorems. In the case of Lie groupoids,
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we can also get a unique Lie algebroid corresponds to a given Lie groupoid, and analo-
gous of Lie’s I and II theorems are still true. However, Lie’s III theorem is not true for
groupoids.

The Lie algebroid of a Lie groupoid

The main reference for this subsection is [27]. Let G be a Lie groupoid over M .

Proposition 3.14. For each x ∈ G, the maps

y 7→ Lx(y) = xy and z 7→ Rx(z) = zx

are diffeomorphisms, from t−1(s(x)) onto t−1(t(x)) and from s−1(t(x)) onto s−1(s(x)),
respectively. These maps are called the left translation and the right translation by
x, respectively.

Proof. The smoothness of the groupoid composition law m : (x, y) 7→ xy implies the
smoothness of Lx and Rx. These maps are diffeomorphisms whose inverses are

(Lx)
−1 = Lx−1 , (Rx)

−1 = Rx−1 .

The invariant vector fields under right multiplication is called right invariant vector
field, see the definition below. Similarly, one can define left invariant vector fields.

Definition 3.15. A vector field Z, defined on an open subset of G, is said to be right invariant
if they satisfy the two properties:

• the vector field Y is tangent to the s-fibers, i.e. T s(Z) = 0.

• for each z in the domain of definition of Z and each x ∈ s−1(s(z)), one has that zx
is in the domain of definition of Z and

Z(zx) = TRx(Z(z)).

Figure 3.2: The right invariant property.
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Now we can define the Lie algebroid of a Lie groupoid. Given a Lie groupoid G, let
A be the intersection of kerT s and TG|M . We will establish A as a Lie algebroid. The
anchor ρ is given by the map T t restricted to A. Its Lie bracket is defined as follows: let
w1 and w2 be two smooth sections of that bundle over an open subset U of M . Let ŵ1

and ŵ2 be the two right-invariant vector fields, defined on t−1(U), whose restrictions to
U are equal to w1 and w2 respectively. For each u ∈ U , we define

[w1, w2]A (u) := [ŵ1, ŵ2] (u).

One can show that A with the above structure is a Lie algebroid. We will denote Lie
algebroid A by Lie(G) and call it the Lie algebroid of G.

Figure 3.3: The Lie algebroid of a Lie groupoid.

Remark 3.16. Given a morphism of Lie groupoid F : G → H, then the differential TF
induces a map from Lie(G) to Lie(H). Readers could check easily that this is a morphism
of Lie algebroids.

Example 3.17. A bundle of Lie groups is a Lie groupoid with the same source and
target map. A bundle of Lie algebras is a Lie algebroid with zero anchor. It’s easy to
see that the Lie algebroid of any bundle of Lie groups must be a bundle of Lie algebras.
The converse is also true, which is due to [8].

Example 3.18. Suppose θ : G ×M → M is a smooth left action, we can define a Lie
groupoid structure on G ×M ×M , as follows: for any (g,m) ∈ G ×M , the source is
m ∈ M and the target is gm ∈ M. Two arrows (g1,m1), (g2,m2) are composable if and
only if m1 = g2m2, and in this case, the product is (g1g2,m2). We call this Lie groupoid
G×M the action groupoid.

Now let ρ : g → X(M) be a Lie algebra action. Then we can define a Lie algebroid
structure on the trivial vector bundle M × g : the anchor ρA is given by the infinitesimal
action, i.e. ρA(x, v) = ρ(v)|x, where x ∈ M, v ∈ g. The bracket on constant sections is
given by [cv, cw] = c[v,w], where cv, cw ∈ Γ(M × g) denotes sections with constant value
v, w ∈ g, respectively. Then the Lie bracket on Γ(M × g) is uniquely determined by the
Leibniz rule. This Lie algebroid M × g is called the action algebroid.

One can show that given an smooth action, the algebroid of the action groupoid is
the action algebroid associated to its infinitesimal action. Hence by Theorem 1.20, action
algebroids arose from complete Lie algebra actions are integrable to action groupoids. It
is shown by Dazord [7] that any action algebroid is integrable.
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Lie correspondence

The references for this subsection are [6][11]. While we can always get a Lie algebroid
given a Lie groupoid, the converse is not true: only some of Lie algebroids come from Lie
groupoids. In this case, we say the Lie algebroid integrates this Lie groupoid, i.e. Lie
algerboid A integrates G ⇐⇒ A = Lie(G).

We have the following version of Lie’s I and II theorems, proven by [30], [25] respec-
tively.

Theorem 3.19 (Lie I). If A is an integrable Lie algebroid, then there exists a (unique)
s-simply connected Lie groupoid integrating A.

Theorem 3.20 (Lie II). Let ϕ : A→ B be a morphism of integrable Lie algebroids, and
let G and H be integrations of A and B. If G is s-simply connected, then there exists a
(unique) morphism of Lie groupoids Φ : G → H integrating ϕ.

Now we look at the problem of integrability of general Lie algebroids. This problem
goes back to Pradines [33], who claimed that every Lie algebroid is integrable. Almeida
and Molino [1] gave the first example of a non-integrable Lie algebroid (discussed in
Corollary 4.31). In 2003, Crainic and Fernandes [5] solved this problem by giving a
necessary and sufficient condition for the integrability.

Theorem 3.21 (Lie III). A Lie algebroid is integrable ⇐⇒ its monodromy groups are
locally uniformly discrete.

Remark 3.22. We will not discuss the full proof here. Instead, we will present in later
chapters a more elementary and geometric construction given by Meinrenken [29], which
deals with the special case of transitive Lie algebroids. In particular, in Section 4.6, we
discuss the notion of monodromy, and the integrability conditions.

We briefly describe the construction of the integrated groupoid, often called the We-
instein groupoid, following [11]. The Weinstein groupoid, given any Lie algebroid, always
exists (as a ‘topological groupoid’), and it is a Lie groupoid if and only if the integrability
condition in Theorem 3.21 holds. The construction is a generalization of Duistermaat-
Kolk’s construction for integration of Lie algebras, introduced in Chapter 2. Recall that
any Lie group G defines a group structure on the path space P (G), which can be trans-
ported to P (g), the path space of Lie algebra g of G. We would like to generalize the
construction to Lie groupoids and Lie algebroids. For this purpose, we introduce a new
product in P (G) in the remark below.

It turns out that given any finite dimensional Lie algebra h, we can describe the group
structure on P (h) without referring to the Lie group it corresponds to.

Remark 3.23. Given a Lie group G, the product on P (G) is defined by γ · γ′(t) :=
γ(t)γ′(t), in Definition 2.6. Alternatively, we can consider the concatenation of paths:

γ ∗ γ′(t) =

{
γ′(2t) 0 ≤ t ≤ 1

2
,

γ(2t− 1)γ′(1) 1
2
≤ t ≤ L.
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The concatenation is equivalent to the original one when we take the quotient P (G)/P (G)0,
i.e. given any two paths, the two products are path-homotopic, via the following map:

Hγ,γ′(s, t) =


γ′(2t) 0 ≤ t ≤ s

2
,

γ((1− s)t)γ′((1− s)t+ s) s
2
≤ t ≤ 1− s

2
,

γ(2t− 1)γ′(1) 1− a
2
≤ t ≤ 1.

Now we turn to Lie groupoids and Lie algebroids. Let G be a Lie groupoid. A G-path
is a path of arrows, that lies in a s-fiber of G and starts at the unit. To be more precise,

Definition 3.24. A G-path g : [0, 1] → G is a path such that there exists x ∈ M , such
that s(g(t)) = x for all t, and g(0) = 1x. We denote by P (G) the space of G-paths,
equipped with the C2-topology.

Now let A be a Lie algebroid over M .

Definition 3.25. An A-path is a pair of paths (a, γ), where a : [0, 1] → A, and γ :
[0, 1]→M such that

• The path a covers γ, i.e. for any t, a(t) ∈ Aγ(t),

• one has ρA(a(t)) = dγ
dt
(t), ∀t.

We denote the space of A-paths to be P (A), equipped with the C1-topology.

Parallel to Proposition 2.13, we have the following result. See ([5], Proposition 1.1)
for a proof.

Proposition 3.26. Suppose G is a Lie groupoid, with Lie algebroid A, then there exists
a homeomorphism DR : P (G) → P (A). For any G-path g, DR takes g to the A-path
(t 7→ d

ds
(dRg(t)−1g(s))|s=t).

Following Remark 3.22, we can define the product in P (G) to be the concatenation of
paths. It turns out that the map DR takes this product in P (G) to the concatenation of
A-paths in P (A), i.e. with the products defined on both sides, DR is an isomorphism of
groups.

Now we define a equivalence relation on P (A). A variation of A-paths is a map
aϵ = a(ϵ, t) : [0, 1] × [0, 1] → A, C2 on the variable ϵ, such that all aϵ(0) lies in the same
fiber, and all aϵ(1) lies in the same fiber. Equivalently, this means when aϵ is projected to
paths γϵ in M , then they have the same ending points. Let aϵ be a variation of A-paths,
and ξϵ be a section of A, defined by ξϵ(γϵ) = aϵ(1). Let ϕs

ξϵ
be the unique 1-parameter

group of Lie algebroid ismorphisms ϕs
ξϵ
: A→ A, such that d

ds
ϕs
ξϵ
(β)|s=0 = [ξϵ, β].

Two A-paths a0, a1 are equivalent if and only if there exists a variation of A-paths aϵ,
and such that with ξϵ, ϕs

ξϵ
defined as above, we have that∫ 1

0

ϕs
ξϵ

∂ξϵ
∂ϵ

(s, γϵ(s))ds = 0.

One can show that in the special case of Lie algebras, this equivalence relation is the
same as the condition in Lemma 2.18.

Definition 3.27. Given a Lie algebroid A, the Weinstein groupoid, G(A), is given by
the quotient of P (A) seen as a groupoid, by the equivalence relation defined above. The
Weinstein groupoid is the unique (source simply connected) candidate for the integration.



30 CHAPTER 3. LIE GROUPOIDS AND LIE ALGEBROIDS

3.5 Gauge groupoids and algebroids

We have seen in Example 3.6 that given any manifold P , we can take the pair groupoid
P×P. Let P be a principal K-bundle. The K-action on P enable us to study the quotient
of P × P. This is an important class of Lie groupoids, called gauge groupoids. In this
section we study gauge groupoid and its algebroids.

We first review a result regarding to taking the quotients, see ([21], Theorem 21.10)
for a proof.

Lemma 3.28. Let K be a Lie group acting smooothly, freely, and properly on a smooth
manifold M . Then the orbit space M/K is a topological manifold of dimension dimM −
dimG, and has a unique smooth structure such that the quotient map π : M → M/K is
a smooth submersion.

By considering the diagonal K-action on P ×P , it is easy to see that Pair(P ) = P ×P
is a principal G-bundle, and thus (P × P )/K is a well-defined manifold. The groupoid
structure on (P × P )/K is defined trivially: all the structure maps are induced from
structure maps of P × P , and then passing to the quotients ([21], Theorem 4.30).

Definition 3.29. Any principal K-bundle π : P → M , with action map P × K → P ,
given by (p, k) 7→ p · k, defines a transitive Lie groupoid called the gauge groupoid

G(P ) = Pair(P )/K ⇒M.

Next we see the notion of gauge algebroid of a principal K-bundle P , which is a
quotient of the tangent bundle TP , called gauge algebroids. Here, elements in K acting
on TP by the tangent map of right translations. We will see later that this is the Lie
algebroid of a gauge groupoid. Again, we need a lemma to ensure that there exists a
vector bundle structure on the quotient TP/K.

Lemma 3.30. Suppose P is a principal K-bundle over M , let π : P →M be the bundle
projection. With the induced action of K on TP , the quotient TP/K is a smooth vector
bundle over M .

Proof. ([12], Proposition 1.3.3) We can describe the vector bundle structure of TP/K.
For any element u ∈ TP , we denote [u] as the equivalence class in TP/K. For each
m ∈ M , and [u], [v] ∈ (TP/K)|m, there exists unique g ∈ K such that π(vg) = π(u),
i.e. they are both in Tπ(u)P . Thus we can take the sum of u and vg in E, and then
take the equivalence class, i.e. [u] + [v] = [u+ vg]. The scalar multiplication is defined as
t[u] := [tu].

As for the local trivialization, we first require that P is trivial over U . This is equivalent
to the existence of a local section σ : U → U ⊂ P . The local trivialization map is then
given as follows:

U × Rn (TP/K)|U

U × Rn TP |U

(σ,id)

f
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We would like to define a Lie algebroid structre on TP/K. For the anchor map, let
π be the bundle projection. Then ρ : TP/K → TM, [X] 7→ π∗X is a well-defined vector
bundle morphism ([12], Proposition 1.3.3). This map ρ will be taken as the anchor map.

Now we study the sections of TP/K and define a Lie bracket on sections. Given any
local section µ of TP , we can form a map P → TP → TP/K. A sufficient condition for
this map to correspond to a section of TP/K is that µqg = µqg,∀q ∈ P, ∀g ∈ K. We
call sections of TP with this property K-invariant. Any K-invariant section µ in TP
corresponds to a section µ̃ ∈ Γ(TP/K), with µ̃ := [µq], where π(q) = m. One can show
the well-definedness and smoothness. Conversely, given any section ν of TP/K, we would
like to find the corresponding K-invariant section in TP . Let π∗(TP/K) be the pullback
bundle (see Proposition 3.32 below). Notice that π : P → M induces a vector bundle
isomorphism

TP → π∗(TP/K), vp 7→ (p, [vp]).

Thus we get a section of π∗(TP/K), and thus a section ν of TP . Explicitly,

νq = π−1
q (νπ(q)) ∈ TqP.

Here, π is the projection TP → TP/K. Moreover, ν is K-invariant.
Hence, we have seen that the sections of TP/K are in one-to-one correspondence to

K-invariant sections of TP . Moreover, it is easy to show that with the bracket of vector
fields in TP , the bracket of K-invariant sections is again K-invariant. This allows us to
use this Lie bracket as our bracket on TP/K.

Definition 3.31. Given a principal K-bundle P , the vector bundle TP/K, with the
anchor and brackets defined above, is a Lie algebroid, called the gauge algebroid of P .
We denote this Lie algebroid as A(P ).

Finally, we would like to see that the algebroid of a gauge groupoid is a gauge algebroid.
To do this, we introduce and prove a result on more general setting, namely on the
pullbacks. Let f :M → N be a smooth map between manifolds.

Proposition 3.32. Given a principal K-bundle P over N , with the bundle projection
π : P → N . Then

f ∗P := {(m, p) ∈M × P : f(m) = π(p)}.

admits a principal K-bundle structure over M , with K acting on the second component
of f ∗P. We call f ∗P the pullback principal bundle of P by f .

Proof. See ([37], Section 10.7).

Given any Lie algebroid A over N , with anchor map ρ, we can consider the following
set

f !A := A×TN TM = {(x, y) ∈ A× TM : ρ(x) = Tf(y)}.

There is no guarantee that the above construction defines a Lie algebroid for arbitrary A.
However, when we have that the Lie algebroid A is ‘transitive’ i.e. the anchor map ρ is
surjective, f !A is indeed a Lie algebroid over M (see [28], Section 7.4). In this case, we
call the Lie algebroid f !A the pullback algebroid of A by f.

We shall describe the Lie algebroid structure here. The anchor of f !A is induced by
the natural projection A×TM → TM . The bracket of f !A is induced from A×TM , since



32 CHAPTER 3. LIE GROUPOIDS AND LIE ALGEBROIDS

f !A is the preimage of Gr(f) = Gr(Tf) under the anchor A × TM → TN × TM. More
explicitly, given two sections of the pullback, i.e. let ξ, η ∈ Γ(A), and X, Y ∈ Γ(TM),
such that ρ(ξ) = Tf(X), and ρ(η) = Tf(Y ), we have

[(ξ,X), (η, Y )] = ([ξ, η], [X, Y ]).

The following proposition is stated as a general fact in [29]. For convenience, we work
out the proof and state it here.

Proposition 3.33. The gauge algebroid of the pullback principal bundle coincides with
the pullback of the gauge algebroid, i.e. A(f ∗P ) = f !(A(P )). Here, f : M → N is a
smooth map and P is a principal K-bundle over N .

Proof. The vector bundle structure coincides, since taking the pullback is equivalent to
taking the fiber product Mf ×π P, and the tangent space equals to TMTf ×Tπ TP. Since
the group action is only on the second component TP , we have that

A(f ∗P ) = T (f ∗P )/K = (TMTf ×Tπ TP )/K = TMTf ×T̃ π TP/K = f !(A(P )),

as vector bundles. Here, π̃ denotes the anchor of A(P ).
It’s clear that the anchor maps coincide. As for the brackets, we may observe that

the a section (X,Z) ∈ Γ(TMTf ×Tπ TP ) is K-invariant if and only if Z ∈ Γ(TP ) is
K-invariant, thus we can identify the K-invariant vector fields. Then we conclude that
the bracket in A(f ∗P ) and f !(A(P )) coincide.

In the theory of gauge algebroids, it is a fundamental fact that the Lie algebroid of
the gauge groupoid is a gauge algebroid. One way to check this is by direct computations
(see for example [12]). Thanks to the last proposition, we observe that there is a simple
approach avoiding the computations.

Corollary 3.34. The algebroid of the gauge groupoid is the gauge algebroid, i.e. Lie(G(P )) =
A(P ), for any principal K-bundle P with bundle projection π : P →M.

Proof. This follows from Proposition 3.33, and that

TP ∼= π!(TP/K),

given by vp 7→ (π∗vp, [vp]). Since we have π!(A(P )) = A(π∗P ) = TP, we know that
π!(TP/K) ∼= π!(A(P )). This isomorphism is in the form (idTM , f), where f gives an
isomorphism between TP/K and A(P ).

We finish this section by a discussion on the Lie groupoid structures on the fundamental
groupoids.

Example 3.35. [11] Given a smooth manifoldM , we can assign the fundamental groupoid
Π(M) (defined in Example 3.2) with a Lie groupoid structure. Indeed, it can be seen as
the gauge groupoid of the universal covering, viewed as a principal bundle over M . Let
p : M̃ → M be the covering projection. Recall that M̃ is a principal Autp(M̃)-bundle
over M , by Remark 2.3.

Now consider the pair groupoid M̃ × M̃ , we will construct a map from it to Π1(M),
as follows: given a pair (x, y), we pick any path in M̃ joining x, y. The we project
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it to a path in M , and take the homotopy class in Π1(M). By simply-connectedness,
the resulting equivalence class does not depend on the choice of path. Moreover, by
the definition of covering transformation and the smooth version of lifting lemma [14],
one can show (x1, y1), (x2, y2) has the same image if and only if ∃h ∈ Autp(M̃) such
that x2 = h(y1), x2 = h(y1). Combing with the fact that this map preserves groupoid
structures, we conclude that (M̃ × M̃)/Autp(M̃) is isomorphic to Π1(M) as groupoids.
Therefore, Π1(M) also has a Lie groupoid structure.





Chapter 4

The Transitive Theory

In this chapter, we discuss the theory of transitive Lie algebroids. The first three sections
introduce some basic properties and give the necessary background for the main result
(Theorem 4.16) in Section 4.4, namely we classify the transitive Lie algebroids over the
2-sphere. We relate the classification results on principal bundles with transitive Lie
algebroids by Proposition 4.19 in Section 4.5. We apply these results in Section 4.6,
namely we can prove that the integrability condition is necessary. Finally, the last part
is devoted to an example illustrating the theory. Throughout the rest of this thesis, we
assume M is a connected manifold.

4.1 Transitive Lie groupoids and Lie algebroids

The main reference for this section is [26] [29]. In this section we introduce the definition
of transitive Lie groupoids and transitive Lie algebroids. We will show that: all transitive
Lie groupoids are gauge groupoids. Conversely, gauge algebroids is integrable to gauge
groupoids only.

Definition 4.1. A Lie groupoid G ⇒M is called transitive if it has a unique orbit: for
any two elements m,m′ ∈M there is an arrow g from m = s(g) to m′ = t(g).

Example 4.2. An action groupoid is transitive when the action is transitive.

Proposition 4.3. Every transitive Lie groupoid G ⇒M is isomorphic to a gauge groupoid
(defined in Definition 3.29).

Proof. ([22]; [30], Proposition 5.14; [28], Theorem 3.10) It is clear that gauge groupoids
are transitive. For the converse, given any transitive Lie groupoid G, pick any point
m ∈ M, then the source fiber s−1(m) is a principal s−1(m) ∩ t−1(m)-bundle. Consider
the map s−1(m) × s−1(m) → G, mapping (g, g′) to g(g′)−1 ∈ G. One can show that it
descends to a isomorphism of Lie groupoids (s−1(m)× s−1(m))/(s−1(m) ∩ t−1(m))→ G.
Hence, the gauge groupoid of s−1(m) is isomorphic to G.

Definition 4.4. A Lie algebroid A ⇒ M is transitive if its anchor map ρA : A → TM
is surjective.

Example 4.5. Gauge algebroids are transitive Lie algebroids.

35
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Lemma 4.6. Given a transitive Lie algebroid A over a connected manifold M , which is
integrable to a Lie groupoid G, then G must be transitive.

Proof. Suppose the Lie groupoid G has orbitsO1,O2, · · · , where each orbit is a subset ofM
such that for any two element in the same orbit, there is an arrow connecting them. Recall
that A is isomorphic to Lie(G) = ker(T s)|M , and the anchor is given by T t restricted to A.
So A being transitive implies that for any m ∈ M , Tmt : ker(Tms) = Tms

−1(m) → TmM
must be surjective. Then for m ∈ Oi we have Tmt(kerTms) ⊂ TmOi, and therefore
TmOi = TmM for each m ∈ Oi. Thus t|s−1(m) : s−1(m) → M is a submersion. Hence
t(s−1(m)) is open in M for all m ∈ M , i.e. Oi is open in M . Since M is connected,
there can be only one orbit which equals to M . Thus a transitive Lie algebroid can only
integrates to a transitive Lie groupoid.

The following lemma says that the local structure of transitive Lie algebroids is simple.
We postpone the proof of it to Proposition 5.3.

Lemma 4.7. [26] Given any Lie algebroid A over M , and contractible open set U ⊂M ,
there exists an isomorphism of Lie algebroids

A|U ∼= TU × k.

where k is a Lie algebra. The bracket on TU × k is given by bracketing sections on TU
and bracketing on k, respectively.

The isomorphism in the previous lemma is called a trivialization of A. It is easy to
see that, when taking different trivializations of A over U , V , say A|U ∼= TU × k, and
A|V ∼= TV × h, one has that k and h are isomorphic Lie algebras. We refer to any Lie
algebra k in this isomorphism class as the structure Lie algebra (or isotropy) of A.

Finally, we introduce the notion of framings, which stands for trivializations with fixed
values at one point. We will use this in later sections.

Definition 4.8. Let A ⇒ M be a transitive Lie algebroid, with anchor ρ and structure
Lie algebra k, we define a framing of A at m0 to be an isomorphism of Lie algebras
ϕ0 : ker(a)|m0 → k. We will call an algebroid with framing a framed algebroid. We
denote by

Trank (M,m0)

the set of isomorphism classes of framed transitive Lie algebroids A⇒M with structure
Lie algebra k, whose framings are at m0, modulo isomorphisms intertwining the framing.
To be more precise, G : A1 → A2 intertwines the framing if

ker(ρA2)|m1

ker(ρA1)|m2 k

f
G

g

where f, g denote the framings.

Remark 4.9. Given a transitive Lie groupoid A over M , and a contractible open set
U ⊂ M , then by Lemma 4.7 we get a local trivialisation f of A. Pick any point m ∈ U ,
and choose any framing at m. The local trivialisation f restricted to ker(ρA)|m may be
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different from the chosen framing by an automorphism of Lie algebra ϕ ∈ Aut(k), but
(idTU × ϕ) ◦ f is a trivialization respecting the framing. In short, given any framing, we
can extend it to a trivialization over any given contractible open neighborhood.

4.2 Gauge transformations
Recall in Section 1.5, when studying the principal K-bundles, we can take local trivi-
aliztions and compare them. The resulting transition map can be seen as a K-valued
function. Thanks to Lemma 4.7, similar approach also apply to transitive Lie algebroids.
To compare the different local trivializations and hopefully, obtain a nice description of
the transition data, we study certain isomorphisms between trivial algebroids of the form
TU × k, called the gauge transformations. The main reference for this section is [26][29].

We first introduce the Maurer-Cartan form. Let K be a Lie group with Lie algebra k.

Definition 4.10. The left-invariant Maurer-Cartan form on K is the k-valued 1-form
θLK ∈ Ω1(K, k) given by

θLK(v) = (Lk−1)∗v ∈ TeK, v ∈ TkK.

A fundamental property of the Maurer-Cartan form says that it satisfies the Maurer-
Cartan equation: dθLK = 1

2
[θLK , θ

L
K ]. The following lemma is well-known in the theory of

Cartan forms, for a proof see [15].

Lemma 4.11. Let K be a Lie group with Lie algebra k and θLK the left-invariant Maurer-
Cartan form on K. Let M be a simply connected manifold and θ be a k-valued 1-form on
M . If θ satisfies the Maurer-Cartan equation dθ + 1

2
[θ, θ] = 0, then there exists a unique

smooth mapping f :M → K such that f(m) = e and f ∗θLK = θ.

Definition 4.12. Given a transitive Lie algebroid A ⇒ M with structure Lie algebra k,
a gauge transformation is a Lie algebroid automorphism covering the identity on TM ,
and we denote the group of gauge transformations to be Gau(A). To be more precise,
F ∈ Gau(A) if and only if F : A → A is a Lie algebroid (auto)morphism, and such that
ρA = ρA ◦ F, where ρA is the anchor.

We are interested in the gauge transformations of a trivial transitive Lie algebroid
A = TM × k⇒M., where ρA = pr1 : TM × k→ TM . Note that given two trivializations
of A, F1 : A|U → TU × k and F2 : A|V → TV × k, where U ∩ V ̸= ∅, then the difference
F1 ◦ F−1

2 |U∩V ∈ Gau(T (U ∩ V )× k).
To study Gau(TM×k), first observe that any element F ∈ Gau(TM×k) is in particular

a vector bundle isomorphism covering idM . Hence for any p ∈ M , on the fiber TpM × k,
F is of the form: (

I 0
θp Φp

)
where θp : TpM → k, and Φp : k → k. Since F is an isomorphism, we know Φp is

invertible, so θ ∈ Ω1(M, k),Φ ∈ C∞(M,GL(k))(defined in Section 1.4). We can describe
F ∈ Gau(A) as the pair (θ,Φ) ∈ Ω1(M, k)⋊C∞(M,GL(k)), here the semi-direct product
comes from the composition of matrices. Since F is a Lie algebroid isomorphism, we can
do more:
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Proposition 4.13. If M is connected and simply connected, then there is a surjective
map

C∞(M,K)⋊ Aut(k)→ Gau(TM × k).

Its kernel consists of pairs (c−1,Adc) with c ∈ K (as a constant function). In particular,
given a base point m0, every gauge transformation is given by a unique pair (f,Ψ) such
that f (m0) = e.

Proof. ([29], Proposition 3.7) We have already seen that each gauge transformation can
be seen as a pair (θ,Φ) ∈ Ω1(M, k) ⋊ C∞(M,GL(k)), and act on an arbitrary section
X + ξ, with X ∈ X(M), ξ ∈ C∞(M, k), by

(θ,Φ) · (X + ξ) = X + ιXθ + Φ(ξ),

here ιXθ = θ(X).
For any X, Y ∈ X(M), ξ, η ∈ C∞(M, k), the gauge transformation represented by

(θ,Φ) preserving the Lie algebroid bracket

[X + ξ, Y + η] = [X, Y ] + [ξ, η] + LXη − LY ξ

is equivalent to the following conditions

Φ ∈ C∞(M,Aut(k)),

dθ +
1

2
[θ, θ] = 0,

dΦ + adθ ◦Φ = 0.

The above description for gauge transformations of TM × k⇒M in terms of pairs
(θ,Φ) is due to Mackenzie [26]. Now fix a base point m0 ∈ M . Since θ satisfies the
Maurer-Cartan equation and M is simply connected, by Lemma 4.11, there is a unique
function f ∈ C∞(M,K), with f (m0) = e, such that

θ = f ∗θLK .

By the third condition above,

dΦ + adθ ◦Φ = 0⇒ d (Adf−1 ◦ Φ) = 0⇒ Adf−1 ◦ Φ = Ψ⇒ Φ = Adf ◦Ψ

where Ψ = Φ(m0) ∈ Aut(k). We hence see that the action of (Φ, θ) can be regarded as
the action of Ψ followed by the action of f . That is, there exits a bijection

C∞(M,K)⋊ Aut(k)→ Ω1(M, k)⋊ C∞(M,GL(k))

(f,Ψ) 7→ (f ∗θLK ,Adf ◦Ψ).

Since each element of Ω1(M, k) ⋊ C∞(M,GL(k)) represents a gauge transformation, we
obtain a surjective map C∞(M,K)⋊Aut(k)→ Gau(TM × k). The pair (f,Ψ) represents
the trivial transformation if and only if f ∗θLK = 0 and Adf ◦ Ψ = id, i.e. f = c−1 is a
constant function, and Ψ = Adc.

Remark 4.14. The readers can check that the composition law of gauge transformations
is given by (f,Ψ1) ◦ (g,Ψ2) = (fg,Ψ1 ◦Ψ2).



4.3. CLASSIFICATION OF PRINCIPAL BUNDLES OVER S2 39

4.3 Classification of principal bundles over S2

In this section we apply the cocycle (clutching) construction and give a classification of
principal bundles over S2. The main reference for this section is [4] [36].

Denote by PrinK(M) the set of (smooth) isomorphism classes of smooth principal
K-bundles over M . Following the discussion on page 8, we will also use PrinK(M) to
represent isomorphism classes of continuous bundles. The result below also applies to the
case when G is a topological group, as well as bundles over n-spheres.

Theorem 4.15. There is a bijective correspondence between principal bundles and the
fundamental group

PrinK(S2) ∼= π1(K, e)

where π1 denotes the fundamental group.

We only sketch the correspondence here, and refer the interested readers to ([4], The-
orem 2.7). Let p : E → S2 be a principal K-bundle. Write S2 as the union of two
contractible open sets, U+, U−, such that U+ covers the upper hemisphere and the equa-
tor, U− covers the lower hemisphere and the equator, as in Example 1.45.

Since U+ and U− are both contractible, E restricted to each of these hemispheres is
trivial ([4], Corollary 2.6). Moreover, if we fix a trivialization of the fiber of E at the base
point x0 ∈ S1 ⊂ S2, then we can extend this trivialization to U+ and U−. The readers can
compare this to Definition 4.8 and Remark 4.9. Following Section 1.5, we may write

E = (U+ ×K) ∪θ (U− ×K) := ((U+ ×K) ∪ (U− ×K))/ ∼

where θ : U+ ∩U− → K is a clutching function. Here, we identify (x, g) ∈ (U+ ×K) with
(x, θ(x)g) ∈ (U− ×K), for all x ∈ U+ ∩ U−. Notice that since our original trivializations
extended a common trivialization on the base point x0 ∈ S1, the change of trivialization
over the point x0 is just the identity transformation, and therefore the clutching function
θ maps the base point x0 to the identity e ∈ K. Now θ can be represented by an element
θ ◦ i in π1(K), where i : S1 → U+ ∩ U− is the inclusion. Since each principal bundle is
associated to a clutching function θ, we obtain a correspondence

Θ : PrinK

(
S2
)
→ π1(K).

One can show that the isomorphism class of principal bundle is independent of the choice
of the clutching functions, given that the clutching functions represents the same element
in π1(K). Therefore, we may use a base point preserving map S1 → K to represent θ.

Conversely, suppose E1 and E2 have homotopic clutching functions, θ1 ≃ θ2 : S1 → K.
Let H : S1 × [−1, 1] → K be a homotopy between θ1 and θ2. One can show that the
principal bundle with the clutching function H is isomorphic to both E1 and E2.

4.4 Classification of transitve Lie algebroids over S2

In this section we look for a similar classification for the isomorphism classes of transitive
Lie algebroids over S2, i.e. Trank (S2,m0) (defined in Definition 4.8). Suppose we are
given any transitive Lie algebroid A over M , with framing at m0 ∈ M . By Remark 4.9,
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we can extend this framing to local trivializations over U+, U− (same as last section, U+

is a contractible open set covering the upper hemisphere and the equator, U− is defined
similarly). Then on U+∩U− we get an automorphism of Lie algebroids covering idT (U+∩U−),
since it must commutes with the anchors. Then it is a gauge transformation, and recall
from Proposition 4.13 that we can write this gauge transformation as a pair (θ,Φ), where
θ ∈ Ω1(U+ ∩ U−, k), Φ ∈ C∞(U+ ∩ U−, GL(k)). The fact that both trivializations extend
the framing implies that Φ(m0) = idk.

Conversely, given any gauge transformation (θ,Φ) with Φ(m0) = idk, we can glue
trivial algebroids TU+ × k, TU− × k. The gauge transformation is the identity map on
the level of base manifolds, so the gluing of base manifold is trivial. Also, the gauge
transformation is a vector bundle isomorphism, so these two, as vector bundles, glue into
a smooth vector bundle, by the reconstruction theorem(see for example [21]). It suffices
to construct the Lie bracket, but since the gauge transformation preserves the Lie bracket,
it’s easy to see that the induced Lie bracket over U+, U− agree on the overlap, thus we
can glue them. This algebroid we construct can have any framing, and we have to assign
it one at m0. However, given two Lie algebroids having the fixed gluing map, regardless
of framing, we can construct an isomorphism, as follows: it is obvious that over U+, U−
there are isomorphisms. Then the same gluing map implies that the two isomorphisms
glue together. Interestingly, we get a framing-free description for algebroids with framings.
And a more general version of the above result is explained in (Proposition 8.2.8, [26]).

The following is the main theorem of this chapter, which is due to Meinrenken [29][28].
Although a relatively complete treatment has been done in [29], we would like to follow
a different, but more natural approach. This approach we take, which is parallel to the
last section, has been sketched in Meinrenken’s lecture notes [28], with the proof for
well-definedness and injectivity parts missing. We would like to complete his proof here.

Theorem 4.16. Let m0 ∈ S1 ⊂ S2 (embedded as equator). Isomorphism classes of framed
transitive Lie algebroid A ∈ Trank (S2,m0) are classified by elements of the center of K̃,
where K̃ is the connected and simply connected Lie group integrating k.

Proof. We first construct a natural map from Trank (S2,m0) to Cent(K̃), then we show
that it is well-defined and bijective.

Construction of the map:
Let h+ : A|U+ → TU+ × k, h− : A|U− → TU− be trivializations of the Lie algebroids

A extending the framing. Then h+ ◦ h−|−1
A|U+∩U−

: T (U+ ∩ U−) × k → T (U+ ∩ U−) × k

is a gauge transformation. Thus it can be written as (θ,Φ), where θ ∈ Ω1(U+ ∩ U−, k),
Φ ∈ C∞(U+ ∩ U−, GL(k)) with Φ(m0) = idk. Notes that we cannot find a pair (f,Ψ) as
Proposition 4.13, since U+ ∩ U− ≃ S1 is not simply connected. However, we can find a
universal cover of U+ ∩ U− ∼= S1 × (−1, 1), then pullback the gauge transformation.

Let C = R × (−1, 1) be the universal cover of U+ ∩ U−, with the covering map
π : C → U+ ∩ U−, where π(x, y) = π(x+ 1, y), for all x, y. Define θ̃ = π∗θ, Φ̃ = π∗Φ. It’s
easy to check that they satisfy the conditions in the proof of Proposition 4.13, thus there
exists a unique map f : C → K̃, with f(m0) = e and θ̃ = f ∗θL, (θL is the left invariant
Maurer-Cartan form on K̃). Also Φ̃ = Adf−1 ◦Ψ, but Φ̃(m0) = idk implies Ψ = idk i.e.
Φ̃ = Adf−1 . The above construction is mentioned in [28]. Now we would like to use f to
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define the correspondence. We shall prove the following.

Claim: f(x+ 1, y)(f(x, y))−1 is constant and f(x+ 1, y)(f(x, y))−1 ∈ Cent(K̃).

Define the translation on C by γ : C → C : (x, y)→ (x+1, y). We have that π◦γ = π.
Now by θ̃ = π∗θ = f ∗θL, we have for any v = v(x,y) ∈ T(x,y)C,

θ̃(v) = θ(π∗v) = θL(f∗v) = (Lf(x,y)−1)∗f∗v.

θ̃(γ∗v) = θL(f∗γ∗v) = (Lf(γ(x,y))−1)∗f∗γ∗v.

On the other hand,
θ̃(v) = θ(π∗γ∗v) = θ̃(γ∗v)

Thus we have

(Lf(x,y)−1)∗f∗v = (Lf(γ(x,y))−1)∗f∗γ∗v

⇐⇒ f∗γ∗v = (Lf(γ(x,y))f(x,y)−1)∗f∗v

⇐⇒ (Rf(x,y)−1)∗f∗γ∗v = (Rf(x,y)−1)∗(Lf(γ(x,y))f(x,y)−1)∗f∗v

⇐⇒ d((f ◦ γ)f−1) = 0.

thus f(x+ 1, y)(f(x, y))−1 is constant for all (x, y) ∈ C.
Now we look at Φ̃,

Φ̃ = π∗Φ⇒ Φ̃ ◦ γ = Φ̃

⇒ Ad(f◦γ)−1 = Adf−1

⇒ (f ◦ γ)f−1 ∈ Cent(K̃)

this proves the claim. Thus we have construct a map

Trank

(
S2,m0

)
→ Cent(K̃), A 7→ c(A) := f(1, 0)(f(0, 0))−1.

Next we show that this map is well-defined and bijective, and therefore defines a one-
to-one correspondence.

Well-defined:
Suppose we have A1, A2, both are Lie algebroids over M with isotropy Lie algebra

k, representing the same isomorphism class in Trank (S2,m0) i.e. there is a isomorphism
G : A1 → A2 preserving the framing. By choosing trivializations preserving the framings,
we get the following commutative diagrams.

A1|U+ A2|U+ A1|U− A2|U−

TU+ × k TU+ × k TU− × k TU− × k

G

h+
1 h+

2

G

h−
1 h−

2

G+ G−

Here, G+, G− are gauge transformations over contractible open sets, thus can be repre-
sented as (g+,Ψ+), (g−,Ψ−), respectively. Recall that we have g+(m0) = g−(m0) = e ∈ K̃,
and G preserve framings implies Ψ+ = Ψ− = idk. Restricting all of these maps to U+∩U−,
we get
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T (U+ ∩ U−)× k T (U+ ∩ U−)× k

A1|U+∩U− A2|U+∩U−

T (U+ ∩ U−)× k T (U+ ∩ U−)× k

G−

h−
1

h+
1

G

h−
2

h+
2

H1

G+

H2

here H1 = h+1 ◦ (h−1 |A1|U+∩U−
)−1, H2 = h+2 ◦ (h−2 |A2|U+∩U−

)−1 are gauge transformations.
From the diagram we have G−◦H1 = H2◦G+. We can pull the maps G−, G+, H1, H2 back
to C and get G̃− ◦ H̃1 = H̃2 ◦ G̃+. Note that now G̃−, G̃+ corresponds to π∗g−, π

∗g+, re-
spectively. Now suppose H̃1, H̃2 corresponds to f1, f2, then we have (π∗g−)f1 = f2(π

∗g+).
Since π∗g−(0, 0) = π∗g−(1, 0) = g−(m0) = e, π∗g+(0, 0) = π∗g+(1, 0) = e, we have
f1(1, 0) = f2(1, 0), f1(0, 0) = f2(0, 0). Hence we conclude that A1, A2 must corresponds
to the same element in Cent(K̃).

Surjectivity:

We follow [28] for this part. Given any element k ∈ Cent(K̃), we can choose a path
inside K̃ with sitting instances from e to k, i.e. it is a smooth path which is constant
near t = 0 and t = 1. Then we can extend this path to get a smooth map g̃ : R → K̃,
by letting g̃(t + 1) = g̃(1)g̃(t). Then we define g : C → K̃, g(x, y) = g̃(x). Now (g, idk)
defines a gauge transformation on TC × k, and this gauge transformation is unchanged
under a translation γ, therefore it descends to a gauge transformation on T (U+∩U−)× k,
which is our desired gluing data. Thus we get a framed transitive Lie algebroid over S2.
By applying the ‘construction’ part of the proof to this Lie algebroid, we can recover the
map g as the gluing data, and therefore the element k ∈ Cent(K̃).

Injectivity:

Suppose we are given framed Lie algebroids A,A′ ∈ Trank (S
2,m0), which are mapped

to the same element k, we want to see that they are isomorphic as framed algebroids.
Suppose h+, h− are trivializations of A over U+, U−, respectively, both extending the
framing, and thus A corresponds to the gauge transformation G and thus (g, idk), where
g : C → K̃. We can do the same on A′, which corresponds to (g′, idk). Let f = g′g−1 :

C → K̃. Then we know that f(x+ 1, y) = f(x, y) = e, for all x, y.

We know that in this case, the map f |[0,1]×{y} is a loop, for any fixed y, thus f descends
to f : U+ ∩ U− → K̃. Since K̃ is simply-connected, each of the loops is contractible, and
we can get a continuous map U+ → K̃, which agree with f in a neighborhood W of the
equator. By Corollary 6.29 of [21], there is also a smooth extension f̃ : U+ → K̃ agreeing
with f on W . Now f̃ determines a gauge transformation G̃ on TU+ × k, i.e. a change of
trivialization over U+, which agrees with G over W . Take this new trivialization h′+ on
U+ and the old one h− on U−, we get the gluing gauge transformation G̃◦G on W , which
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corresponds to the map g′g−1g = g′, as the following diagram illustrates.

TW × k

A|W TW × k

TW × k

h′
+

h−

h+
G̃G̃◦G

G

This shows A and A′ are isomorphic.

We have adapted the viewpoint of seeing isomorphism class of framed Lie algebroids as
gluing two trivial pieces by the gauge transformations, and they are equivalent if and only
if they correspond to the same element in Cent(K̃). Now we look at them from another
point of view: we fix a transitive Lie algebroid with given framing, and see what happens
in Cent(K̃) if we look at the same algebroid, but with a different framing. In this way, we
can obtain a new result, i.e. giving a classification of algebroids without framing. This
result will be useful in the study of the example in Section 4.7.

Corollary 4.17. There is a one-to-one correspondence between the isomorphism classes of
transitive Lie algebroids over S2 with structure algebra k, and orbits of the action Aut(K̃)

on Cent(K̃). Here, K̃ is the connected and simply-connected Lie group integrating k.

Proof. Given A ∈ Trank (S2,m0), with any framing. By Remark 4.9, we can extend this
framing to trivializations of A over U+ and U−. And these trivializations are corresponded
by a gauge transformation over U+ ∩ U−. Now for A with any other framing different to
the original one by an element τ ∈ Aut(k), we get new trivializations of A extending the
new framing.

A|U+∩U− A|U+∩U−

T (U+ ∩ U−)× k T (U+ ∩ U−)× k

T (U+ ∩ U−)× k T (U+ ∩ U−)× k

h+ h−

G1

idT (U+∩U−)×τ idT (U+∩U−)×τ

G2

Here, h+ : A|U+ → TU+ × k and h− : A|U− → TU− × k are trivializations extending
the old framing. Suppose the gauge transformation G1 is given by (θ,Φ), where θ ∈
Ω1(U+ ∩ U−, k), Φ ∈ C∞(U+ ∩ U−, GL(k)) with Φ(m0) = idk. Then we can pullback θ by
π : C → U+ ∩ U−, and get f : C → K̃ with π∗θ = f ∗θL

K̃
, and f(0, 0) = e. We also know

that (θ,Φ) maps any section (X, ξ) to X + ιXθ + Φ(ξ). By the commutative diagram
above, G2 maps (X, ξ) to X + ιX(τ ◦ θ) + Φ(ξ) i.e. G2 corresponds to the pair (τ ◦ θ,Φ).

We denote by g the automorphism of K̃ integrating to τ. Then π∗(τ ◦θ) = g∗(f
∗θL

K̃
) =

(g ◦ f)∗θLK̃ . Thus G2 corresponds to the element g(f(1, 0)) ∈ Cent(K̃) (here we used
f((0, 0)) = e). This shows that a fixed algebroid with different framings lies in the same
orbit of the action of Aut(K̃).

Marco Zambon
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Now consider isomorphism of Lie algebroids B → A, as non-framed algebroids. Then
it is an isomorphism of framed algebroids for some framings of B and A. But then they
must lie in the same orbit. The converse is trivial because an isomorphism of framed
Lie algebroids must be an isomorphism of non-framed Lie algebroids. This finishes our
proof.

4.5 Mapping principal bundles to transitive Lie alge-
broids

It is clear that given a principal bundle, by considering the gauge algebroid of the principal
bundle (see Section 3.5), we get a transitive Lie algebroid. However, for our purpose, we
want the algebroids we get to have a framing. Therefore, we define PrinK (M,m0) to be
the set of principal K-bundles P with a choice of p ∈ P |m0 , and we call P a principal
bundle with framing.

Given a principal K-bundle with framing p ∈ Pm, we get framing of the Lie algebroid
A(P ) with framing at m, as follows: we can extend this framing to a local trivialisation
of principal bundles P |U → U × K, thus TP |U → TU × TK (we can compute this
by simply taking the differential, note that this is equivalent to first take a morpism of
pair groupoids and then differentiate to Lie algebroids). This isomorphism descends to
A(P |U) = A(P )|U = (TP/K)|U ∼= TU × k. Thus we get a framing on A(P ), which is
independent of the extension. Denote [A(P )] as the (framed) isomorphism class of gauge
algebroid A(P ) with the induced framing mentioned above. We get

Proposition 4.18. There is a natural map

PrinK (M,m0)→ Trank (M,m0) , P 7→ [A(P )].

We recall a basic property of the covering space: let p : M̃ → M be a universal
covering of the topological space M, then given any path γ : [0, 1] → M, and a fixed
element m ∈ M̃ with p(m) = γ(0). Then there exists a unique path γ̃ : [0, 1] → M̃ such
that p◦ γ̃ = γ, and γ̃(0) = m. Now for any loop λ in M based at m′ := p(m), there exists a
unique path λ̃ in M̃ starting from m. Fixing the point m, the map π1(M,m′)→ M̃ given
by mapping each loop λ to λ̃(1) is well-defined, and called the lifting correspondence.

The following proposition shows that there is a nice relation between the two classifi-
cations we discussed in Section 4.3 and Section 4.4. Also, the natural map we constructed
in Theorem 4.16 induces the lifting correspondence map on the level of groups classifying
principal bundles and transitive Lie algebroids. The proposition and the proof is sketched
by Meinrenken in [28], and we added a few detailed computations.

Proposition 4.19. There is a commutative diagram

PrinK (S2,m0) Trank (S2,m0)

π1(K, e) Cent(K̃)

Marco Zambon
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where the map π1(K, e)→ Cent(K̃) is the lifting correspondence map.

Proof. Given a framed principal K-bundle P ∈ PrinK (S2,m0), we can find local trivial-
izations of principal bundles, extending the framing

Φ+ : P |U+ → U+ ×K
Φ− : P |U− → U− ×K.

Therefore we get a map g : U+∩U− → K representing the gluing map. The trivializations
extends the framing at m0 implies that g(m0) = e. Now that [g] ∈ π1(K, e) is our desired
element under the left vertical map in the diagram.

On the other hand, we can take the differentials of Φ+, Φ− to get

TΦ+ : TP |U+ → TU+ × TK
TΦ− : TP |U− → TU− × TK.

Then we can compute the gauge transformation by considering

(idT (U+∩U− × θLK) ◦ (Φ+ ◦ Φ−1
− )∗|T (U+∩U−)×TeK : T (U+ ∩ U−)× k→ T (U+ ∩ U−)× k.

here θLK is the left-invariant Maurer-Cartan form of K. To compute θ corresponding to
this gauge transformation, we can pick any section (X, 0) (recall the gauge transformation
acts by (θ,Φ)(X, 0) = (X, θ(X)), see Proposition 4.13). Thus (X, θ(X)) = (id × θLK) ◦
(Φ+ ◦ Φ−1

− )∗(X, 0), and θ(X) = θLK ◦ g∗(X). Also we denote the covering map of K̃ by π̃,
and the covering map of the annulus C by π : C → U+ ∩ U−. Define g = g ◦ π : C → K,
and let

g̃ : C → K̃

be the lifting of g. Now for any vector field X̃ ∈ X(C),

θ̃(X̃) = π∗θ(X̃)

= θLK(g∗π∗X̃)

= θLK(g∗X̃)

= θLK((π̃ ◦ g̃)∗X̃)

= g̃∗π̃∗θLK(X̃)

= g̃∗θL
K̃
(X̃).

i.e. g̃ is the map we shall use to compute the element in Cent(K̃), and g̃(1, 0)(g̃(0, 0))−1

is our desired element under the right vertical map. Now we see that the horizontal map
is given by π1(K, e) → Cent(K̃) : [g] 7→ g̃(1, 0)(g̃(0, 0))−1. This is exactly the lifting
correspondence.
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4.6 The integrability condition
We have seen in Theorem 3.21 the integrability condition for a general Lie algebroid. In
this section we discuss the integrability condition in more details, for the case of transitive
Lie algebroids. Throughout this section, we assume that A is a transitive Lie algebroid
over M , with structure Lie algebra k. Let K̃ be the (unique) simply connected Lie group
whose Lie algebra is k, and let Cent(K̃) denotes its center (see Definition 1.29).

We first introduce the notion of monodromy, which involves the pullback construction
(see Section 3.5). Given any transitive Lie algeboid A over M with framing at m, let
f : N → M be a smooth map. Then f !A is a transitive Lie algebroid over S2, with
ker(ρf !A) = (0, ker(ρA)). It is easy to see that there is a natural choice of framing on f !A
induced by that of A.

Let π2(M,m) be the second homotopy group. Its elements consists of homotopy classes
of base-point preserving maps S2 →M.

Definition 4.20. The monodromy map of framed transitive Lie algebroid A at m ∈M
is the group homomorphism

δA : π2(M,m)→ Cent(K̃) ⊂ K̃, [f ] 7→ c
(
f !A

)
.

Here, c is the natural map defined in Theorem 4.16, and f !A is equipped with the nat-
ural choice of framing. The image Λ ⊂ Cent(K̃) of the monodromy map is called the
monodromy group at m.

Now we can apply the result in the last section to get a necessary condition for inte-
grability.

Proposition 4.21. A necessary condition for the integrability of a transitive Lie algebroid
A⇒ M is that the monodromy group Λ is discrete in K̃.

Proof. [29] Suppose A ⇒ M is integrable to a Lie groupoid G ⇒ M , and fix m ∈ M .
According to Lemma 4.6, G is necessarily transitive. Suppose the source and target map
of G are given by s, t, respectively. Pick any point m ∈ M . Then the transitive Lie
groupoid G is the gauge groupoid G(P ) of the principal K-bundle P = s−1(m), where
K = s−1(m)∩ t−1(m), as in Proposition 4.3. We know that A ∼= A(P ), where A(P ) is the
gauge algebroid of P . Given a smooth base-point preserving map f : S2 → M , it follow
from Proposition 3.33 that f !A = A (f ∗P ). By the commutative diagram in Proposition
4.19, the element δA([f ]) = c

(
f !A

)
must lie in π1 (K, e) ⊆ K̃. This shows that

Λ ⊆ π1 (K, e) ⊆ K̃.

Since π1(K, e) is discrete in K̃, we know that Λ must be discrete.

The necessary condition mentioned above turns out to be sufficient:

Theorem 4.22 (Integrability condition[26][29]). A transitive Lie algebroid is integrable
if and only if the monodromy group is discrete.

Remark 4.23. The definition of the monodromy in Definition 4.20 is the same as that of
Crainic-Fernandes [5]. As a consequence, Theorem 4.21 is a direct corollary of Theorem
3.21.
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Remark 4.24. Historically, the integration of transitive Lie algebroid was first solved by
Mackenzie, in [23]. According to [11], the integrability condition derived by Mackenzie
is equivalent to the condition in Theorem 4.21. We shall briefly mention the idea of
Mackenzie: we already know that each principal bundle can be seen as several trivial
pieces glued together, by the clutching functions. In light of Proposition 4.13 and ([26],
Proposition 8.2.8), any transitive Lie algebroid can also be seen as trivial pieces glued
together, by the transition data (θ,Φ). Moreover, when the integrability condition is
satisfied and the base manifold M is simply connected, then the transition datas for
transitive Lie algebroids can be translated to those for principal bundles ([26], Section
8.3). When the base manifold is not simply connected, one can consider the pullback
algebroid by the universal covering map. The Lie algebroid is integrable if and only if the
pullback algebroid is integrable ([26], Theorem 8.3.4).

4.7 Example: the prequantization algebroid

In (Example 4.2, [29]), the author mentioned that it is possible to apply the classification
results in Section 4.4 to study the prequantization algebroids, which is a trivial line
bundle over S2, with nontrivial Lie brackets. In this section we study this example in full
detail: we compute the monodromy, and discuss its integrability. Let k = R, we have
Cent(K̃) = R, so TranR (S2,m0) ∼= R.

Definition 4.25. Letting ω be the standard symplectic form on S2, and λ ∈ R. We can
define a Lie algebroid structure on the vector bundle TS2 × R, with the bracket [ , ]A
given by

[(X, f), (Y, g)]A = [X, Y ] + LXg − LY f + λω(X, Y ),

where [ , ] denotes the bracket of TS2. This Lie algebroid is called the prequantization
algebroid over S2 of λω, denoted A(λ).

To apply the results of Section 4.4, it is convenient to assign A(λ) with the trivial
framing idR, and think A(λ) as a framed Lie algebroid. Indeed, A(λ) with different framing
is not isomorphic to that with the trivial framing, as framed Lie algebroids. Instead, it
corresponds to another Lie algebroid A(λ′) with the trivial framing, for some λ ̸= λ′. By
abuse of notation, we use A(λ) to represent A(λ) with trivial framing.

Figure 4.1: The cylindrical coordinates on S2
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We embed S2 in C× R, for each point (y, z) ∈ S2, we use (µ, z) as the coordinates of
S2, where µ = arg(y). Under this coordinate, ω = dµ∧ dz. Take the universal covering of
S1 by R to be the identification of R/Z ∼= S1.

Proposition 4.26. Under the correspondence described in Theorem 4.16, the prequanti-
zation algebroid A(λ) corresponds to −4πλ ∈ R.

Proof. We extend the trivial framing to local trivializations, and then compute the gauge
transformation of A(λ). On S2 \ {s}, we have that ω = dβ, where β = (−z + 1)dµ. And
we have trivialisation

h+ : A|U+
∼= TU+ × R

(v, ξ) 7→ (v, ξ − λιvβ).

We check that it is indeed a Lie algebroid isomorphism. It suffices to see that it
preserves Lie brackets. We use [ , ]0 to denote the bracket of the trivial Lie algebroid. For
any sections (X, f), (Y, g) of A|U+ , we have

[h+(X, f), h+(Y, g)]0 = [(X, ξ − λιXβ, (Y, ξ − λιY β]0
= ([X, Y ],LXg − LY f + λLXιY β − λLY ιXβ).

On the other hand,

ω(X, Y ) = dβ(X, Y ) = LXβ(Y )− LY β(X)− β([X, Y ]).

It follows that

h+([(X, f), (Y, g)]A) = h+([X, Y ],LXg − LY f + λω(X, Y ))

= ([X, Y ],LXg − LY f + λdβ(X, Y ) + λι[X,Y ]β)

= ([X, Y ],LXg − LY f + λLXβ(Y )− λLY β(X)

= [h+(X, f), h+(Y, g)]0.

Thus h+ is indeed a Lie algebroid isomorphism.
Similarly, we have trivialisation h− : A|U−

∼= TU− × R, sending section (X, ξ) to
(X, ξ−λιXα), where α = −(z+1)dµ. Since h−( ∂

∂µ
, λ(z−1)) = ( ∂

∂µ
, 0), h+( ∂

∂µ
, λ(z−1)) =

( ∂
∂µ
,−2λ), thus the gauge transformation sends the section ∂

∂µ
to ∂

∂µ
− 2λ. On the other

hand, the gauge transformation over C = (−1, 1) × R corresponding to c ∈ Cent(R)
is θ̃ = cdx, Φ̃ = idR, where x denotes the coordinate of R in (−1, 1) × R. It descends
to (θ = c

2π
dµ,Φ = idR) over U+ ∩ U−, under the identification R/Z ∼= R/2πZ. One

can compute easily that this transformation sends ∂
∂µ

to ∂
∂µ

+ c
2π

. In this case, we have
c
2π

= −2λ. Therefore, we conclude that A(λ) corresponds to −4πλ ∈ R, under the bijection
defined in Theorem 4.16.

In particular, this shows:

Corollary 4.27. Every transitive Lie algebroids A ∈ TranR (S2,m0) is isomorphic as
framed algebroid to some A(λ); and A(λ) is not isomorphic to A(λ′) as long as λ′ ̸= λ, as
framed algebroids.
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Since automorphisms of Lie group R acts by scalar multiplication, we know that the
orbits of the Aut(R) action on R are {0} and {x ∈ R : x ̸= 0}. By Corollary 4.17, we get

Corollary 4.28. Up to isomorphism (of non-framed Lie algebroids), there is only one
nontrivial transitive Lie algebroid over S2 with structure Lie algebra R. That is, if we
forget about the framing, A(λ) are isomorphic Lie algebroids for all λ ̸= 0.

Next we compute the monodromy group of A(λ) with trivial framing, following section
4.6, and conclude the following:

Corollary 4.29. The monodromy group associated to A(λ) is 4πλZ ⊂ R. In particular,
the monodromy group is discrete.

Proof. Given f : S2 → S2, the pullback of A(λ) is f !A(λ) = TS2 ×S2 A
(λ), with elements of

the form (u, (f∗u, ξ)). The bracket is given by

[(X, (f∗X, ξ)), (Y, (f∗Y, η))] = ([X, Y ], f∗[X, Y ] + Lf∗Xη − Lf∗Y ξ + λω(f∗X, f∗Y )).

We claim that f !A is isomorphic to A(λ′) with λ′ = deg(f)λ, via the map (u, (f∗u, ξ)) 7→
(u, ξ). By comparing the brackets, it suffices to show

λω(f∗X, f∗Y ) = λ(f ∗ω)(X, Y ) = λ′ω(X, Y )

i.e. λ′ω = λf ∗ω. Integrate them on both sides over S2, we get λ′
∫
S2 ω = λ

∫
S2 f

∗ω =
λ deg(f)

∫
S2 ω. The claim follows.

We know by the integrability condition (Theorem 4.22) that A(λ) must be integrable.
Then one can easily recover the (framed) principal bundle whose gauge algebroid is A(λ),
with the help of the commutative diagram in Proposition 4.19, and Example 1.45. Recall
that the Hopf bundle corresponds to the clutching function

g : U+ ∩ U− → S1, (z, d) 7→ z

|z|
,

whose pullback to S1 is just the identity map idS1 . Thus the Hopf bundle corresponds
to 1 ∈ R, and therefore its (framed) gauge algebroid is A(−4π). This Lie algebroid, as
a non-framed Lie algebroid, is the only nontrivial transitive Lie algebroid mentioned in
Corollary 4.28.

More generally, we may consider any connected manifold M , and a closed form σ ∈
Ω2(M). From now on, we follow [6]. The prequantization algebroid over M of σ is
given by the Lie algebroid Aσ = TM × R, with the Lie bracket defined in the same way
as the prequantization algebroid over S2, described in Definition 4.25.

Now we study the integrability of Aσ. To compute the monodromy, we need to consider
all the pullback algebroids γ!Aσ, where γ : S2 → M. By generalizing the arguments in
Corollary 4.29, one sees that γ!Aσ ∼= Aγ∗σ, and then corresponds to the element

∫
S2 γ

∗σ ∈
R. Therefore,

Proposition 4.30. The monodromy group of Aσ is {
∫
S2 γ

∗σ| γ : S2 →M} ⊂ R.

Using the result above, it is not hard to give examples of non-integrable Lie algebroids,
among which the example mentioned below is the first one, due to Almeida and Molino.

Marco Zambon
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Corollary 4.31. [1] Take M = S2 × S2. Let ω ∈ Ω2(S2) be the symplectic form, and
ω̃ = pr∗1 ω +

√
2 pr∗2 ω. The monodromy group of Aω̃ is Z +

√
2Z ⊂ R, therefore not

integrable.

Assuming the integrability condition, we can now give a description for the integration
of the prequantization algebroid Aσ, following [6]. For simplicity, assume M is simply
connected. Pick m ∈M, let P (M) := P (M,m) be the space of C2-paths in M ending at
m. Recall that we may see this as a Banach manifold. Consider the quotient space

Pσ := P (M)× R/ ∼,

with the equivalence relation:

(γ0, r0) ∼ (γ1, r1) ⇐⇒ γ0 ≃ γ1, r0 − r1 =
∫
H

σ.

Here, H is any homotopy H : I2 →M between γ0 and γ1 keeping the end points fixed.

Lemma 4.32. [6] If the integrability condition holds, then Pσ is a principal S1-bundle over
M . Here, S1 is identified with R/Λ, where Λ = {

∫
S2 γ

∗σ| γ : S2 → M}. The S1-action
on Pσ is given by the usual R-action on P (M)× R passing to the quotients.

In this case, we denote Gσ to be the gauge groupoid of Pσ. Moreover, its Lie algebroid
is Aσ.

Remark 4.33. We omit the proof of smoothness of principal bundle (and therefore the
groupoid) here. One can apply Proposition 5.20 for a proof. Now we sketch the idea of
proving the Lie algebroid of Gσ is Aσ : by assuming the integrability condition, one can
find a (multiplicative) 1-form θ̃ on Gσ, which serve as a connection form (see Remark
1.42) of the principal S1-bundle π : Gσ →M ×M . We also require that dθ̃ = π∗σ̃, where
σ̃ = pr∗1 σ− pr∗2 σ. Indeed, finding such 1-form is called the prequantization problem, and
see [6] for more details.

The algebroid of Gσ is kerT s|M ⊂ TGσ. Observe the 1-form θ̃ can be seen as a map
TGσ → R. By restricting it to kerT s|M , we obtain a map l : kerT s|M → R. Now the vector
bundle isomorphism kerT s|M → Aσ = TM × R : α 7→ (T t(α), l(α)) is a Lie algebroid
isomorphism: it preserves the Lie brackets, by the quantization condition dθ̃ = π∗σ̃.



Chapter 5

A Construction for Integration

In Section 4.6 and 4.7, we discussed the integrability condition for arbitrary transitive
Lie algebroids, and constructed an integration, in the special case of the prequantization
algebroids. This motivates us to find a construction for the integration of transitive Lie
algebroids. While Crainic and Ferenandes [5] gave a construction for general Lie algebroids
in 2004, recently, Meinrenken [28] [29] introduced a new elementary construction for
transitive Lie algebroids. The main goal of this chapter is to explain Meinrenken’s new
construction.

5.1 The isotropy bundle
To understand Meinrenken’s construction, we first introduce the notion of isotropy and
connections, which allow us to describe the Lie algebroid structure of a transitive Lie
algebroid in a way similar to that of the prequantization algebroid (see Section 4.7). The
reference for this section is Mackenzie’s book [26], although all of the results also appear
in [29].

Definition 5.1. Given a Lie algebroid A over M , the kernel of the anchor map, h :=
ker(ρA) , is a bundle of Lie algebra (mentioned in Example 3.17), with isomorphic fibers.
We call this Lie algebroid h the isotropy bundle (adjoint bundle) of A.

The following result is due to Mackenzie and Xu [24], the proof is quite involved.

Lemma 5.2. Let A⇒M be a transitive Lie groupoid, and Q another manifold. If

φ : R×Q→M, (t, q) 7→ φt(q)

is a smooth map, then the pullback Lie algebroids φ!
tA⇒ Q are all isomorphic.

One consequence of this result is Lemma 4.7. We restate it here:

Proposition 5.3. [26] Let U ⊆ M be a contractible open subset, then any choice of a
smooth deformation retract of U onto a base point m0 ∈ U determines an isomorphism
of Lie algebroids A|U ∼= TU × hm0.

Proof. [29] Let i : {m0} → U be the inclusion, and p : U → {m0} be the retraction. Let
φ : R× U → U, (t,m) 7→ φt(m) be a smooth map such that φ0 = i ◦ p and φ1 = idU . By
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Lemma 5.2, φ determines a Lie algebroid isomorphism

A|U = φ!
1A
∼= φ!

0A = p!i!A = p!hm0 = TU × hm0 .

In particular, we know that the isotropy bundle h is not only an algebroid, but admits
local trivializations compatible with the fiberwise Lie algebra structure. We call any
bundle of Lie algebras with this property to be a Lie algebra bundle.

Note that the isotropy bundle h fits into an exact sequence of Lie algebroids

0→ h→ A→ TM → 0.

Definition 5.4. We call a vector bundle morphism j : TM → A a splitting (or connec-
tion) of A if it is a vector bundle splitting of the above sequence, i.e. ρA ◦ j = idTM .

Let Cent(h) ⊂ h be the subalgebroid, given by Cent(h)m := Cent(hm), for all m ∈M.
The following lemma explains why we call j in the previous definition a connection. The
proof is straightforward, see [5].

Lemma 5.5. A splitting j : TM → A of a transitive Lie algebroid A ⇒ M induces a
linear connection (called the adjoint connection) ∇ on the Lie algebra bundle h = ker (ρA),
by

∇Xσ = [j(X), σ], X ∈ X(M), σ ∈ Γ(h)

This connection preserves Cent(h), and restricts to a flat connection on Cent(h) indepen-
dent of the choice of j.

Remark 5.6. Given any transitive Lie algebroid A over M , the choice of splitting j
enable us to see A|V as a direct sum TV ⊕ h, where h is the isotropy Lie algebra bundle,
and V is some contractible open set. To see this, Ω ∈ Ω2(M ; h) be the 2-form given by
Ω(X, Y ) := [j(X), j(Y )]− j([X, Y ]). The bracket on TU ⊕ h is defined by

[(X, ξ), (Y, η)] = ([X, Y ], [ξ, η] +∇Xη −∇Y ξ + Ω(X, Y )).

Consider f : TV ⊕ h→ A, given by (X, ξ) 7→ j(X) + ξ. We show that f preserves the
brackets:

f([(X, ξ), (Y, η)]) = j([X, Y ]) + [ξ, η] +∇Xη −∇Y ξ + Ω(X, Y )

= j([X, Y ]) + [j(X), η] + [ξ, j(Y )] + [j(X), j(Y )]− j([X, Y ]) + [ξ, η]

= [j(X) + ξ, j(Y ) + η].

Thus the vector bundle isomorphism f is an isomorphism of Lie algebroids. We conclude
that: the Lie algebroid structure on A is determined by h, ∇ and Ω.

Similarly, a Lie group bundle is a fiber bundle such that each fibre is a Lie group,
and that there exists an atlas among which each chart is a Lie group isomorphism on each
fiber.

For a Lie groupoid G overM , the isotropy Lie group bundle is a Lie group bundleH
with fibers Hm = s−1(m)∩t−1(m). We have the following exact sequence of Lie groupoids

1→ H → G → Pair(M)→ 1.
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Remark 5.7. Given a transitive Lie algebroid A, then ker(ρA) seen as a Lie algebroid,
integrates to a Lie groupoid H̃. If A is transitive, then we can take H̃ to be a Lie group
bundle with simply connected fibers.

5.2 Isotropy modulo monodromy

Remark 6.6 in the last section tells us that the Lie algebroid structure of a transitive
Lie algebroid A is completely determined by the isotropy bundle h, the adjoint connec-
tion ∇, and the curvature 2-form Ω. In the following sections, we would like to transfer
these ‘algebroid data’ to ‘groupoid data’. The philosophy of constructing a new group
bundle, which we will call ‘isotropy modulo monodromy’, is due to Meinrenken [29]. In
complement, we prove some technical results in Proposition 5.9 and Lemma 5.11.

Given a transitive Lie algebroid A ⇒ M , let h = ker(ρA) be the isotropy bundle.
Then h integrates to a bundle of Lie groups H̃ with simply connected fibers. The local
trivializations for h integrates to trivializations of H̃. Denote by Z = Cent(H̃) the Lie
group bundle with fibers Zm = Cent(H̃m).

We have seen in Definition 4.20 the notion of monodromy. According to Meinrenken
[29], the monodromy maps can be seen as a map ∪m∈Mπ2(M,m)→ Z. A small problem
regarding to this definition is the following: we need to fix a transitive Lie algebroid A
with framing, say at m′, to get a corresponding element in the center of some Lie group.
When we pullback A by an element in π2(M,m′), there is no problem (there is a natural
choice of framing, see page46). However, we also need to pullback A with elements in
∪m∈Mπ2(M,m), so the map may not be defined for base points other than m′.

In the paper [29], the author omitted the discussion for this problem. We shall fill
in the missing details. We will show the following: fix a base point m ∈ M , an element
f ∈ π2(M,m), and a transitive Lie algebroid over M with any framing at M . Then the
resulting element in the Lie group corresponds to the pullback Lie algebroid is independent
of the choice of the framing. It is easy to see that this result will solve the above problem.

Definition 5.8. Given any transitive Lie algebroid A with framing at a fixed point m ∈
M , given by g : ker(ρA)|m ∼= k. Then by Theorem 1.21, the isomorphism of Lie algebras
g integrates to an isomorphism of Lie groups g̃ : H̃m

∼= K̃.
We define the map

δA,m : π2(M,m)→ Zm ⊂ H̃m, f 7→ g̃−1(c(f !A)).

Here, c is the natural map defined in the proof of 4.16. We define Λm to be the image of
δA,m in Zm.

Proposition 5.9. Under the definitions above, given any transitive Lie algebroid A with
framing at m, then Λm ⊂ Zm is independent of the choice of framings of A.

Proof. First consider any transitive Lie algebroid B over S2. Suppose we have two fram-
ings differ by an automorphism τ ∈ Aut(k), and it integrates to g ∈ Aut(K̃). By the proof
of Corollary 4.17, the resulting element in K̃ of B (with different framings) differ by g.
But then by the commutative diagram below, they corresponds to the same element in
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H̃m.

ker(ρA)|m k H̃m K̃

k K̃

τ g

One can show that the above argument works for the general case, where we consider an
arbitrary transitive Lie algebroid pulled back to S2, with different framings.

Corollary 5.10. Let A be a transitive Lie algebroid without framing. By taking at each
m ∈M the map δA,m, we get a map ∪m∈Mπ2(M,m)→ Z, as claimed in [29].

From now on, we assume that the integrability condition holds: Λm is discrete
for some base point, and thus for any m ∈ M . One immediate consequence is that
Um := H̃m/Λm is a well-defined Lie group. Indeed, we will establish the union of U :=
∪m∈MUm as a locally trivial bundle of Lie groups, and we will call U the isotropy modulo
monodromy. This will be our groupoid counter part for h, and is of great importance
in the construction of integration.

By the previous discussions, any choice of splitting of the transitive Lie algebroid
A ⇒ M induces a adjoint connection on its isotropy h = ker(ρA). Given any path with
sitting instances (see section 6.5) γ in M , we denote the parallel transport by γ∗ : hγ(0) →
hγ(1). The parallel transports exponentiate to γ∗ : H̃γ(0) → H̃γ(1). We call it the parallel
transport on H̃. To further define similar notion on the quotient Um we need the following
lemma, which is stated in (Remark 5.3, [29]) without mentioning the proof. We give a
proof here.

Lemma 5.11. Given a path γ from m to m′, we have the following commutative diagram.

π2(M,m) Zm

π2(M,m′) Zm′

δA

γ∗ γ∗

δA

In particular, we know that γ∗(Λm) = Λm′ .

Proof. Given f ∈ π2(M,m), we know that f !A is a transitive Lie algebroid over S2, and
δA(f) = c(f !A) ∈ Cent(H̃) = Z. By going through the construction in Theorem 4.16,
one sees that (γ∗f)

!A corresponds to the same element δA(f) ∈ Z. Here, the framing of
(γ∗f)

!A at m′ is obtained from the framing of A at m, namely: h→ hm, compositing with
the parallel transport along γ: hm → hm′ . The change of framing induces the following
diagram

Z Zm′

Zm

γ∗

Thus the lemma follows.
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Thus the parallel transport γ∗ : H̃γ(0) → H̃γ(1) passes to the quotient Pγ : Uγ(0) → Uγ(1).
We call Pγ the parallel transport along γ in U . The local trivializations of U is defined
using those of H̃, and we use the fact that the monodromy is preserved by parallel
transport in H̃.

5.3 Holonomy
The parallel transport on U determines the parallel transport on h, and therefore the (ad-
joint) connection ∇ on h. However, This does not necessarily determine the Lie algebroid
structure, since the curvature form Ω may vary. Therefore, we introduce in this section
the holonomy on U , which will contain more information than the parallel transport. The
reference for this section is [29].

Given any transitive Lie algebroid A⇒M , we fix a choice of a splitting j : TM → A.
Let h be the isotropy (Lie algebra) bundle. Let Loop0(M) denotes the set of thin homotopy
classes (See Section 6.6) of contractible loops (in the sense of smooth path homotopy) in
M .

Definition 5.12. [29] The holonomy is a map

Hol : Loop0(M)→ U.

Given a contractible loop (ζ : [0, 1] → M) ∈ Loop0(M), Hol(ζ) can be computed by
the following steps:

• Pick a local trivialization of the pullback Lie algebroid ζ !A, say ϕ : ζ !A ∼= T [0, 1]×hm.
Moreover, we shall assume that ϕ extends over a deformation retract pf ζ.

• Transport the splitting j to a splitting of ζ !A, and therefore a splitting of T [0, 1]×hm.

• Note that T [0, 1]× hm is the gauge algebroid of the trivial principal bundle [0, 1]×
Um, therefore a splitting T [0, 1] → T [0, 1] × hm defines a principal connection (see
Definition 1.31) on [0, 1]× Um.

• Compute the horizontal lift k : [0, 1]→ [0, 1]×hm of the identity map on [0, 1] (seen
as a path), and such that k(0) = (0, e).

Then (1, Hol(ζ)) = k(1) ∈ {1} × Um.

Remark 5.13. The definition presented here is slightly different from the definition in
[29]: in the paper, the Lie algebroid A has a framing at some point m. In this case, we
face with the same problem as the last section, namely the holonomy map is only defined
for loops based at m. Again, one way to solve this is to prove that the holonomy map
does not depend on the framings at a fixed point.

Remark 5.14. The local trivialization in the previous definition always exists. We may
obtain it as follows: first we pick a local trivialization of A covering the image of ζ, then
we pull it back by ζ.

The definition for holonomy involves a choice of the local trivialization. Therefore we
need the following lemma. We will only sketch a proof, and refer the interested readers
to (Proposition 5.4, [29]).

Marco Zambon
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Lemma 5.15. [29] The value Hol(ζ) does not depend on our choice of local trivialization
ϕ.

Proof. We know that the local trivialization ϕ extends over a deformation retract H,
which can be seen as a map D+ → M , and such that H|∂D+ can be identified with ζ.
Here, D+ denotes the closed upper hemisphere. We can repeat the procedure for D−, and
then glue the two homotopies to a map σ : S2 →M.

Since Um = H̃m/Λm, with Λm discrete, we have that the map π2(Um)→ Λm defined in
Definition 5.8 is an isomorphism. Thus there exists a principal Um-bundle P over S2 whose
gauge Lie algebroid is σ!A. It follows that the pullback splitting σ!j : TS2 → δ!A defines
a connection on P . One can show that Hol(ζ) can be computed using this connection,
which is independent of the choice of the trivialization ϕ.

Now we study the relationship between the holonomy and the parallel transport. For
the proof of the following lemma, see ([29], Proposition 5.4).

Lemma 5.16. The map Hol : Loop0(M) → U is equivariant for the parallel transports
on both sides, i.e.

Loop0(M) U

Loop0(M) U

Hol

γ∗ Pγ

Hol

We observe that let ζ, ζ ′ ∈ Loop0(M)m, then Hol(ζ ′ ∗ ζ) = Hol(ζ ′)Hol(ζ). The follow-
ing corollary is immediate.

Corollary 5.17. [29] Let ζ be a contractible loop, then Pζ = CHol(ζ). Here, C denotes
the conjugation by a Lie group element.

5.4 Integration
Now we are ready to use the bundle U and the data on U to construct the Lie groupoid
for integration. Let U be given as before, and j : TM → A be a spitting. The reference
for this section is [29].

Definition 5.18. Let Path(M) be the groupoid consisting of thin homotopy classes of
paths (see Section 6.5), with product given by the usual concatenation of paths. We call
Path(M) the path groupoid of M .

Now we define the semidirect product of groupoids Path(M)⋉U . As a set, it coincides
with the direct product of Path(M) and U . The multiplication on Path(M)⋉ U is given
by

([γ′], u′) ◦ ([γ], u) = ([γ′ ∗ γ], ((Pγ−1(u′)u).

The multiplication is defined whenever [γ′ ∗ γ] is defined in Path(M).
We first describe the groupoid structure on the semidirect product Path(M) ⋉ U .

The source and target maps are defined to be the same as the source and target of
γ ∈ Path(M). The unit elements are of the form (m, e), where m represents the constant
path at m, and e ∈ Um. Given (γ, u) ∈ Path(M)⋉U , the inversion is given by (γ−1, γu−1).

Marco Zambon
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Similar to Section 2.1, we do not expect the path groupoid (and therefore the semidi-
rect product) to be a Lie groupoid. Instead, we will consider a quotient of the semidirect
product as the candidate for the integration:

Definition 5.19. We denote G to be (Path(M) ⋉ U)/ ∼. Explicitly, the equivalence
relation is given by

(γ1, u1) ∼ (γ2, u2) ⇐⇒ γ1 ≃ γ2, u1 = Hol(γ−1
2 ∗ γ1)u2.

On the quotient G, we shall see that the multiplication map inherited from Path⋉U
is well-defined. This is guaranteed by the fact that, for any γ ∈ Path(M), ζ ∈ Loop0(M),
and γ(0) = ζ(0), we have by Lemma 5.16 that

(γ, u)(ζ,Hol(ζ−1))(γ, u)−1 = (ζ̃ , Hol(ζ̃−1)).

Here, ζ̃ = γ ∗ ζ ∗ γ−1. Similarly, other structure maps on G are well-defined, and therefore
G is a groupoid. As for the smooth structure, we follow ([29], Theorem 5.6).

Proposition 5.20. When the integrability condition holds, i.e. the monodromy is dis-
crete, the groupoid G is a Lie groupoid.

Proof. ([29], Theorem 5.6) Recall from Example 3.35 that the fundamental groupoid
Π(M) is the gauge groupoid of the universal covering, and thus a Lie groupoid. We show
that G is a fiber bundle over Π(M), with typical fiber Um for any m ∈M . For the bundle
projection, we use the fact that if we take U = ∅, then G = Path(M)/ ∼ can be identified
naturally to Π(M). For the general case when U ̸= ∅, we take the bundle projection to be
the projection onto the first term Path(M)/ ∼. Here, the equivalence relation descends
to the path homotopy in M .

Let M̃ be the universal covering, then the projection M̃ → M is a local diffeomor-
phism. Thus Π(M) = (M̃ × M̃)/Autπ(M) → Pair(M) is a local diffeomorpism. Pick
an open cover {Ov} of Π(M) such that the image of Õv under the projection is an open
subset Ov ⊂ Pair(M), and such that each Ov is covered by a chart. The map Ov → Õv

can be seen as smooth map σv : I × Ov → M , such that (t 7→ σv(t,m
′,m)) is a path

in M , and its equivalence classes lies in Õv, for any (m′,m) ∈ Ov. Thus we get a map
sv : Ov → Path(M), (m′,m) 7→ σv(·,m′,m). Using this, we can define local trivializations
of G:

Fv : Ov ×M U → GÕv
, (m′,m, u) 7→ (σv(·,m′,m), u).

Consider trivializations Fv1 , Fv2 as above, defined on Ov1 , Ov2 , respectively. Let σ−1
v2
∗σv1 :

I × (Ov1 ∩ Ov2) → M be given by concatenation of paths. Each of these loops are
contractible, since σv1 and σv2 are in the same equivalence class at each point (m′,m).
Let f = Hol(σ−1

v2
∗ σv1), we can compute the transition map

F−1
v2
◦ Fv1 : (Ov1 ∩Ov2)×M U → (Ov1 ∩Ov2)×M U, (m′,m, u) 7→ (m′,m, f(m′,m)u),

which is smooth.

Proposition 5.21. The Lie groupoid G is source simply connected, i.e. for any m ∈M,
s−1(m) is simply connected.
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Proof. This follows from ([29], Proposition 5.5 and Theorem 5.6).

Example 5.22. When the Lie algebroid A coincides with the manifold M , the integration
of A is given by Π(M). To be more precise, we get Path(M)/Loop0(M), i.e. the Lie
groupoid is given by the set of thin homotopy classes of smooth paths in M , quotient
by the set of thin homotopy classes of contractible loops (in the sense of the usual path-
homotopy) in M .

Remark 5.23. In Meinrenken’s paper [29], he did not prove that the Lie algebroid of G
is the Lie algebroid A.

5.5 Revisit of the prequantization algebroid
In this section we revisit the prequantization algebroid over S2, construct an integration
following the previous sections, and compare it to the preceding chapters.

Recall that the prequantization algebroids is the vector bundle A(λ) = TS2 × R with
the bracket,

[(X, f), (Y, g)]A = [X, Y ] + LXg − LY f + λω(X, Y ),

where ω is the standard symplectic form on S2.
Recall from 4.7 that on U+ = S2 \ {s} we have ω = d(−z + 1)dµ, for β = (−z + 1)dµ.

Moreover, there is a trivialization

h+ : A|U+
∼= TU+ × R

(v, ξ) 7→ (v, ξ − λιvβ).

As a nontrivial example for Meinrenken’s construction [29], the statement and proof of
the following proposition is original.

Proposition 5.24. Suppose ζ : [0, 1] → S2 is a smooth contractible loop based at m0,
then

Hol(ζ) = −λ
∫
[0,1]2

F ∗ω ∈ R/(4πλZ),

where F : [0, 1]2 → S2 denotes any path-homotopy contracting ζ to the constant loop.

Proof. Without loss of generality, assume the image of ζ lies in U+. FixingA ∈ TranR (S2,m0) ,
we get the pullback ζ !A along with a trivialization

ζ !A→ T [0, 1]× R

(v, (ζ∗v, a)) 7→ (v, a− ιζ∗vβ) = (v, a− λιv(ζ∗β)).

Here v ∈ T [0, 1] and a ∈ R. By taking the splitting v 7→ (v, (β∗v, 0)) of ζ !A, we get a
splitting of T [0, 1]× R

l : T [0, 1]→ T [0, 1]× R

v 7→ (v,−λιv(ζ∗β)).

Note that T [0, 1]× R is the gauge algebroid of the trivial principal bundle [0, 1]× R.
Thus, we get an Ehresmann connection on [0, 1]×R, as follows: first let π : [0, 1]× S1 →

Marco Zambon
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[0, 1] be the projection. The splitting induces a vector bundle morphism

π∗(T [0, 1])→ T [0, 1]× TS1

((i, g), yi) 7→ (Lg)∗l(yi),

where i ∈ [0, 1], g ∈ R, yi ∈ Ti[0, 1], and (Lg)∗ acts on the second component. Then the
image of this map gives us an Ehresmann connection.

Let γ̃ : [0, 1] → [0, 1] × S1 : t 7→ (t, γ(t)) be a smooth path in the trivial principal
bundle [0, 1]× S1. Then γ̃ being parallel with respect to the connection is equivalent to

(
∂

∂t
|i, γ′(i)) = (

∂

∂t
|i,−λ(Li)∗(ι ∂

∂t
(ζ∗β)|0)).

for all i ∈ [0, 1].Under the natural identification of TiS1 and R, we have that (Li)∗(ι ∂
∂t
(ζ∗β)|0) =

(ζ∗β)|i. i.e. γ′(i) = (ζ∗β)|i.
Suppose F : [0, 1]2 → S2 is a map contracting ζ to a constant loop, i.e. F |[0,1]×{0} = ζ.
Then by Stokes’ theorem,

−λ
∫
[0,1]2

F ∗ω = −λ
∫
[0,1]2

dF ∗β = −λ
∫
∂([0,1]2)

ζ∗β = γ(1)− γ(0).

Here, we used the formula γ′(i) = (ζ∗β)|i in the last equality.

Corollary 5.25. Following Section 4.7, the integration of prequantization algebroid over
S2 by Meinrenken [29] coincides with the construction by Crainic [6] in Lemma 4.32.

Proof. Let A(λ) be the prequantization algebroid as above, and G(λ) be its integration as
in Proposition 5.20. By Proposition 4.3, it corresponds to the principal bundle

(Path(M,m)× R)/ ∼

where Path(M,m) is the set of thin homotopy classes of smooth paths in M with ending
point m.

Note that each C2-path in M can be represented uniquely by a C∞-path, and therefore
uniquely represented by a thin homotopy class of smooth path. This gives rise to a natural
identification between Path(M,m) and P (M) (defined before Lemma 4.32). Using this
identification, as well as Proposition 5.24, two elements (γ1, r1), (γ2, r2) in G are equivalent
if and only if the two paths are path-homotopic, and that γ−1

2 ∗ γ1, as a contractible loop,
has holonomy

−λ
∫
[0,1]2

F ∗ω,

where F is any path-homotopy contracting γ−1
2 ∗γ1 to the constant path. Up to 4πZ (and

a sign change), this value is the same as λ
∫
H
ω, where H is any path-homotopy between

γ1 and γ2.
Then it is clear that the S1-actions on both principal bundles coincide, since they are

both induced by the usual R-action, then pass to the quotients.





Chapter 6

Appendices

In this chapter we introduces some basic terminologies in geometry and topology. The
readers could refer to them when needed.

6.1 Manifolds

In this section we review basics of the theory of manifolds, following [21].
Let R be the set of real numbers. A real vector space is a set of vectors such that we

can add the vectors and multiply them with real numbers. In this section, we consider
the finite dimensional vector spaces, which are of the form Rn for some natural number
n. The subject of studying calculus Rn is called multi-variable calculus, which should be
familiar to the readers.

Given a set, a topology of this set is a family of subsets that are considered to be open.
A set with a topology is called a topological space. Taking Rn with the topology consisting
open sets in the usual sense, then we get a topological space, which we call the Euclidean
space. In general, arbitrary topology spaces can be quite different from Rn with the usual
topology. We can use different properties to distinguish them. For example, a topological
space is Hausdorff if any distinct points are separated by disjoint open neighborhoods.
Given a topology, a basis is a subfamily such that each open set can be written as a
union of member of the basis. A topological space is called second-countable, if it has a
countable basis.

We would like to do calculus on more general objects than the Euclidean space. First,
consider a topological space M which is locally Euclidean, i.e. near each point x there
is a neighborhood U homeomorphic to some open subset of Rn, via a map ϕ : U → Rn.
The pair (ϕ, U) is called a chart. If the natural number n is constant near any points,
then we say that the topological space is a topological manifold. In practice, we will
assume further that a topological manifolds satisfies the following technical properties:
it has to be Hausdorff and second countable. With these, we obtain useful tricks like
partition of unity and uniqueness of flow, when dealing with manifolds. Given any two
charts, the change of charts map is a homeomorphism between opens of Euclidean spaces.
If each of these maps is moreover a diffeomorphism in the Euclidean space, then we call
the topological manifold M a smooth manifold.

With the notion of smooth manifolds, and the family of charts, we can use the charts
to interpret the maps between manifolds as maps between opens of Euclidean spaces.
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6.2 Bundles

Bundles are a family of interesting objects in geometry: we will introduce fibre bundles
and vector bundles in this section. Later, we will study principal bundles, which has a
deep connection with transitive Lie algebroids.

Suppose F,E,B are manifolds. A fiber bundle with typical fiber F is a surjective
map π : E → B, such that E is locally trivial in the following sense: near any x ∈ B,
there exists an open neighborhood U of x and a diffeomorphism ψ : π−1(U) → U × F ,
satisfying π1 ◦ψ = π. A fiber bundles of the form B × F is called a trivial bundle. Given
a fiber bundle π : E → B, a section is a smooth map f : B → E such that π ◦ f = IdB.
We denote Γ(E) to be the space of sections of the fiber bundle.

Given a fiber bundle π : E → M with fiber F , for each u ∈ E, we define the vertical
space V u := (Eπ(u)) = ker(dπu). The vertical space consists of the vectors tangent to
the fiber Fπ(u). An Ehresmann connection is a complement of the vertical space,
at the each point of E. To be more precise, it is a collection of vector subspaces of
Γ := {Hu ⊂ TuE|u ∈ E}, such that the assignment u 7→ Hu depends smoothly on
u ∈ E, and Hu is horizontal, i.e. ∀u ∈ E, TuE = Hu ⊕ Vu. Now fix a fiber bundle and an
Ehresmann connection. For any u ∈ E, dπ|Hu : Hu → Tπ(u)M is an isomorphism. Hence
under this isomorphism, each vector in Tπ(u)M corresponds to a unique element in TuE,
and we call it the horizontal lift.

As an example, consider the trivial bundle E = M × F . Then the projection map
induces an identification TE ∼= TM ⊕ TF , and we may take TF as a connection. This
is called the trivial connection. For a general fibre bundal with a connection, if its local
trivializations always take horizontal spaces of the connection to the trivial connection on
the trivial bundle, then we say it is a flat connection.

Now we introduce vector bundles, which are fiber bundles whose fibers are linear
spaces, and such that the local trivializations preserve linear structures. To be more
precise, it is a surjective map π : E → B satisfying the following two properties: first, for
any P ∈ B, Ep := π−1(p) is an n-dimensional vector space; second, near each point, there
is a local trivialzation ψ : EU := π−1(U)→ U ×Rn in the sense of fiber bundles, and such
that ψ restricts to linear isomorphisms on each fibers.

Let π : E → B be a vector bundle. A vector subbundle is a submanifold of E such
that π|D : D → B is a vector bundle, with fibers Dp := D ∩ Ep being linear subspace of
Ep, for any p ∈ B. Suppose π1 : E1 → B1 and π2 : E2 → B2 are vector bundles, and
f : B1 → B2 is a smooth map. A smooth map F : E1 → E2 is called a vector bundle
morphism if π2 ◦ F = f ◦ π1, and F restricts to linear maps on each fiber of E1.

6.3 Foliations

Let N be a manifold of dimension n. A subset M ⊂ N , is called a submanifold of
dimension m, if we can find charts covering N such that its projection to the first m
entries is exactly a chart for M . To be more precise, ∀p ∈ M , there exists a chart (U, ϕ)
of N such that ϕ(U ∩M) = ϕ(U) ∩ (Rn × {0}. The notion of widely used in the study of
manifolds. For example, the image of the map Rn×{0}. The notion of widely used in the
study of manifolds. For example, the image of the map R→ S1× S1 : t 7→ (ezπit, e2πiλt, is
a submanifold of the torus as long as λ ∈ Q. The main reason that it has the structure as
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submanifold is that, the image is discrete. However, if λ is irrational, in any neighborhood
there would be infinitely many slice of one-dimensional lines, and it is not a submanifold.

To describe objects similar to the previous example, we introduce the notion of im-
mersed submanifold. It is a subset H ⊂M with an arbitrary topology, making H into
a smooth manifold, and such that the inclusion of H into M is an immersion, i.e. its
differential is injective. It is clear that the example described previously with λ irrational
is an immersed submanifold.

The notion of immersed submanifold enable us to define foliations.

Definition 6.1. A rank k foliation is a collection of connected immersed submanifolds
{Lα} of M, such that

• they are disjoint and covering M ;

• given any p ∈M , there exists a chart (U, ϕ) such that

ϕ(U ∩ Lα) = ∪n∈N{xk+1, · · · , xm = cn}.

Here cn ∈ Rm−k is a constant vector.

Given a manifold M , there is a deep relation between foliations and certain type of
subbundles of TM . We call a subbundle D over M of TM a distribution. We say that
it is an involutive distribution if and only if Γ(D) is closed under the Lie brackets.
The Frobenius theorem states that the foliations on M corresponds to the involutive
distributions on M , see ([21], 19.21) for a proof.

Theorem 6.2 (Frobenius). Let F be a foliation on a manifold M , the collection of tangent
spaces to the leaves of F forms an involutive distribution on M .

Conversely, given an involutive distribution D on M , the collection of all maximal
connected integral manifolds of D forms a foliation of M .

Moreover, this describes a one-to-one correspondence.

Remark 6.3. Let M be a smooth manifold, ϕ : M → M be a diffeomorphism. A
distribution D on M is ϕ-invariant if dϕ(D) = D, i.e. ∀x ∈M , we have dϕx(Dx) = Dϕ(x).
A foliation F on M is ϕ-invariant if for each leaf L of F , the submanifold ϕ(L) is also a
leaf of F . Suppose D is an ϕ-invariant involutive distribution, we show that the foliation
that it corresponds to also need to be ϕ-invariant. Let L be a leaf of F , then TL = D|L.
Then Tϕ(L) = dϕ(TL) = Dϕϕ(L), so ϕ(L) is also an integral manifold. It’s obvious that
ϕ(L) is also maximal, thus F is ϕ(L)-invariant. Similar argument also shows the converse,
hence we conclude: invariant involutive distributions corresponds to invariant foliations.

6.4 Banach manifold
In the previous sections, we introduced smooth manifolds, which are locally equivalent to
Euclidean spaces, i.e. finite dimensional real vector spaces. For our purpose, we will also
need the generalized notion of manifolds, which are locally equivalent to Banach spaces.
The main reference for this subsection is [20].

Given a real vector space X, and a real-valued function ∥ ∥ on X, (X, ∥ ∥) is called
a normed space if the function is nonnegative and vanishes only on the zero vector,
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compatible with scalar product, and the triangle inequality holds. The map ∥ ∥ is called
the norm, and induces a metric on X. A metric space is complete if all the Cauchy
sequence converges. A Banach space is a complete normed space. We remark that
finite dimensional Banach spaces are exactly the Euclidean spaces.

We can define smoothness of maps between Banach spaces, as follows: suppose E,F
are Banach spaces, U ⊂ E is open in the metric topology, a continuous map f : U → F is
differentiable at x ∈ U if and only if it can be written as f(x+y) = f(x)+λy+ϕ(y) for
small y, where λ : E → F is linear, and ϕ(y) is o(y). If f is differentiable at x, the we call
λ the derivative of f , denoted f ′(x). If f is differentiable everywhere in the domain, then
we call it differentiable. A map is smooth if its n-th derivative exists and continuous for
any natural number n.

Now with the notion of smooth map between Banach spaces, we can extend our
definition of smooth manifolds, to infinite-dimensional, namely Banach manifolds.

Definition 6.4. A Banach manifold is a Hausdorff and second-countable topological
space such that

• it is locally homeomorphic to a fixed Banach space, via the local charts;

• the change of charts maps are diffeomorphisms between opens of Banach spaces.

Many results on finite-dimensional manifolds, including the implicit function theo-
rem,existence and uniqueness of ODE and Frobenius’ theorem generalize naturally to
Banach manifolds. Moreover, given a Banach space, its path space can also be endowed
with a Banach space structure. Thus, it is not hard to believe that Banach manifolds will
be useful in the study of path space of manifolds, as we will see in the later chapters.

6.5 Topology on the mapping space
The main reference of this section is ([19], Chapter 9). Let E,F be normed spaces, we
denote Lk

sym(E,F ) to be the set of bounded symmetric multilinear mappings. A curve
c : R→ E is called locally Lipschitzian if every point r ∈ R has a neighborhood U such
that the Lipschitz condition is satisfied, i.e. the set { 1

t−s
(c(t) − c(s)) : t ̸= s; t, s ∈ U} is

bounded. A curve c : R → E is called Lipk if all derivatives up to order k exist and are
locally Lipshitzian. Let E be locally convex, a subset U ⊂ E is said to be open in the
C∞-topology if there exists some k ∈ N ∪ {∞} such that, the preimages of U under all
Lipk-curves are open in R.

Now let U ⊂ E and V ⊂ F be C∞-open. For any k ∈ N ∪ {∞}, the space of k-jets
from U to V is defined by

Jk(U, V ) := U × V × Ll
sym(E,F )× · · · × Lk

sym(E,F ).

For a ck mapping f : U → V , thek-jet extension is given by

jkf(x) = jkxf := (x, f(x), df(x),
1

2!
d2f(x), · · · , 1

k!
dkf(x)).

Thus jkf lies in Jk(U, V ).
Let A,B be Hausdorff topological spaces, let C(A,B) denote the set of all continuous

mappings.
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Definition 6.5. The compact-open topology on C(A,B) is generated by the family
of all sets of the form {f ∈ C(A,B) : f(K) ⊂ U} ⊂ C(A,B), where K runs through all
compact subsets in A, and U through all open subsets of B.

Now consider M,N to be (possibly Banach) smooth manifolds.

Definition 6.6. For any k ∈ N ∪ {∞}, the Ck-topology on Ck(M,N) is the coarsest
topology making the map jk : Ck(M,N) → C(M,Jk(M,N)) continuous, where the set
C(M,Jk(M,N)) is assigned the compact-open topology.

It’s easy to see that the C0-topology on C(M,N) coincides with the compact-open
topology. Moreover, the following lemma will be useful when we want to construct mani-
folds out of the mapping space (e.g. taking the quotients). See ([19], Corollary 41.12) for
a proof.

Lemma 6.7. Suppose M,N are finite dimensional manifolds, then Ck(M,N), equipped
with the Ck-topology, is a Hausdorff, second-countable topological space.

6.6 Thin homotopy
Given a smooth manifold M , the set of smooth paths in M does not behave well under
concatenation of paths: the composition path could be not smooth. In this section, we
introduce one way to overcome this problem.

Recall that there exists a smooth increasing function from I = [0, 1] to itself: its value
is identically 0 near a small neighborhood of 0, and is 1 near a neighborhood of 1. Given
any smooth path, we can reparametrize it using the above function. The resulting path
has the same image as the original path, but with the extra property that it stays at the
starting point(ending point) near time 0 (time 1). We call a path having such property
a path with sitting instances. It’s easy to see that composition of paths with sitting
instances is again smooth.

The reparametrized path is not the same as the original one, however, ther are equiv-
alent in the sense of path-homotopy. Moreover, this homotopy, as a map from I× I to M,
does not enclose any area. Equivalently, the differential of the homotopy map has rank
at most one at each point. We call this special homotopy thin homotopy. To sum up,
we can concatenate thin homotopy classes of smooth maps.

We can generalize this reparametrization trick to 2-dimensional case. Give a smooth
homotopy between two smooth paths, say F : I × I →M , with F (0, t) = γ0(t), F (1, t) =
γ1(t). We can reparametrize it horizontally to make it a smooth homotopy between paths
with sitting instances, and such that for all fixed s ∈ I, F (s, t) is also a smooth path with
sitting instances. Moreover, we can reparametrize it vertically, and get a new homotopy
F̃ , such that F̃ (s, t) = γ0(t) in a neighborhood of {0} × I, and F̃ (s, t) = γ1(t) in a
neighborhood of {1} × I.
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