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Abstract

Given a pair (M, N) of a manifold and a submanifold, the goal of this thesis is to discuss
the bijection between germs of Euler-like vector fields and tubular neighborhood embeddings
for (M, N). This connection allows us to simplify the search for normal forms for certain
structures on this pair.

We will prove this relation when the submanifold is a point and in its most generality, and we
will use it to prove classical and novel results in geometry.

We will present generalizations of this bijection to more advanced settings, and we will use
them to simplify the proof of a recent result on gradient vector fields of Morse functions.
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List of Main Symbols

1% Vector field on the deformation space constructed from Y’
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oY Flow of a vector field Y
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Chapter 1

Introduction

A natural question in Differential Geometry is whether a geometrical structure G on a manifold
M can be reduced to an equivalent, simplified structure around a submanifold V.

An example of this problem is the simplification of vector fields: given a vector field X on
a smooth manifold, can we find local coordinates on which X takes a simple form, thereby
facilitating the computation of its flow?

We refer to normal form theorems to indicate those results that allow a simplification of
S. Such results often state the existence, under some conditions on &, of so-called tubular
neighborhood embeddings. They are embeddings from (an open neighborhood of the zero
section of) the normal bundle v(M,N) of N in M to M itself that restrict to the identity
map on N (seen as the zero section of the domain) and induce the natural identification
v(M,N) ~v(v(M,N),N).

In [BLM16] was proven that germs of Euler-like vector on M are in bijective correspon-
dence with germs of tubular neighborhood embeddings. Hence, proving normal form theorems
amounts to showing the existence of an explicit Euler-like vector field somehow compatible
with the given structure &, which is a much simpler problem.

The following chapters will aim to prove this theorem in the case N = point and for gen-
eral submanifolds N of M, and to give some applications and generalizations of the theorem
thereof.

The initial setting (chapter [2)) is a particular case of Sternberg’s linearization theorem (see for
instance [Ste57, Steb8]). However, we will follow the strategy of [BBLM20] in both situations
for two primary reasons. First, understanding the proof in the point-submanifold case provides
a better insight into how the proof works and it will simplify the discussion of the general case
(chapter . Moreover, the analytical point of view in [Steb7], and similarly, the concise proof
in [BLM16], in contrast to [BBLM20], where the geometry is more explicit, do not always
provide a clear method for extending this result to more advanced situations, as we will see at
the end chapter [4

In chapter [4] we will use the main theorem to prove some well-known results of differential and
symplectic geometry, namely Morse's lemma, Darboux’s theorem, and Morse-Bott and Wein-
stein Lagrangian neighborhood theorems in a simpler way, as well as a new splitting theorem
for singular foliations presented in [BBLM20].

Chapter [5| will be devoted to generalizing the main theorem in the case of a point. We will
talk about the linearization of weighted Euler-like vector fields, and how it can be generalized
in the presence of resonances (appendix . Our main contributions reside in the complemen-
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2 CHAPTER 1. INTRODUCTION

tary non-resonant case, where we will prove a normal form for gradient vector fields of Morse
functions. This result was proven in [Wan18], but our proof is much simplified and makes use
of the above-mentioned Sternberg’s linearization theorem.

According to our main reference, we will diverge from the discussion presented in [BLM16] and
not talk about germs of Euler-like vector fields or tubular neighborhood embeddings. Instead,
we will rephrase the result of [BLM16] into the following implications

Theorem 1.1 (<=). If: v(M,N) — M is a tubular neighborhood embedding, and E is
the Euler vector field on v(M, N), then

X =, E

is an Fuler-like vector field on the image of 1.

Theorem 1.2 (=, Main Theorem). If X is an Euler-like vector field for the pair (M, N)
and E is the Euler vector field on the normal bundle, then there exists a unique tubular

neighborhood embedding
v v(M,N)—> M

such that Yo E = X|m .

To fix our notation, for any vector field X on a manifold M we will consider the Lie

derivative of a vector field Y € X(M) on M with respect to X to be the vector field
cy—ﬁr(x)y—my]
X _dttzogp_t* N ’
on M, where X is the flow of X and, for any smooth map F' between manifolds, we denote
the pushforward of I’ with F and its pullback with F™*.
Similarly, we take the Lie derivative of a differential k-form w € QF(M) on M with respect to
X to be the k-form Lxw on M with sign convention
d X

Lxw = 7 tzo(gpt ) w.



Chapter 2

Case N = point

This chapter will aim to prove theorems[1.1] [I.2] in the case of a point in a smooth manifold
M, and will follow the work of main reference [BBLM20].
Let us give the statements adjusted to this setting

Theorem 2.1. Let p € M be a point, v : T,M — M a tubular neighborhood embedding,
and E the Euler vector field on T,M. Then, the pushforward

X =y FE
of E is an Euler-like vector field on the image of 1.

Theorem 2.2. An FEuler-like vector field X for the pair (M,p) determines a unique
tubular neighborhood embedding
v T,M — M

with Q/J*E = X‘Im e

2.1 Preliminaries

As mentioned earlier, this section is devoted to proving theorem in the case of a point,
namely theorem [2.1] We will do so after saying what it means for a vector field on M to be
Euler-like and after defining the notion of tubular neighborhood embedding.

Let us start by introducing the objects in the statement and some of their properties.

Definition 2.3. Let V be a vector space. The Fuler vector field on V is the unique
vector field E € X(V) such that

E(f)=7F (2.1)

for every linear function f e V*.

Remark 2.4. The uniqueness in the definition above is given by the fact that a vector
field on a vector space can be described uniquely by how the correspondence derivation
acts on the linear functions on this vector space, in the same way as a real vector field is
uniquely determined by how its derivation acts on the functions z1, ..., x,. The existence
is guaranteed by the example below.
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Example 2.5 (Euler vector field on V). For a vector space V' with linear coordinates
x1,...,T,, the Euler vector field is

b0
E = ;Iiaxi' (2.2)

2

Indeed, if f: V — R is linear, it takes the form

n

f(x) = Z AiT;

=1

with A\; € R. Then,

Given a manifold M and a point p € M, we know that its tangent space at p is a vector
space on which we can take a set of linear coordinates 1, ..., x,. The previous example shows
that the Euler vector field on 7}, is defined in local coordinates by the linear functions z; as
its coefficients.

The next step will be to define Euler-like vector fields. Intuitively, we call X Euler-like if it
is equal to the Euler vector field up to higher-order terms. This idea is made precise by the
concept of linearization. Let us start by explaining what we mean by this.

Call Z, the ideal of smooth functions on M vanishing at p, and define the setﬂ

I;? = {Zfzgz : TLGN, fi7 giezp}'

i=1

Lemma 2.6. We have a canonical isomorphism
®:T,/I2 = TrM
defined by
(I)(f +I§) = pf-

Proof. Firstly, ® is trivially linear and well-defined. This boils down to checking that if
f is an element of Ig, then its derivative at p vanishes.
So, let f € Ig. Then, f =", fig; with f;, g; € Z,. Taking its derivative gives

dpf = dp(z fzgz)

= 2 dufi - 9i(p) + fi(p) - dpgi]

=1

because all f; and g; vanish at p. Hence, ® is well-defined.
Now, considering a chart ¢ : U — R™ with ¢(p) = 0, without loss of generality, we can

IN:=Z-0 ={1,2,3,4...}
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work in R™.
Let F' e T¥R™. Since dyzy,...,dyx, form a basis for the cotangent space at the origin,
there exist scalars A\, ..., \, such that

F = /\Zdoflfz and CI)(I'fL + Ig) = dol‘i

n
=1

for every 7. But then,
i=1 =1

So, ® is surjective. To conclude the proof, we only have to show the injectivity.

Suppose ®(f + Z2) = d,f = 0. We have to prove that f € Z°. Take a smooth bump
function ¢ : M — [0, 1] identically equal to 1 in a neighborhood U of p and zero outside a
neighborhood of p containing U. Since f = ¢f+(1—¢)f and by construction (1—¢)f € Ig,
it suffices to prove that ¢f € Z>. Or equivalently, that f € Z in a neighborhood of p,
since f = ¢f in U. We can now take a chart of U to R" and without loss of generality
consider p € R" and f as a function R™ — R such that

of

f(p) =0 and o,

(p) = 0 for every 1, (2.3)

because d,f = 0.
Then, by Taylor’s expansion, we know that there exist smooth functions g; vanishing at
p (ie. gj€Z,), for j =1,...,n, such that

(o) (@i —pi) + D gil@) (@i —pi).
ig=1
By condition ([2.3]), we have that
fl) =Y gi(x) (@i —pi) e T,
ig=1

This gives the injectivity and concludes the proof. O

Definition 2.7. Given Y € X(M) such that Y, = 0, define the linearization of Y to be
the vector field v(Y') € X(7,,M) acting on the linear functions on 7,M as

v(Y)(dpf) := dp(Y([)) (2.4)

or equivalently
vIV)(f +Z)) =Y (f) + I

Remark 2.8. 1. The operation that associates to a vector field its linearization as de-
fined above is linear over R. This follows from the linearity of the derivative. In
local coordinates, the components of v(X) will be the first-order terms of the Taylor
expansion of the components of X at p. Hence the name.



6 CHAPTER 2. CASE N = point

2. Note that the property in the definition characterizes a unique vector field on 7, M
because, as in remark [2.4], if V' is a vector space, a vector field on V is determined
by how the correspondence derivation acts on the linear functions of V, i.e. on
TyM ~ Ip/Ig . Recall that the linear functions on 7, M are exactly the derivatives
at p of smooth functions on M.

3. The definition is well-posed, i.e. Y'(f) + Z2 depends only on f + Z2 not on f itself.
Indeed, if f +Z7 = g + Z;, then f = g+, fig; and

Z (fi)gi + Y (9)]- (2.5)

But Y(f;) is a map M — R and (Y(f;))(p) = Y,(fi) = 0, because Y, = 0. Then,
Y(fi) € Z, and similarly Y(g;) € Z,. This means that the second term on the
right-hand side of equation ([2.5)) is an element of Iz, thus

v+ ) =Y () + T, =Y(9) + I, = v(Y)(g + I).

Definition 2.9. Fix p e M. A vector field X € X(M) is Euler-like for the pair (M, p) if
it is completeﬂ, X, = 0, and the linearization v(X) = E, the Euler vector field on T,,M.

Example 2.10 (Euler-like vector fields). Consider M = R? p = 0, and

0 0
X = =
(m+y)a + ye”’ %
Then,
0 0 0 0
X= v - 2 7 x_li
m&x +y8y Ty ox Tyl )ﬁy

and if f(z,y) = Az + py is linear, then

v(X)(f+T) = X(\& + py) + I
=\t + py + Ay® + py(e” — 1) + I
=\t + py + I}
= f+I2
Since v(X) and E are characterized by the same action, we conclude that v(X) = E, so
X is an Euler-like vector field.

In general, X is Euler-like for (M, p) if and only if in local coordinates around p it has
the form 5

X = Za:l—i—b 5%1 (2.6)

for smooth functions b; that vanish to the second order at the origin.

Remark 2.11. In definition we require that X be complete. This condition will be
necessary in the proof of theorem , but we see that if X, = 0 and v(X) = E, we can
find a complete vector field that agrees with X in a neighborhood of p. Indeed, suppose

%i.e. its integral curves ¢ are defined for all t € R
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X is a vector field satisfying these two requirements. Then, X has local form (2.6)), and
since the functions b; have vanishing derivative at p, near this point the flow ¢X of X
behaves like the flow ¢¥ of E. In particular, since

lim ¥ (m) = p

§—00

for every m € M, in a small enough neighborhood U of p we have

lim ¢ (m) = p.

§—00

Hence, by multiplying X by a bump function that is zero outside U and 1 in a neighbor-
hood of p contained in U, we can complete the vector field.
So, from now on we will consider X to be automatically complete whenever X, = 0 and

v(X)=F.
Lemma 2.12. If X € X(M) is Euler-like and f € C*(M) vanishes at p, then
X() =7

vanishes to the second order at p. This means that X(f) — f and its derivative vanish at
.

Proof. The proof is straightforward.

and
dp(X(f) = f) = dp(X(f)) — dpf
= v(X)(dpf) — dpf
= E(dpf) - dpf
=dpf —dpf
=0
where the second equality is by definition of linearization. O]

The second fundamental ingredient is the notion of tubular neighborhood embeddings.
Recall that an embedding is defined to be a smooth map, which is a homeomorphism on its
image and whose derivative at each point is injective.

Definition 2.13. Fix p € M. A tubular neighborhood embedding for M at p is an embed-
ding
Y T,M — M
such that 1(0) = p and
doyp : To(T,M) — T,M

is the identity map after taking the canonical identification Ty(7,M) ~ T,M. With a
light abuse of notation we will write dyt) as a map from T, M to itself, so that

dop = idp, s -
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Example 2.14 (Tubular neighborhood embedding for the circle at a point). Let M = S*
embedded in R? with the standard (z,y)-coordinates, and let p = (1,0) € S!, so that
T,S' = {1} x R ~ R. Then,

Y :yeT,S" — (cos(arctan y), sin(arctany)) € S* (2.7)

is a tubular neighborhood embedding, because 1(0) = (1,0) = p, and

dotp = cZ;‘y—ow(y)
_ (7 sin(arctany) cos(arctan y))
1+y2 7 1492 y=0
= (0, 1),

which is the identity on 7,S! via the canonical identification Ty(7,S') ~ T,S*, (0,y) — v.
Recall the following

Lemma 2.15. Given a vector field Z on M, Z, = 0 if and only if (Z(f)), = 0 for any
function f on M wvanishing at p.

Proof. One direction is trivial because if Z, = 0, then (Z(f)), = d,f(Z,) =0

On the other hand, if d,f(Z,) = 0 for any f as in the statement, it holds in particular for
any set of local coordinates f = x; around p.

Then, for every i

0=d x2<2zj (31:] = z(p)

Thus, Z, = 3, zj(p) 52

ox; ‘p

ﬁxz
> Z 4(p (% ;

J
= 0. O

In particular, this proves that the Euler vector field vanishes at the origin because any
linear function does so, and (E(f))(0) = f(0) = 0. Equivalently, example [2.5 showed that in
local 21, ..., x, coordinates around p the Euler vector field takes form £ = . xzai which
vanishes at zero. '

As stated at the beginning of this chapter, we now have all the notions needed to prove
theorem 2,11

Theorem . Let p e M be a point, v : T,M — M a tubular neighborhood embedding,
and E the Euler vector field on T,M. Then, the pushforward

X =Y, F
of E is an Fuler-like vector field on the image of 1.

Proof of theorem [2.1. By remark [2.11] we only have to prove that X, = 0 and that the
linearization v(X) of X is the Euler vector field on the tangent space.
For the first goal, since ¢ is a homeomorphism on the image, 1)~ (p) = 0, and we have

Xp = (VuE)p = diply—1p) (Ey-1()) = dotp(Ep) = Ey = 0.
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To prove that v(X) = E, it is enough to show that the linearization vector field acts on
the space of linear functions over T,M as the identity because, by remark , E is the
only vector field over the tangent space with this property.

Recall that all linear functions over 7, M are derivatives at p of smooth functions over M.
So, let f: M — R be smooth and d,f its derivative.

Then, by definition of linearization of a vector field,

v(X)(dpf) = v(u E)(dpf) = dp( E(f))- (2.8)
Observe that for a general vector field V', we have
(W V())(@) = (uV)g(f) = dof (V)
= dof(dy-1((Vy-1(9)))
= dyoy1(q) [ © dy-1( ¥ (V1)) (2.9)
= dy-1¢)(f 2 ) (Vy-1(9))
= (V(foy) o ) (q),
for any g € M, using the chain rule in the fourth and fifth equalities. Then, equation ({2.8])
becomes
v(X)(dpf) = dp(E(f o) 0 yp™")
= doBE(f o)) o dpyp™ (2.10)
= do(Lp(f ov)) odyp™.
Recall that the exterior derivative and the Lie derivative commute, i.e. for any function f
and vector field X on M, d(Lx f) = Lx(df). Moreover, one has the well-known Cartan’s

metric formula that states
Lxw = d(txw) + txdw, (2.11)

where w is a differential m-form and txw is the (m — 1)-form defined as the contraction
of w with X, i.e. for vector fields X, ..., X,,_1,

txw(Xq, o X)) = w(X, Xy, o, X))
Then, calling w = d(f o 1), we have
d(Le(f o)) = Lp(w) =d(tpw) + tpdw = d(tpw), (2.12)
because w is exact. Since w is then closed, it locally takes the form

w = Z u;dx;,
i

and contracting with E gives

LE(ZUdez) = Zuzd%(;x]ai]) = ZuzxZ (2.13)

7

Hence,

d(tpw)lo = (Zulzcl)
- ()],

= dp [ odot).

= Z xldui + uidxi) ‘0

= wlo = do(f o %)) (2.14)
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Thus, equation ([2.10]) together with equations (2.12)-(2.14]), and the fact that (dgy))~! =

dy(1™1) gives
v(X)(dpf) = dpf.
As we said, this implies v(X) = E. O

Given an embedding ) and a vector field X, none of them necessarily linear, the derivative
do1) and the linearization of X are linear. Intuitively, the linearization should split ¥, X into
its linear parts, one associated to 1/, the other to X. The next proposition shows how this
works.

Proposition 2.16. If ¢ : T,M — M is an embedding with )(0) = p and Y is a vector
field on T,M , we have

v(Y) = (dot)« (v (Y)). (2.15)
Proof. Let f: M — R smooth. Then, we have

(dot)u (W (Y)(dpf) B oY) (A f © dot) o (dop) ™
= U(Y)(do(f 0 ) o dyt™"
= do(Y(f o)) o dyip™"
= dp(Y(f o 1/’) o ¢_1>
d, (1, Y (1))
= V(w*Y) (dpf>u

where in the third and sixth equality we used the definition of linearization of vector
fields, and in the second and fourth the chain rule. O

We see then that with this result the proof of theorem is trivial, because if Y = F the
Euler vector field, and ¢ is a tubular neighborhood embedding, then dyy) = idr, s and, since
FE is already linear,

v(X):=v(YE)=v(F)=FE.

The two proofs give two different ways to approach the problem, one more computational, the
second more conceptual.

2.2 Deformation Space

In this section, we describe one of the most important objects necessary for the proof of
theorem [2.2] the deformation space.

Definition 2.17. Fix a point p € M. The deformation space D(M, p) for the pair (M, p)
is the setf]
D(M,p) = (T,M x 0) u (M x R*) (2.16)

equipped with the unique manifold structure determined by the following properties:

3To make the presentation more clear, with a little abuse of notation, we generally identify (v,0) €
T,M x 0 with v € T,M, and with R* := R\{0}.
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1. the map
T,M — 0
7:D(M,p) - R, {°°°7 (2.17)
(m,t) e M x R* — ¢t
is a smooth submersion;
2. the map
T,M —
k:D(M,p) - M, Ve P (2.18)
(m,t) e M x R* —m
is smooth;
3. for every function f € C*(M) vanishing at the point p, the map
N T M — —
Fipp) R, |0 o) =) (2.19)
(m,t) e M x R* — £ f(m)

is smooth.

To fix our notation, we will denote with v (or (v,0)) a vector in T,,M (or in T,,M x 0),
with (m,t) a point in M x R*, and with = a general point in D(M, p). Additionally, we will
refer to T,M = 7~ 1(0) as the zero fiber (of ).

Since the definition is fairly involved and getting an idea of how the deformation space looks
like is a non-trivial exercise, before giving an explicit example we show that D(M,p) is a
smooth manifold and we introduce a set of local coordinates on it.

We equip D(M, p) with the smallest topology such that the maps 7, &, f are continuous (for
all smooth f), and with abuse of notation, we denote the map 7 simply by its image ¢. This
topology is trivially Hausdorff and locally Euclidean.

Lemma 2.18 ([Higl0], Lemma 4.3). Let U be an open subset of M and (U,y := (Y1, .- .,Yn))
be a local chart of M around p (i.e. y is an homeomorphism from U to an open subset of

R™). Then,
Yy Ynot (2.20)

define an homeomorphism from an open subset D(U,p) of D(M,p) to an open in R
We will call the functions in (2.20) a set of local coordinates for the deformation space.

Proof. Let yi,...,y, be defined on an open U < M. Then, D(U,p) = 1 (U) is open
because k is continuous. The map

we DU, p) L (§u),t) == (G (u), ..., Gn(u), 7(u)) € R (2.21)

is continuous and bijective on its image, because its components are such.
Now, the map

¥ ¢(D(U,p)) = R"™ — D(U, p)
defined by

(y~'(tx),t) ift#0
(z,8) =~ {(doy_l(x), O) ift=0 (222)
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is the inverse of ¢. To prove its continuity, it is enough to show that its compositions with
the maps in definition [2.17) are continuous. This check is trivial for 7 and &, so consider
a smooth function f vanishing at p. Then,

) [ Yfoy () ift+£0
! Ow(‘”’”’“‘{d&foy-l)(:c) ift=0’ 22

where we used the chain rule and y~!(0) = p for the case t = 0. This map is continuous
because the two terms agree to the limit ¢ — 0, being f and y~! continuous functions.

This proves the claim or, equivalently, that the pair (D(U,p), ¢) is a local chart on the
deformation space. O

Note that, if y1,...,y, is a set of coordinates on an open subset U of M which does not
contain p, then the set allows us to cover only U x R*.
The following result shows the existence of a smooth atlas on the deformation space. For a
further characterization of this structure, we refer to [Higl0], Proposition 4.5.

Proposition 2.19. The deformation space has a smooth atlas consisting of charts (D(U, p), ¢)
as above.

Proof. The only thing left to prove is that the transition functions are smooth. So, take
two charts (D(U, p), ¢), (D(V,p),v), with D(U,p) n D(V,p) # & and

¢ = <g7 t)? w = <§7t)7
as above. Then, by equations (2.21)), (2.22)),

(Lyoz"Y)(tx),t) ift+#0

(do(y o 2~")(x),0) ift=0" (2.24)

¢o w_l(%t) = {

where we used again the chain rule and 27!(0) = p for the case ¢ = 0. Observe that
this composition is smooth for both ¢ = 0 and ¢ # 0, because of the smoothness of the
transition functions yo z~! on (an open subset of) M. Moreover, since yo z~!(0) = 0, the
two terms smoothly agree at the limit ¢ — 0, again by the smoothness of the transition
functions. This shows the smoothness of ¢ 01~ and concludes the proof. n

Now that we have given coordinates on the deformation space, it is time to consider a
simple but effective example.

Example 2.20 (Deformation space for an interval). Let M = (—1,1) < R be an interval
and p=0¢e M.
Then, T,M ~ R and

D :=D((-1,1),0) = (R x 0) u ((—1,1) x R¥).

Let y : (—1,1) — R be the standard (global) coordinate on (—1,1) that vanishes at 0.
Then, D has (global) coordinates ¢, ¢, where on (—1,1) x R*

rt) = u(r) =



2.2. DEFORMATION SPACE

13
and on Tp(—1,1)

i(5l,) = awl5l) =5

Hence, identifying To(—1,1)

=r.
70

. 3
~ R via rai
y

— r, we have § = idgxo. Then, D can be
70

viewed in (g,t) coordinates as in figure . These coordinates are simply a restriction of

the Cartesian coordinates on the plane.
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Figure 2.1: The deformation space in case M is an interval. The dashed lines are the loci
g = +1/t, the blue area is (—1,1) x R*, and the blue line is To(—1,1) ~ R

Below we list some basic properties of the deformation space.
(a) for any smooth map ¢ : M; — My, we can smoothly extend the map ¢ xid : M; xR* —
M, x R* to a map
D(¢) : D(My,p) — D(Mz, é(p))

(2.25)
whose restriction to the zero fibers is the usual derivative, d,¢.
This is simply because taking the derivative of ¢ x id, we get

dipoy(¢ x id) = dp¢ x doid = dp¢ x id
as a map T,M; x 0 — Ty My x 0.
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(b) We have a canonical vector field 6 on the deformation space that in local coordinates

takes the form

e_t——zyza, (2.26)
0 satisfies the following
0(t) =t, 0(x"f) =0, 0(3) =—g (2.27)
for every smooth functions f and g on M, with g vanishing at p.
Indeed, o o
0(t) = i gi@:t

For the other equations, note that § = td/dt in the (y1, ..., yn,t) coordinates on M xRR*.
Indeed, if we call, to avoid confusion, (J1,...,%n,S) = (y1/t,...,yn/t,1) the "new"
coordinates on M x R*, by the chain rule we have

o oto oy O
SR TY A a Dy

o ot o Z 0,0 (2.28)
agz a agz at 5:% ayj ayz ‘
Then, by equation (|2.26|)
0 0
0=s+~ >0
r Zi:y o3
A S U 229
~ o g toy ot
Hence, since x* f is constant on T},M and independent of ¢ on M x R*,
O(k*f) =0.
Now, on M x R*
_ 0 5 _
0(9) = 0(9/t) = gt7 (1/t) = —t/t°g = -3,
and on T,M ~R", if g = (g1,...,Gn),
S (G G0) =~ G0) = =
i agZ ) ) ) )
and this concludes the proof of the system ([2.27)).
Since, 5
6 a1 - — ~i7~7 230
o =~ S (2:30)

0 restricts to a vector field on the zero fiber. In this case, we say that 6 is tangent to
7= 1(0) = T,M. In general,
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Definition 2.21. Let S ¢ M be a submanifold. A vector field X € X(M) is called
tangent to S if for all p € S, the vector X, lies in 7,5 < T,,M. (Thus X restricts to
a vector field X|g € X(9)).

Additionally, calling for ¢t # 0

Je o N (t) = M x {t} — D(M,p) (2.31)
and for ¢t =0
j=Jo:m(0) = T,M — D(M,p) (2.32)
the inclusions, we have that —j,(E) = 6 and we write
—E ~; 0. (2.33)

In this case, we say that # and —F are j-related.

Given a vector field Y € X(M), we have a vector field Y on the deformation space
defined via

(2.34)

}A/: }/ZD OnTpM
tY on M x R*’

where on the tangent space Y is the constant vector field v — Y, € T,M ~ Ty(T,M)
for every v € T, M.

YV satisfies a set of equations similar to (2.27)), namely
Y(t)=0, Y(*))=tx"(Y(f), V(@) =r"(Y(9). (2.35)

To prove this, focus on M x R* first. If Y is a vector field on M, by the inclusion, we
can see it as a vector field on M x R* that is tangent to M x {t} for all ¢, in particular
Y (t) = 0. Since multiplying by ¢ contributes only to the magnitude of the field, Y will
still be tangent to M x {t}, hence

Y (t) = (tY)(t) = 0.
Now, the function k*f = f o k takes (m,t) to f(m), so
Y(r*f) = (tY)(f o ) = tY(f) = t*(Y(f)).
Finally, A
Y(g9) = tY)(g/t) = t/tY(g) = " (Y (9)).
On T,M instead, t = 0 and x*f = f(p) constant. Hence, the first two equations of

(2.35)) hold trivially. For the last equation, observe that if we have coordinates 1, ..., z,
on T, M, calling e; := dx;, we obtain
&
( ox; o P )e-\p>

7(5) = Yildyg) = vap)j
@ej

- Z ﬁez

- (Zwé’fj)@) - (v(9),
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where the third equality holds because a%"j does not depend on e;.

Since the system ([2.35)) tells us how Y smoothly acts on the smooth functions on the
deformation space, we have that Y as defined above is a smooth vector field.

(d) If Y e X(M) vanishes at p, then Y is zero along the zero fiber 7=1(0) = T, M and
hence is divisible by ¢. Indeed, if ¢ — Y(-,¢) vanishes at zero, then Y (-, t) = tZ(-,t) for
some vector field Z on D(M, p), i.e. YV is divisible by t. Hence, we have a well-defined
vector field D(Y) := t~'V on the whole deformation space. By construction, D(Y) is
simply Y x 0 on M x R*, so it follows straightforwardly from that on M x R*
we have

—_—~—

DY)(t) =0, D)(x"f)=r"(Y(f), D)) =Yg (2.36)

By continuity, they hold also on 7,,M.
Observe that, since Y, = 0, the last equation in (2.36]) translates on T,,M to

D(Y)(dpg) = dp(Y(9)),

which is the property definition of the linearization of Y. Thus,

DY) - v(Y) onT,M (2.37)
Y x0 onMxR*’ '

To get a better understanding of these vector fields let us study them in the frame of example
2.201

Example 2.22 (Vector fields on the deformation space). Let M = (—1,1), p = 0.

If we consider the standard (y,t) coordinates on (—1,1) x R*, a natural vector field to
consider in our context is ¢, being the Euler vector field on {z} x R* for each z € (—1,1),
and similarly on 7,M = R we could consider —y%. Now, intuitively, the way 6 is formed
is simply deform the coordinate y of (—1,1) x R* via %y to get the coordinate § and

obtain the canonical vector field we defined in equation ([2.26)

o .0
=12 5.
ot o5

Figure[2.2[shows a plot of the vector field § on the first quadrant of the (¢, 7)-plane. By the
symmetries of f, we can reconstruct its form on the other quadrants by simply reflecting on
each axis. The length of the vectors in the plot is rescaled to avoid intersections between
them. The next step is to visualize the vector fields Y and D(Y') for some vector field Y.
So, let us first consider Y = a%a the constant vector field of length one on (—1,1). Then,

on the zero fiber Y = a% as constant vector field of length one, while on (—1,1) x R*|

. o 0
V =ty =t— = —.
dy 0y

Hence, Y is the constant vector field of length one on the deformation space.
Observe that since Y does not vanish at the origin, D(Y’) is not defined.
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Figure 2.2: The vector field € in the first quadrant after rescaling.

Another vector field worth considering is Y = y%. In (y,t) coordinates on (—1,1) x R,
Y takes the form tya%, which in (7,t) coordinates becomes

On the other hand, on the zero fiber V=Y, = 0, the zero vector field.

Now, since Y vanishes at zero, we can construct D(Y) = ¢t~'Y. Since

v(Y) = 1/( 8) d

which is g]a% in (7,t) coordinates, by equation (2.37)), we have

0
DY) =y9g—
Y) =9 %
on the whole deformation space.

2.3 Proof of Main Theorem

Our goal in this section is to prove the previously mentioned

17
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D(Y)

\ i
T T | $E1H$E:"T“j"$=r—-1_
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t

Figure 2.3: The vector field D(Y') in the first quadrant, when Y = y%. Reflecting along
each axis gives the full behavior.

Theorem . An Euler-like vector field X for the pair (M,p) determines a unique
tubular neitghborhood embedding

v T,M — M
with @D*E = X‘Im e

As we said in remark [2.1T] the condition of X being complete can be omitted, since we
can multiply by a suitable bump function to get a complete vector field. On the other hand,
if one was not to follow such a process and work only with non-complete vector fields, the
result would be a tubular neighborhood embedding from an open neighborhood of the origin
in T, M to an open neighborhood of p in M.

We will need some results before getting into the proof itself.

Lemma 2.23. If X € X(M) is Euler-like, then % +1X € X(M x R) extends to a vector
field W e X(D(M, p)).

Proof. If X is Euler-like, then X, = 0 and we can construct D(X). By equation ([2.37),
D(X)|r,m = v(X) = E the Euler vector field on T,M, i.e. E ~; D(X), where j : T,M —
D(M, p) is the inclusion. Moreover, by construction —E ~; 6.

Hence, 6 + D(X) vanishes on T,M = 7~1(0). This means that § + D(X) = ¢tW for some

vector field W e X(D(M, p)). Then, W = 1(0 + D(X)) is the required extension because
on M x R* it restricts to $(t< + X x 0) = £ + 1X. O
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Remark 2.24. Recall that if X is Euler-like, by equation (2.6)) in local coordinates X =
2y + bi(y))aiyiv for functions b; vanishing to second order at y = 0. Then, on M x R*

D(X) = Z t; + by(t Z 0%: 0 Z i + 1@(@)) .

0y 0Y; 0Y;

Note that for ¢ — 0 we have 1b;(t§) — 0 because b;(tj) vanishes to the second order at
zero. So, we see that D(X) is defined also for ¢ = 0 and equals v(X) = E.
Moreover,

W =
0

(té’t Zg’é‘@]z +Zgla?jz + t;bz‘(@) agi)

which confirms that W is defined also for ¢t = 0.
Lemma 2.25. If X is an Euler-like vector field on M, then
[D(X),W]=0 (2.38)
on D(M,p).
Proof. On M x R*,

1 e
X %0, tX+(%]

Xxo,1X]+[Xxo,§t]

[D(X), W] =

I

| =

— C[X, X+ (X 0)(1)){

VO ~

where in the third equality we used the fact that X independent of ¢, so the commutator
of X and % vanishes everywhere, and the well-known formula

(X, fY] = fIX, Y]+ X (/)Y (2.39)
By continuity, [D(X), W] = 0 also on the zero fiber. O
From now on, we will denote the flow of W with "

Lemma 2.26. For every v € T,M < D(M,p) the integral curve oY (v) of W is defined
for all s € R.

Proof. We will show that for all v € T,M, ¢! (v) is defined for all s > 0. The case s < 0
is similar and we know it is defined for s = 0 as ¢}/ (v) = v.
Since W and % are m-related, we have that

ot

Tol =& om, (2.40)
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El
where ' (t) =1t + s.

Since 7(v) = 0 by definition and 7(p% (v)) = goﬁ%(w(v)) = 303% (0) = s € Ry for all s > 0,
by short time existence, we have that ¢!V (v) € M x R for all s > 0 and small enough.
Hence, it suffices to prove that for any (m,t) € M x R.y < D(M,p), the integral curve
©W(m,t) is defined for all s > 0.
Now, on M x R.y we have W = %X + %, hence

o2 (m, 1) = (Qlgsysny(m), T + s) (2.41)

for —1 < s/t < +o0.
Indeed, on this interval,

1,0

Wl s = (15X + 5) s
1 0

t+ SX|“Dl)§g<s/t+1)(m) * ot’

and
d d ?
%(¢log(s/t+l) (m)7t + S) = X|g01)§g<s/t+l>(m) ’ %(log(s/t + 1)) + a

1 0
t+ SX|<p1)o(g(s/t+1)(m) + &

Now, since t > 0, ¢V is defined for all s > 0 because = is defined over R (X is Euler-like,
thus complete). O

We are now ready to prove the main theorem.

Proof of theorem[2.2. Existence.

Call D, € D(M,p) the domain of the diffeomorphism ¢!, for fixed s € R. By lemma
m, Dy is an open neighborhood of T,M in D(M,p) for all s € R. Hence, for any s # 0
we have a smooth map 1, := ko " o

J SOZV K
T,M - D, D(M, p) —5— M. (2.42)

Equivalently, 9, is the restriction of ¢! to a map from the submanifold 7#=*(0) = T,,M
of its domain to the submanifold 77%(s) = M of the image. Thus, since ¢! is a dif-
feomorphism, v, is a diffeomorphism on its image (because by the proof of lemma ,
Y (T,M) < M).

Recalling definition [2.13] we still need to prove that the derivative of 14 is everywhere
injective (so ¥s will be an embedding), that for some s not zero dyi)s is the identity map,
that 15(0) = p, and (¢5).(E) = X.

Let us show these results, starting with (¢5).(E) = X.

Observe that [D(X), W] = 0, by lemma [2.25] Hence, the pushforward of ¢! preserves
D(X), ie. (p7),D(X) =D(X), in the sense that

da:(zDZV(D<X)x) = D(X)@Zv(m)- (2'4?’)
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By consequence,

(¥s)(D(X)|1,01) = s © (9" ) © Ji(D(X) |7,00)
= K40 (‘PXV)*( ( )|Tpr0)
= K (D(X)|ow (1,1 x0)) (2.44)
= k(X % 0)
=X

Y

where we used the fact that ¢!V (T,M x 0) € M x R* for any s # 0, as shown in the proof
of lemma [2.26
But, D(X)|r,; = v(X) = E. Thus,

(¥s)«(E) = X. (2.45)

Let now 0 € T,M be the zero vector. Then, ¢V (0) = (p,s) € {p} x R because W on
{p} x R = !(p) restricts to <. Thus,

¥s(0) = (w09 07)(0) = p. (2.46)

Let us show that the derivative of ¢, is the identity map for some value of s.
Let v € T,M. Then, we can find a vector field Y on M such that Y, = v. But, on T,M

we have that ¥ = Y, as a constant vector field, so }A/p = 0.
Now, similarly to the proof of lemma [2.25] we find that

[(W,Y]=D(Y +[X,Y]). (2.47)
But, for any smooth function f on M vanishing at p, we have

Y+ [XY))(N)p) =Y(H)(p) + XY () = Y(X()(p)

=Y (f = X()(p) (2.48)
=0,

where in the second equality we used that by definition X, = 0 and in the third that
f—X(f) vanishes to second order at p, by lemma [2.12] Then, by lemma [2.15] Y + [X,Y]
vanishes at p, hence on {p} x R the commutator of W and ¥ vanishes, because it coincides
with (Y + [X,Y]) x 0, and by continuity it does so also on {p} x R.

We claim that on {p} x R

A

()Y =Y. (2.49)
Indeed, by definition of Lie derivative, for any s and any vector fields X, Y, we have

e,

d
= - (So)ftJrs)*Y
dtli=o (2.50)

() LxY =

(QOXt)*Y
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where we used t <> —t+s in the third equality and s < —s in the last. Hence, %(

(%)Y
vanishes on {p} xR, i.e. (¢%,).Y is constant in s on {p} x R. Observing that (pg ).Y =

Y,
we have (¢X),Y =Y on {p} x R, proving our claim.
By consequence of equation ([2.49)),
d(p,o)SDZV( ) = dipoyps (?)
249 v O
= Yorp 0) Y(p 5) (2.51)
= (1Y) (p.s
= sv.
Then,
doths = d(ps)k © dpoypy ©doj = s -idr, - (2.52)

This tells us that for every s # 0 the derivative of 1, is injective, and in particular that
1, is an embedding for s # 0. Then, taking s = 1, ¢; is the desired tubular neighborhood
embedding.

Uniqueness.

Suppose that there exist two tubular neighborhood embeddings ¢, ¥ : T,M — M such
that ¢ = X =Y F

Then, x := ¢t otp: T,M — T,M satisfies

X(0) =0, dox =idru, x«(E)=FE. (2.53)

By the last equation,

xopf, =¥ ox,

and since o, (v) = e v, we have
x(e™*v) = e7x(v) (2.54)

for all ve T,M.
Now, since T,M is a vector space, we can consider a norm (any) and by the Taylor
expansion of x at 0, for any u € T,M close enough to 0 we have

X(u) = x(0) + dox(u) + H(u), (2.55)

where H : T,M — T,M is such that ||H(u)|| = O(]|u||*). Hence, recalling the system
(2.53) we can find a constant a such that

[Ix(u) = ul] < alfull*. (2.56)

In particular, we can take u = e~*v and the last inequality will hold for every v € T,M
and t € R large enough. By equation ([2.54)),

e lx(v) — ol = |Ix(u) — ul| < allul* = ae”*|[v]”

and
ol = 1 _ - 2 _
x(v) = l| = Jim [|x(v) — ]| < Jim e~aljo] = 0

for any v € T, M. This implies that ||x(v) —v|| = 0 and so x(v) = v for every v e T,M.
Thus, ¢~ o) = x = idg,a and ¢ = 9. O
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Remark 2.27. We say that a vector field X on M is linearizable at p if there exists a
tubular neighborhood embedding ¢ : T, M — M such that

Pe(v(X)) = X.
In particular, theorem tells us that Euler-like vector fields are linearizable.

Example 2.28 (Linearizable vector fields on R). An easy application of theorem is
the following characterization:
If M =R and p = 0, a non-zero vector field

9
or’
with f(0) = 0, is linearizable at the origin if and only if f’(0) # 0.

Indeed, suppose X is linearizable, then there exists a smooth map ¢ : R ~ TyR — R,
with ¥(0) = 0, ¢'(0) = 1 such that

X = f()

¢*(V(X)) =X
But, 5
W(X) = 0

So, if f’(0) = 0, then v(X) = 0 and

which leads to a contradiction.
On the other hand, if f/(0) # 0, the vector field ﬁX is Euler-like for (RR,0), hence
linearizable by theorem [2.2]
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Chapter 3

Case N c M general submanifold

In this chapter, we generalize to submanifolds the notions and the results studied previously.
For this reason, the discussion will be rather fast and we will dive into detail only when major
differences with the previous case occur. We will follow our main reference [BBLM20].

The purpose will be to prove

Theorem [L.1. If ¢ : v(M,N) — M is a tubular neighborhood embedding and E is the
Euler vector field on v(M, N), then

X =y, K

is an Fuler-like vector field on the image of 1.

Theorem (Main Theorem). If X is an Euler-like vector field on M and E is the
Euler vector field on the normal bundle, then there exists a unique tubular neighborhood

embedding
v v(M,N)—> M

such that Yo E = X|m .

3.1 Preliminaries

In the last chapter, we defined the notion of an Euler vector field on a vector space, in
particular the tangent space. We can now generalize this notion to vector bundles over a
smooth manifold.

Definition 3.1. Let V' 5 M be a vector bundle over a smooth manifold. The Fuler
vector field £ on V is the unique vector field on V' that restricts to the Euler vector field
on the fibers in the sense of definition 2.3

Observe that the uniqueness of E follows from the uniqueness of the Euler vector field on
the fibers.

Proposition 3.2. The following are equivalent
1. E is the Euler vector field for V

2. E(f) = f for any linear map f on 'V

25
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3. E=>, :1:2£ on each fiber of V' with linear coordinates x4, ..., x,.

Proof. Since FE is defined fiber-wise and by example [2.5| the three properties are equivalent
on each fiber, we have the conclusion. O

A natural generalization of the tangent space of M to a point is the notion of normal
bundle for a submanifold in M. Here is its definition.

Definition 3.3. Let M be a smooth manifold and N < M a submanifold. We define the
normal bundle of N in M (or for the pair (M, N)) to be the vector bundle

(M, N) := TM|y/TN (3.1)

over N. We will denote by ¢ : N < M the inclusion and by pr : v(M,N) — N the
projection map.

v(M,N)

-

N%Z,

With a small abuse of notation, in equation (3.1)) we wrote T'M|y instead of 7'M |;(). Addi-
tionally, whenever the ambient space is obvious, we will denote the normal bundle with v/N.
With this definition at hand, from now on we will refer to the Euler vector field as being an

element of X(v(M, N)).

Example 3.4. Observe that if N is a point, then T'N = 0, because the only paths on N
are the constant paths, whose derivatives are zero.
Additionally, TM |y = T M|y = T,M. Then,

vN = TM|y/TN =T,M/0 = T,M.

L.e. in the case N = {p}, the normal bundle is simply the tangent space at the point and
we recover the theory explained in the previous chapter.

Remark 3.5. Recall that if f: (M, N) — (M’, N') is smooth (i.e. f: M — M’ is smooth
and such that f(N)  N’), then we have an induced map, its derivative, on the tangent
spaces fy : TM — TM' sending TN to TN'. Thus, we have a unique linear map v(f) on
the quotients defined by v(f)(v+TN) = v(f) + TN’, and making the following diagram
with exact rows commute

p

(o

0 TN TM|y vN 0
(fzv)*h ‘f*hv v(f)
(i,)* p’ v
0 TN’ TM'|n vN' 0

where p and p’ are the respective projections on the quotients.
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Definition 3.6. With the notation above, we will call v(f) the linearization of the map
f.
In particular, if (M',N’) = (R,0) and f € C*(M) such that f|y = 0, then

v(f):vN >R, v+ TN — v(f). (3.2)

Example 3.7. If N = {p} and f : M — R vanishes at p, then v(f) is the usual derivative
of f at p.

Remark 3.8. v(M,N) is a quotient of the vector bundle T'M|y, on which the linear
functions are all and only the derivatives f.|x of some smooth function f over M vanishing
on N. Hence, all and the only linear functions on the normal bundle are linearizations of
functions over M vanishing at N. In particular, by proposition [3.2] the Euler vector field
FE is defined by the property

E((f)) = v(f) (3.3)

for all f as above.

Definition 3.9. Let X € X(M) be tangent to N. We define the linearization of X to be
the unique vector field v(X) € X(vN) acting on linear functions over the normal bundle
via

v(X)(w(f)) = v(X(f)). (3.4)
Definition 3.10. A vector field X € X(M) is Euler-like for the pair (M, N) if it is
complete, X|y =0, and v(X) = E.

Remark 3.11. Observe that lemma [2.12] can be generalized to the following characteriza-
tion in the submanifold case: X is Euler-like if and only if

X(f) -1

vanishes to the second order on N for any smooth f: M — R that vanish on N.
Indeed, if X is Euler-like, then

(X(f) = Plv=XIn(f) = flv=0

and

= E(f)) —v(f)
=)

Conversely, assume that X (f) — f vanishes to second order on N for any f such that
flv = 0. Then,

0= (X(f) = Plx = X|n(f):
So, by lemma [2.15, X |y = 0. Moreover,
0 =v(X(f) = f) = v(X)w(f)) = v(f),

showing that v(X) acts on linear functions the same way that £ does. Thus, v(X) = E.
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Example 3.12 (Euler-like vector fields in local coordinates). Consider M = R? with the
standard x,y coordinates and N = R = {z € R}.
Then,
TM|y/TN =| |(TLR*/T,R) ~ | |(R*/R) ~R x R. (3.5)
reR reR
For any x € R the Euler vector field on the fiber pr—1(z) = {(z,y) : y € R} ~ R takes

form E, = y%, independently on z. Hence, the Euler vector field on the normal bundle

R x R is

0
E:y@7

which is significantly different from the Euler vector field £ = m% + ya% on R x R = R?
as a vector space! Special attention is, thus, needed when working with these objects.
Then, an Euler-like vector field for the pair (R?,R) as above takes the form

X = a(x,y)i + (y + b(z,y)) ‘

A 3.6
ox oy (36)
with a,b € C*(R?) vanishing for y = 0 and g—z(m, 0) = 0.
Analogously, for M = R™, N = R" with n < m, and standard coordinates 1, ..., Zn, Y1, -+ Ym—n
such that zq,..., 2, are the standard coordinates on R"™ and y;|g» = 0 for every i =
1,...,m —n, an Euler-like vector field for (M, N) takes form

X :Zai(l‘aly)i—’_ Z(yj+bj($7y))77 (37)

i=1 0; j=1 0Y;

with functions a;, b; respectively satisfying the same conditions for a, b above for every ¢, j.
This extends to a general manifold M and submanifold N with local coordinates 1, ..., Z,, Y1, -, Ym—n
such that z,...,x, restricts to local coordinates on N and y;|x = 0. In this setting, an

Euler-like vector field will again take the form ((3.7)).

Definition 3.13. A tubular neighborhood embedding for the pair (M, N) is an embedding
Y:vN > M

that restricts to the identity on N, seen as the zero section of the normal bundle, and
such that the induced map v(1) is the natural identification

v(iv(M,N),N) ~v(M,N).

Let us unroll this definition. Viewing N < v(M, N) as the zero section, the first condition
states to

or, equivalently, to ¢(0,) = p for every p € N, where 0, is the zero vector of the fiber
v,N = pr~'(p). The second condition, instead, says that after canonically identifying
v(v(M,N),N) ~ v(M, N the linearization (i.e. the induced map on v(M, N)) of ¢ is
the identity on the normal bundle.

n general, for any vector bundle E — N, we have a natural isomorphism v(E, N) ~ E
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Remark 3.14. In the case M = S? and N = S! seen as the equator, the normal bundle
will be S xR, i.e. a "tube', or cylinder (see picture . In general, the normal bundle of
a submanifold N in M will, intuitively, be a "tube" of base N. In this context, one usually
refers to a tubular neighborhood of N in M to indicate an open neighborhood of N in M
that "locally looks like a tube', i.e. that is diffeomorphic to (an open neighborhood of the
zero section of) the normal bundle, where this diffeomorphism restricts to the identity on
the zero section and induces the identity on the normal bundle. In particular, the image
of a tubular neighborhood embedding is a tubular neighborhood, explaining the name.

s

( vSt

SQ
A e — f 5
VpS gt st

Figure 3.1: Qualitative example of a tubular neighborhood embedding 1 for M = S?
and N = S!'. The open neighborhood of S' = vS? delimited by the dashed circles
is diffeomorphically mapped to the tubular neighborhood of S! = S? delimited by the
dashed circles. In red are shown the fiber pr=*(p) = 1,5 at p € N and its image under

.

With these concepts at hand, we can now prove theorem [1.1]

Proof of theorem[1.1. The proof follows essentially the same logic of theorem and

proposition [2.16]
For every p € N we have

Xp = (0uE)p = dy1(5) (Ey—1(p)) = do,¥(Eo,) = 0,

where the last equality holds because the Euler vector field on the fiber at p, as shown in
the previous chapter, vanishes at zero.
Moreover, observe that

V(¢*E) = V(@Z))*(V(E)) (3'8>

for any smooth map v and vector field E. This is proven analogously to equation ([2.15]
because the linearization of a map is simply its derivative modulo T'N, as in equation
(3.2]). Hence,

v(X) = v(uE) = v(¢).(v(E)) = E.
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3.2 Deformation Space

In the previous chapter, we saw that the deformation space is a construction that "enhances",
for t — 0, the tangent directions to a point in a manifold. We also saw in example , that
the normal bundle for a point in a manifold is exactly the tangent space to this point. Hence,
we can rephrase the intuition behind the deformation space by saying that it is a construction
that "enhances" the normal directions to a given point. We will see now how this notion
generalizes to general submanifolds.

Definition 3.15. Let N < M be a submanifold. The deformation space for the pair
(M, N) is the setf]
D(M,N) = (v(M,N) x0) u (M x R*),

equipped with the unique manifold structure determined by the following conditions:

1. the map
v+TN—0

m:D(M,N)— R, {(m,t)'—wf (3.9)

is a smooth submersion,

2. the map
k:D(M,N) — M, {Z;: gji;: epr(v+TN) (3.10)
is smooth,
3. for any f e C*(M) vanishing on N, the map
F:D(M,N) >R, {1(’7: ;T)JLT;(%; (3.11)
7 t

is smooth.

Note that the restriction of f to the zero fiber 771(0) = vN is the linearization v/(f).
We will denote again 7 as an element of C*(D(M, N)) by its image ¢.

Lemma 3.16. Let x1,...,Zn,Y1,--.,Ym_n be a set of local coordmateaﬂ on M such that
the x;’s restrict to local coordinates on N and y;|y = 0, for every jﬂ. Then,

Ky, o KR, Uty e Uy T (3.12)

is a set of local coordinates on D(M, N).

2We use the following convention for points in the deformation space:
v+ TN evN, (m,t) e M x R*, x € D(M, N), where R* := R\{0}.

3In the sense that this set defines a homeomorphism from an open subset U of M to an open subset
of R™.

4In the literature, such coordinates on M are called adapted to N.
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Proof. The proof is similar to the case N = {p} (lemma [2.18]).
Let x1,...,Zn, Y1, -, Ym—n be defined on an open U < M. Then, the set D(U,N nU) =
k1 (U) is open because k is continuous, and the map

¢:DU,NAU)—R" x R"™" x R, (3.13)

defined by ({3.12)), is smooth and bijective on its image. Now, viewing U x R* as an open
in R™ x R™™" x R* via the coordinates on M, and v(U,N nU) as (N nU) x R™" via
the local trivialization of the normal bundle, the map

(u,v,0) e (NN U) x R™™ x 0

3.14
(u,tv,t) € R™ x R™" x R* (3:14)

(u,v,t) e R" x R™™" x R* '—>{

is the continuous inverse of ¢.
The smoothness of the transition functions is proven analogously to the N = point case

(see proposition [2.19)). O

The algebra of smooth functions on the deformation space is generated by ¢ (seen as the
function 7), and by functions of the form x* f and g for f, g € C*(M) such that g|y = 0. This
follows by the previous lemma because, if F '€ C*(D(M, N)) and 6* 1, ..., K*Tp, U1,y - - - Umn, t
is a set of local coordinates for D(M, N), we can see F' as a composition of such maps with
a function R**! — R.

Hence, to define a vector field on the deformation space is sufficient to define its action on
functions t, k* f, g as above.

With abuse of notation, we will denote the coordinate x*x; by x;, and the inclusions of the
fibers 7=1(¢) in D(M, N) by j;, with j := jo.

The following properties are proven in the same way as in the previous chapter. For any
smooth functions f, g on M with g|y = 0:

(a) For any morphism ¢ : (M, N) — (M’, N’), we can extend the map ¢ x idgx to a map
D(p) : D(M, N) — D(M', N')
that restricts to v(¢) on 771(0) = vN.

(b) We have a canonical vector field § € X(D(M, N)) satisfying

Inlocal x1,...,2,, 71, Ym_n,t coordinates,
0 0
0=t—— > UJi=— 1
~ Zy 5 (3.16)

from which we see that 6 is tangent to the zero fiber 771(0) = v N, where

—E~; 0. (3.17)
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(c) For any vector field Y on M, we can define a vector field Y € X(D(M, N)) by

(3.18)

P Y| +TN onvN
|y on M x R*’

where Y is seen on vN as the fiber-wise constant vector field of value Y|y + TN. ¥
satisfies

Y(t)=0, Y(s*f)=te*(Y(f), Y(3)=r"(¥Y(9)). (3.19)

(d) If Y e X(M) is tangent to N (in the sense of definition [2.21]), then Y|y + T'N = 0,,
i.e. Y vanishes on 771(0) = vN. Thus, Y is divisible by ¢ and we can define a vector
field D(Y) on D(M, N) by D(Y) = t~'Y, which by the system ([3.19) satisfies

DY)(t) =0, DY )(x"f)=r"Y(f), DIY)9g) =Y(9) (3.20)
Recalling that §|,—1(0) = v(g), by the last equation of (3.20]), we have that D(Y)|,-1(g) =
v(Y). Hence,
pryy— V) envN (3.21)
Y x0 on M xR~*

Remark 3.17. Consider a set of local coordinates for (M, N) as in lemma A general
vector field on M takes local form

0 o
i t J J

Then, on M x R* with coordinates z;, §; := %yj, t, we have that

Yx()zz:azxty + Zb xtyay
j

7

So, we see that tY = ¢(Y x 0) can be extended to a vector field ¥ on the whole deformation
space, while Y x 0 can be extended to a vector field D(Y") if and only if b;(x,0) = 0 for
every j. Since N is defined by the vanishing of the y—coordinates, this is equivalent to

asking that
0
Y|y = ;

%

i.e. that Y be tangent to V.

3.3 Proof of Main Theorem

As stated in the introduction, the goal of this section is to prove the main theorem [I.2] To
provide some context, let us report the statement here.

Theorem If X is an Euler-like vector field on M and E is the Euler vector field on
the normal bundle, then there exists a unique tubular neighborhood embedding

b v(M,N) —> M
such that Y. E = X|im -
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Remark 3.18. Analogously to remark[2.27] we say that a vector field X on M is linearizable
around a submanifold N if there exists a tubular neighborhood embedding ¢ : v(M, N) —
M such that

Ui(v(X)) = X,
In particular, the previous theorem states that FEuler-like vector fields for (M, N) are
linearizable around N.

We will need several preparatory results for the actual proof of the theorem. One of the
main tools will be a particular vector field WW. The following lemma shows its construction
and is proven in the same way as lemma [2.23] so the proof will be omitted.

Lemma 3.19. If X € X(M) is Euler-like, the vector field 1X + £ on M x R* can be
extended to the vector field
1
on D(M,N).
Observe that, given a general vector field X on M, taking into account the three properties
in definition m 1X + at is a natural vector field to consider on M x R*.

Remark 3.20. Consider the usual local coordinates on the pair (M, N) and the corre-
sponding ones on D(M, N) as in lemma [3.16, Then, we know that

with a;,b; smooth functions on M vanishing at y = 0, such that %(3@,0) = 0 for any
i,7, k. Since X |y = 0, we can construct D(X), which on M x R* takes form

0
a;( 4 b x,t —. 3.22
-3 (#.19) 55 (322)
Then,
1 0 1 0 0
;(D(X) +0) = Fri tZai(x ty)3 t 5 Zb x,1y) =— PR (3.23)

Since a;(z,0) = 0 for every 4, the limit for ¢ — 0 of a;(z, tg) /t is well-defined, and similarly
is that of b;(z,t7)/t?, because the functions b; vanish to the second order for ¢ = 0. This
shows in a coordinate-dependent way that 1X + E extends to the whole deformation
space.

Lemma 3.21. For any vector field Y € X(M) and any Euler-like vector field X, the
vector field Y + [X, Y] is tangent to N, and

[W,Y]=D(Y +[X,Y]). (3.24)

Moreover, if Y is tangent to N,

(W, D(Y)] = 1@([}(, Y)). (3.25)
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Before starting the proof of lemma [3.21], recall the following

Proposition 3.22 ([Leel3], Proposition 8.22). A wvector field Z on M is tangent to N if
and only if X(f)|n = 0 for every smooth function f over M vanishing on N.

Proof of lemma[3.21, We want to use the last proposition to show that Y + [X,Y] is
tangent to N. Take f e C*(M) such that f|y = 0. Then,
Y + X YDy = YNy + (X oY)y = (Vo X))y
=Y (f = X))~

because X|y = 0. Seeing Y as a derivation, since X (f) — f vanishes to second order by
remark 3.11] Y(f — X (f))|v = 0. Hence, Y +[X, Y] is tangent to NV, by proposition [3.22]
To prove equation (3.24)), recall the well-known formulas

(X, fY]=FIX Y]+ X(N)Y
[fX, Y] = [IX, Y] =Y (f)X.

Then, on M x R* we have

(3.26)

W, 7] = [1X+ f tY]

A (o o]
=t[1X,Y]+Y
_imnq—wumx+y
_ [X.Y]+Y,

where in the third and fourth equality we used the fact X and Y are independent of ¢, so
when applied to functions of ¢ they vanish. For the same reason, the Lie derivative of Y’
in the direction of % is zero, i.e. their commutator vanishes.

Since all the vector fields above can be extended to the whole deformation space and they
agree on an open dense subset (M x R*), by continuity, equation holds on the
whole deformation space.

Equation follows from equation (3.24)). By continuity, it is again sufficient to prove
it only on M x R*.

- W<1>Y+ “[w, Y]

X <1)tY+ Lo +[x, 7))

|

|
|
~
+

|
<

1 1 1
X () + S (Y +1XY)) o

I
sk
I
=

I

[
JS)
=
=

This concludes the proof. O
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The proof of the following result is similar to the previous case, so it will be omitted.

Lemma 3.23. Denote by oV the flow of W. Then, for any v+ TN € m#=1(0) = vN, the
integral curve @V (v +TN) is defined for all s € R.

Let us now discuss the proof of our main theorem in the most general case. It will follow
the logic of the previous case with some adjustments.

Proof of theorem[1.9. For any s € R, call D, € D(M, N) the domain of p?, which by
lemma, is an open neighborhood of ¥ N in D(M, N). Then, for any s # 0, we have a
well-defined smooth map v, := ko ¥ o j

V(M,N) —2— D, — %", p(M,N) 5 M, (3.28)

that is a diffeomorphism on its image.
By equation (8:23), [W,D(X)] — ID([X,X]) = 0. Thus, (¢"),D(X) = D(X) and

ot

consequently, as in equation ([2.44)),
(Ys) £ = X.

To conclude the proof, we still have to show that 1 restricts to the identity on N and its
linearization is the identity on the normal bundle.

o _ 2 W _ &

For the first claim, since Wy.r = %, we have ¢ |nxr = @' |nxr, and
W .

Vslv = ko ojln

W

= KO0 Yy |NxR
el

__ Gl

= Ho@st|N><]R

= K\NxR
= idy,

where the second to last equality holds because the flow of the translation vector field
leaves N unchanged.

We are left to show that v(1)s) = id,n for some s € R. So, take a general vector v + TN
on the fiber by a point ¢ € N. We can find a vector field Y on M such that

Vigoy =Y, +TN =v+TN.

Note that, since by lemma [3.21] (Y + [X,Y]) x 0 is tangent to N x {t} for all ¢ # 0, we
have that D(Y + [X,Y]) is tangent to N x {t} for all ¢ by continuity. Hence, by

LV =W, 7182 Dy 4+ [x,v]), (3.29)
we have that
N N S d N s N
S e e (AR LA T ANYE ST CE Y
0 0

is tangent to N x {t} for all ¢.
This means that the flow of W preserves the vector field Y up to a vector field tangent
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to N x {t}, say U.

But then,
((SOZV)*?)((] 0 YAOZV(Q 0 T UsDW(q 0)
= Yig) + Utgs) (3.31)
= 5Yg + Ugg)
On the other hand,
((@y)*?)(q’o) = digo 2t (Vig0) = dgoywt (v+TN). (3.32)

Combining equations (3.31) and (3.32) modulo TN, we then have

v(@")(v+TN) = s(v+TN), (3.33)
Thus,
v(¥s)(v + TN) = v(k) o v(p)) ov(j)(v + TN)
= v(k) ov(©")(v+ TN)
3.34
= (H)(S (v+TN)) (3.54)

s(v+TN).
Then, 1), is an embedding, and v (1) = id,y if and only if s = 1. So, 1; is the desired

tubular neighborhood embedding.
The uniqueness is analogous to the proof of theorem [2.2] O



Chapter 4

Applications

In this chapter, we will discuss some applications of our main theorem, both in the point-
submanifold and general cases. In primis, we will prove Morse lemma and Darboux theorem
via theorem (see [Mei2l], section 2.2). In the second and third sections, we will show
the generalizations of these two results to submanifolds aided by theorem (see [Mei21],
sections 4.1-2). Finally, in the last section, we will present and prove a splitting theorem for
singular foliations (see [BBLM20], section 2.4).

4.1 Morse Lemma and Darboux Theorem

We saw that if E' is the Euler vector field on a vector space V, then E(f) = f for any linear
function f on V. There is a similar property for k-homogeneous polynomials, namely

Lemma 4.1. If E € X(V) is the Euler vector field on V and f is a homogeneous polyno-
mial on V of degree k, then

E(f) =kf.

Proof. Without loss of generality by the linearity of f — FE(f), consider f = fi--- fj,
where all f; are linear maps of V. Then,

E(f)=E(f)ffe+. ..+ fi for BE(fi) =kfi fr
O

The last fact turns out to be useful in proving our first application of theorem [2.2} the
Morse lemma, a normal form result for Morse functions.
Recall that if f is a smooth function on a manifold M and p € M is such that d,f = 0, then
we can define the Hessiarﬂ of f at p to be the symmetric bilinear form Hess f(p) on T,M
defined by
Hess £(p)(u,v) i= X (Y (£))(p), (4.1)

for any pair of vector fields X, Y on M such that X, = v, Y, =veT,M.
Observe that this definition does not depend on the choice of the two vector fields, and the
symmetricity follows from d,f = 0, indeed

XY ())p) —Y (X)) = [X,Y](f)p) = dpf([X,Y]p) =0,
for any vector fields X, Y on M.

1See for instance [Plal3]

37
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Definition 4.2. A smooth function f on a manifold M is called Morse if all its critical
points are non-degenerate, i.e. for all p € M such that d,f = 0 we have that Hess f(p) is
non-degenerate.

Since the Morse lemma is a local condition around a critical point, we can reduce to the
case M = R™ and p =0, with f(0) =

Lemma 4.3 (Morse). Let f € C*(R") be a Morse function having a critical point at the
origin, with f(0) = 0. Then, there exists a tubular neighborhood embedding 1 defined on
a neighborhood of the origin such that

= i +7. (4.2)
=1

Proof. By expanding f at the origin, we have

0
0)+28£( zﬁxlé’% Jzix; + R(x),

with R(x) vanishing to third order. Since f(0) = 0 and %(0) = 0 for all 7, we can rewrite
f as

1
0,

where  — H(x) is a smooth matrix-valued function with H symmetric and H(0) =
Hess f(0).
The derivative of f then satisfies

of

8%( T) = ;ij(x)l'ka (4.4)
with

0Hypy
Gir(x) = Hjp(z) + = Z o, (z)a. (4.5)

Since G(0) = H(0) = Hess f(0), H and G are non-degenerate (and hence invertible) in a
neighborhood of the origin.
Then, we can define a smooth vector field in a neighborhood of 0 by

X = Z(H(@Gmrl)mmi(;; (4.6)

X is then Euler-like since HG™! is the identity up to higher-order terms (simply observe
that HG™' = (I + (G — H)H™1)™!, which is the geometric series close enough to the
origin). Then, by theorem there exists a tubular neighborhood embedding ¢ on a
neighborhood of the origin such that ¥, F = X.
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Now, by equations and ,
: _ 0
X(5) B Y H@ ) L

o
ZJ:(H(x)G(x)_l)ijffiij(fE)mk
= j];k(x)xixk
_2,
and recalling equation (2.9),
B f) & g (x () = 2. (4.7)

By lemma 4.1} ¢* f is a homogeneous quadratic polynomial, which then defines a bilinear
form that is symmetric and thus diagonalizable.

Hence, up to a change of coordinates where this bilinear form is diagonal, we have ¢¥* f =
> A2, for some real numbers \;, which by a coordinate rescaling takes the form (4.2). O

In the same fashion, we can prove the Darboux theorem for 2-forms. It relies on the
following

Lemma 4.4. If E is the Euler vector field on a vector space V and w € QF(V), then
Lpw = kw if and only if w has constant coefficients.

Proof. Without loss of generality by linearity of the Lie derivative, consider w = f dx; A
... Adxy. Then,

Lpw=Lpfdry An...ndrg+ fLe(dry A .. A dxy).
The second term on the right-hand side, using Cartan’s magic formula, becomes
fied(dzy A ..o A dxy) + fdueg(day A .o A dag).
Since dxq A ... A dxy, is a closed form and its contraction with E is

Z(—l)i_lxidml AN JQZZ Ao A day,

%

where the symbol c?y;l means that we omit dx;, and the exterior derivative of this contrac-
tion is kdxy A ... A dxy, we have that

Lrpw=Lpfdry n...ANdxy+kfdry A ... A dxy.

Hence, Lrw = kw if and only if Lgf = 0, i.e. f is constant along the integral curves of
E., which are rays through the origin. Since f is continuous, the value of this constant on
each ray is f(0), i.e. f is constant on V. O

Theorem 4.5 (Darboux). Let w € Q*(R?") be closed and non-degenerate (i.e. symplec-
tic). Then, there ezists a tubular neighborhood embedding v defined on a neighborhood of
the origin such that ¢ *w is constant.



40 CHAPTER 4. APPLICATIONS

Remark 4.6. The classical statement of Darboux theorem actually states the existence of
a coordinate system (qi,...,qn,p1,---,Pn) o0 a neighborhood U of the origin such that

wly = Z dg; A dp. (4.8)

=1

This is equivalent to asking that there is a tubular neighborhood embedding ) on a
neighborhood of the origin such that ¢*w takes form . Now, if 1*w is constant,
since on a vector space for a form being closed is equivalent to being skew-symmetric,
by a classical result of linear algebra (see for instance [Conl], theorem 5.4), there exists a
coordinate system on which 1*w takes the form . This shows the equivalence between
of the two statements of Darboux theorem.

Proof. Since w is a closed 2-form on R?"*, by the Poincaré lemma, there exists a 1-form o
on R?" such that do = w and we can take the coordinate expressions

W= Z(wij + O(|z|))dz; A dx;

1<j

1 ) (4.9)
o= 52(%@ + O(|z[?))dz;
1]
in a neighborhood of zero, where w;; = —wj;.

Since w is non-degenerate at the origin, and by continuity also in a neighborhood of 0,
the equation
Lxw = 20

has a solution X € X(U) in a neighborhood U of 0.
By equation (4.9)),

X = i+ O(e)

i.e. X is an Euler-like vector field for the pair (U,0). Hence, there exists a tubular
neighborhood embedding 1 : (U,0) — (R?",0) such that ¢, £ = X. Since w is closed, by
Cartan’s magic formula, we have

Lxw = dixw + txdw = d(2a) = 2w. (4.10)

Then,
Lo*w) B (L, pw) = v (Lxw) = 20w, (4.11)
By the previous lemma, ¥ *w has constant coefficients. O]

4.2 Morse-Bott Functions

In this section, we prove the analogue of Morse lemma for submanifolds, the Morse-Bott
lemma.

Let N © M be a submanifold and f € C*(M). If f vanishes to second order along N, then
we can define its quadratic approximation to be the function fiz € C*(v(M, N)) made on
each fiber v, (M, N) of the second-order terms of the Taylor expansion of f at x € N. Then,
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for every x € N, its corresponding symmetric bilinear form on v, (M, N) is called the normal
hessian of f
Hess(f), : ve(M,N) x v,(M,N) — R.

Definition 4.7. A function f € C*(M) that vanishes to second order along N is called
Morse-Bott for the pair (M, N) if Hess(f), is non-degenerate for every x € N.

Lemma 4.8 (Morse-Bott). If f is a Morse-Bott function for the pair (M, N), there exists
a tubular neighborhood embedding

Yv:0cv(M,N)— M,
with O being an open neighborhood of N in the normal bundle, such that
V= [z

Proof. By taking an eventual initial tubular neighborhood embedding, we can consider M
to be an open neighborhood of N in v(M, N). By hypothesis, we have a Morse function
on (a neighborhood of the origin of) each fiber of the normal bundle, so we can construct
an Euler-like vector field on each v, (M, N) as in the proof of Morse lemma (equation
(4.6)). Analogously to the proof of lemma , we then have an Euler-like vector field X
on a neighborhood O of N in the normal bundle such that

X(f)=2r

By theorem [I.2] there exists a tubular neighborhood embedding ¢ as in the statement
satisfying ¢, F = X, so that

E@*f) = 20" f,
i.e. by lemma , Y* f is a homogeneous polynomial of degree 2. Hence, since v(¢) is
the identity, we have the conclusion. O]

4.3 Weinstein Lagrangian Neighborhood Theorem

The next application of theorem[1.2]we want to discuss is the well-known Weinstein Lagrangian
neighborhood theorem in symplectic geometry, the analogous of Darboux theorem for
Lagrangian submanifolds.

Start considering a manifold M and a differential k-form w on M, together with a submanifold
1 : N — M such that

1w = 0.

Then, k*w is a differential k-form on the deformation space D(M, N) that vanishes on the
zero fiber, because on v(M,N) it is simply pr*i*w = pr*0 = 0, by definition of k (see

definition (3.15)).

This means that x*w is divisible by ¢ on the deformation space, or equivalently, that %(w x0) €
OF(M x R*) extends to a form

D(w) := 1H*w e QO (D(M, N)).
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Definition 4.9. We define the linearization of w to be the pullback
v(w) := j*(D(w)) € Q*(v(M, N)), (4.12)
where j : v(M, N) < D(M, N) is the inclusion.
In particular, if (M,w) is a symplectic manifold with Lagrangian submanifold i : N < M
(so, i*w = 0), the linearization of w is a well defined 2-form
v(w) e Q*(v(M, N)),

which, since N is Lagrangian, is symplectic along the zero section N of the normal bundle.
To see this, note that since }(w x 0) is closed on each 7~ !(¢) = M x {t}, by the smoothness
of its extension, the form D(w) is closed also on the zero fiber, where it coincides with v(w).
The non-degeneracy can easily be checked using local coordinates.

Now, since v(w) is symplectic along the zero section of the normal bundle, it is so also in a
neighborhood of N < vN. We claim that v(w) is symplectic on the whole vN. To check
this, first observe the following

Lemma 4.10. v(w) defined above is a linear 2-form on vN, in the sense that it is linear
on the fibers or, equivalently, that

Lpr(w) = v(w), (4.13)
where E is the Euler vector field on the normal bundle.

Proof. Recall that we can construct a canonical vector field 6 on D(M, N) that takes the
form ¢tZ on M x R*, whereas D(w) = 1(w x 0). But then, on M x R*, taking the Lie
derivative in direction of —6,

1 1
L_¢D(w = ﬁ_%;(w x 0) = ;(w x 0) = D(w)|arxr-

)|M><]RX

Hence, by continuity, we have £_yD(w) = D(w) on the totality of D(M, N). In particular,
the equality holds also on the zero fiber vN, where —6 is E and D(w) is v(w), i.e.

Lpy(w) = v(w),
concluding the proof. O]

In particular, equation tells us that the flow of E preserves our linear form v(w).
Hence, by eventually pulling back v(w) to a neighborhood where it is symplectic, we find that
v(w) is symplectic on the entire normal bundle.

We then proved that ¥N has a natural symplectic structure, given by v(w).
The following normal form states that if we are interested in the behavior of w around N, we
might as well view it as its linearization on v V.

Theorem 4.11 (Weinstein Lagrangian neighborhood). If (M,w) is a symplectic manifold
and N is a Lagrangian submanifold, then there exists a tubular neighborhood embedding

Yv:0cv(M,N)— M,
with O being an open neighborhood of N in v(M,N), such that
Vi'w = v(w).
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Remark 4.12 ([Mei2l], Remark 4.1). Consider a vector bundle V. — N with a linear
symplectic form w on V', in the sense of lemma [4.10, We know that TV |y = V@ TN, so
restricting w to TV |y gives a pairing between V and T'N via

(0, X) = w|rv|y ((v,()), (O,X)),

for all v e V, X € TN. Since this pairing is non-degenerate, we obtain an isomorphism
V—-T*N, v~ {v,-). (4.14)

Furthermore, this map pushes the form w on V to the standard symplectic form Q7 y on
T*N, i.e. is a symplectomorphism.

Hence, taking V' = v(M, N) with symplectic form v(w), gives us a diffeomorphism between
v(M,N) and T*N preserving the symplectic structures.

This consideration allows us to recover the Weinstein neighborhood Lagrangian theorem
in its most-known form

Theorem 4.13. Let N be a Lagrangian submanifold of (M,w). Then, there ezist a
netghborhood U of N in M, a neighborhood V' of N in T*N, and a symplectomorphism

w . (U,CU) — (V, QT*N)
that restricts to the identity map on N.

Let us prove theorem by means of our main theorem [1.2]

Proof. By the tubular neighborhood theorem, without loss of generality, consider M to be
a fiber-wise convex, open neighborhood of N in v(M, N). Since, w pulls back to zero (via
the inclusion) on N, by the relative Poincaré lemma, there exists a primitive « of w that
vanishes on NV, and is constructed via

1

1

a = J gmf(LEw) dt, (4.15)
0

where k; is the multiplication by ¢. Then, taking its linearization gives

o) = [ Snivtize a

0

I
_ f S () dt
0

_ f 1, (4.16)

tp—K;v(w)dt
o ¢

= 1pr(w) Ll dt
= tpv(w),

where in the third equality we used the fact that v(E) = E and in the second to last

that, since v(w) is linear, $xfv(w) = v(w), which does not depend on t. Now, define



44 CHAPTER 4. APPLICATIONS

X € X(M) via the equation ¢txw = «a (which has solutions because w is non-degenerate).
Then, taking the linearization on both sides,

v(o) = v(txw) = txyv(w).

Hence, again by non-degeneracy of w, we have v(X) = E, i.e. X is Euler-like (it might not
be complete). Then, by theorem [I.2]and remark [2.11] there exists a tubular neighborhood
embedding as in the statement such that ¢, E = X. But,

Lg(Y*w) =Y*(Lxw) = P* (txdw + dixw) = Y*w, (4.17)

where in the second equality we used Cartan’s magic formula and in the last that w is
closed and dixw = da = w. This means that ¢*w is linear, and since v(v)) is the identity,
it coincides with v(w). O

4.4 Splitting Theorem for Singular Foliations

Recall that a foliation on a manifold M can be seen as an involutive distribution, i.e. a
subbundle of T'M closed with respect to the Lie bracket of sections. In this context, all
the leaves have the same dimension. Singular foliations extend this notion by allowing the
dimension of the leaves to vary.

Following the flow of [BBLM20], our goal is to prove a so-called splitting theorem for these
objects. The definition of singular foliations first appeared in [ASO7], where the authors
were inspired by earlier works of Stephan [Ste74] and Sussmann [Sus73]. One can consult
[ASO7| [AZ16] for general discussions about the topic.

Definition 4.14. A singular foliation F on M is a C*(M)-submodule of X(M) such
that

a. F is local: if X € X(M) such that for any m € M there exists Y € F and a
neighborhood U < M of m such that X|y = Y|y, then X € F

b. F is locally finitely generated: for any m € M there exists a neighborhood U of m
such that F|y is spanned by finitely many Y3,...,Y, € F

c. F is involutive: [F,F] < F.

Remark 4.15. One can show (see [AZ16], theorem 5.1) that C® (M )-submodules of X (M)
that are local in the sense of the previous definition are in bijective correspondence with
C*(M)-submodules of the compactly supported vector fields X.(M). Hence, we can
define singular foliations to be C®(M)-submodules of X.(M) that are involutive and
locally finitely generated.

Definition 4.16. Define exp F to be the group generated by the time-1 flow exp X of
vector fields X of F, and Aut(M, F) to be the group made of diffecomorphisms ¢ : M — M
that preserve the foliation, i.e. ¢, F = F.

Proposition 4.17 ([AS07], Proposition 1.6). exp F is a normal subgroup of Aut(M, F).

We propose here a sketch of the proof by Androulidakis-Skandalis. For another equivalent
proof, see [GY18].
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Sketch of the proof. Let us first show that exp F is a subgroup of Aut(M,F). We want
to show that if X € F, then exp X € Aut(M, F).
We claim that it is enough to prove that

(exp X ). F < F. (4.18)
Indeed, any Y € F can be written as

Y = (exp X).(exp (—X),Y)

*

and, since —X € F, if equation holds, exp (—X),Y € F. This means that every
Y € F can be written as Y = (exp X).Z for some Z € F, ie. Y € (exp X),F, proving
that (exp X).F = F, so that exp X € Aut(M, F).

So, let us now prove the inclusion . Replacing eventually M with a neighborhood of
the support of X, we can assume that F be generated by a finite number of vector fields
Yi,....Y, e F.

By involutivity of the foliation, [X,Y;] € F for any i. Hence, there exist smooth functions
a;; on M such that

[X,Yi] = ) ;. (4.19)
J
Call L the linear mapping

L:CH(N)" = CH(N)" (i, fn) = (91,5 9n), (4.20)

with g, := X(f) + 3, @ f;, and define a surjective map
S:CPN)" = F, (fi, - fa) HZfiY,-. (4.21)
Then, for any fi, ..., f, € F, we have
(Lx 0 S)(fr,.. fu) = cX(Z 1v7)
=ZX&M+M%]
—ime+Z%mn
=mem+ﬁwmn
=mem+f%mK

= (SOL)(fla---afn)a

where in the third equality we used equation (4.19) and in the fourth we renamed the
indices i < j.
This shows that Lx 0.S = S o L. One can then prove that

(expX)s0S =SoexpLf (4.22)

2Here exp L = Z;ﬁo Li/i!, where L* is the composition of L k times and L° is the identity map.
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Since S is surjective,

(exp X)oF = ((exp X), 0 §) (C2(N)) "€ S(C*(N)") = F.

This proves equation (4.18) and hence that exp X € Aut(M, F).
To show that exp F is a normal subgroup, take g € Aut(M,F). Then, since X and
9+ X € F are g-related by definition, g o exp X = exp (¢, X) 0 g, i.e.

goexpX og ! =exp(g.X) € Aut(M, F),
proving our claim. [

Definition 4.18. Given a singular foliation F on M, define its leaves as the orbits of the
action of the group exp F on M, that on the generators is defined via

expF x M — M, (expX,m)— expX(m).

Example 4.19 (A singular foliation on R). Let M = R. Then, F := Spancm(R){:E%} is
a singular foliation. Indeed, xa% is the Euler vector field on R, so its flow is ¢;(y) = €'y,
thus its time-1 flow is the multiplication by e. The leaves of F are then

(_0070)7 {0}7 (0,—!—00),

so0, in contrast with regular foliations, the dimension of the leaves can vary. This explains
why such objects are called singular.

Definition 4.20. We say that a smooth map ¢ : N — M is transverse to F if for every
neN
ToyM = Im(d,¢) + {Yym) : Y € F}. (4.23)

Clearly, submersions are transverse to any given singular foliation.
Recall that if we have a vector bundle 7 : £ — M and a smooth map ¢ : N — M, we can
define the pullback bundle pry : ¢*(E) — N, where

¢*(E) = {(n,e)e N x E: ¢(n) =7(e)}f]lc N x E (4.24)

and pry is the projection onto the first component. The projection onto the second component,
br2

o*"(E) ——

_

pra, makes the following diagram commute
E
N M
¢

If £ is a submodule of T'.(F), define the pullback module ¢*(€) to be the submodule of
[.(¢*(F)) generated by elements f - (£ o ¢), with f € C*(N), (€ £.

3In the literature, one often says that ¢*(FE) is the fibered product of N and E over M, denoted with
¢*(E):=Nxy FE
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Definition 4.21. Given a smooth map ¢ : N — M transverse to a singular foliation F
on M, define the pullback foliation ¢'(F) to be the C*(N)-submodule of X, (N )] defined
by

¢ (F) = {X € X(N) : dg(X) € ¢*(F)}

— X eX(N) 1 do(X) = Y fi (Viod). fre o (M), VieF), P

seeing do(X) as a section of ¢*(T'M).

Remark 4.22. Observe that the definition is well-posed. Indeed, ¢'(F) is always involutive
and, if ¢ is transverse to F, it is locally finitely generated (see [ASQO7], proposition 1.10).

Remark 4.23. Observe that if ¢ is a submersion, then the pullback foliation can be defined
by
PF = Spange {X € X(N) ¢-related to an element of F}

Consider a submanifold N of M. If the inclusion 7 : N < M is transverse to F, then we
have a singular foliation

i'(F) = {X|y € X(N) : X € F is tangent to N}. (4.26)

Moreover, calling p : v(M,N) — N the projection (instead of pr as in definition [3.3] for
convenience of notation), we have a natural singular foliation on the normal bundle, which we
will call linear approximation of F around N, defined by

v(F) := pi'(F). (4.27)
P (F) i'(F) F
v(M,N) ] N © ; M

We now have all the tools to prove the following|

Theorem 4.24 (Splitting Theorem for Singular Foliation). Let F be a singular foliation
on M, N be a submanifold transverse (i.e. the inclusion is transverse) to F. Then, there
exists a tubular neighborhood embedding ¢ : v(M,N) — M such that

V(F) = v(F).

4Here we use the equivalence between the two definitions of singular foliations, explained in remark

gsee [BBLM20], Theorem 2.8.
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The proof of this result is not a direct implication of theorem[1.2] instead it follows the logic
of its proof due to [BBLM20], showing an instance of how we can generalize its geometry to
more advanced situations. This approach has not been possible yet, at least to our knowledge,
by means of the Moser trick, used in the proofs of theorem by [BLM16], or theorem
by [Mei21].

Proof. First of all, let us show that F contains an Euler-like vector field.

Denote by r = dim M — dim N. Since the inclusion N < M is transverse to F, for any
point n € N there exist a neighborhood V' of n and vector fields Y3, ..., Y, € F|y spanning
a subbundle K < T'M|y such that

TM|n~v = K|nay @TN |y (4.28)

By lemma 3.9 of [BLM16], there exists a section o € I'(K') such that o|y = 0 and is Euler-
likd] Since K is finitely generated, o = >, f;¥; for some f; € C*(V), hence o € Fly.
Using a partition of unity, by the locality of F, we can construct a vector field X e F
which is Euler-like for (M, N).

Recall that we have a canonical vector field § on the deformation space D(M, N) that
by the system satisfies 6 ~, 0, with x as in definition [3.15] Additionally, if X is
Euler-like, we can construct a vector field D(X) on D(M, N) such that D(X) ~, X (see
equation (3.21))). This means

dr(0) =0, dr(D(X)) = X.

But then, since a vector field Y on D(M, N) is an element of '(F) if it is of the form
=) fiYiok),

with f; € C*(N) and Y; € F for all i, we have that 9 and D(X) both lie in x'(F).

Hence, also the vector field W := (9 + D(X ) x'(F). By proposition m, its integral
curves ¢, = exp sW are automorphlsms of D(M ) that preserve '(F). But then,

(9) (K'(F)) = #'(F).
Since the inclusion j : v(M,N) < D(M,N) and &|,-1(5 : 77 '(s) — M for s # 0 are
foliation preserving in a trivial way, denoting s = Kk 0 @, o j, we have
Iﬁ;]: = (’f © Ps Oj)!f
= j!(‘PS)!’i!F
_ j!’f!F (429)
_ p'Z'F
= v(F),
where the third equality holds because, by definition, Ko j := 170 p.

By the proof of theorem [1.2] we find that ¢ := ¢4 is the desired tubular neighborhood
embedding. O
6The lemma applies to anchored vector bundles, but one can show that it holds also with our hypothesis

in two ways; either by observing that anchored vector bundles define a singular foliation as the image of
their anchor, or by mimicking the proof of the lemma.
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Remark 4.25. The name splitting theorem comes from the fact that if N is a "small enough"
slice at a point x in M, i.e. it is an embedded submanifold transverse to the leaf of F
at x, then there exists a neighborhood W of z in M such that F restricted to W is
diffeomorphic to the product of a trivial foliation with i'F, with i: N = N n W < W is
the inclusion. For more context, see [BBLM20] or [AZ11].
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Chapter 5

Generalizations

In this chapter, we generalize theorem by introducing a notion of weights on the local
coordinates of a manifold, and of eigenvalues of vector fields on this manifold. We will first
consider positive integer weights (see [Mei21]), which we will further generalize whenever we
are in the presence of resonances.

In section we will present a result on non-resonant eigenvalues (Sternberg linearization
theorem, see [Ste57, [Ste58]) and use it to prove a normal form for gradient vector fields of
Morse functions, first shown (to our knowledge) in [Wanl8] via analytic techniques. Our
main contribution was to simplify the proof of this result by applying Sternberg's theorem to
proposition 2.6 of [Wan18], which we demonstrated in a similar way, after having eliminated
some redundancies.

5.1 Weighted Setting

Let us fix a point p € M and a set of local coordinates x4, ..., x, around p, so that without
loss of generality we can present the theory on M = R".

We will follow the point of view of [Mei2l] and, in contrast with the previous chapters, we
will prove the analogue of theorem employing germs of vector fields and functions.

Definition 5.1. We refer to an n-tuple of positive integers w = (wy,...,w,) € N" as a
weight sequence (or simply weight) and we call weighted scalar multiplication associated
to w the smooth map

K : R" >R = (xq,...,2,) — (t"'xq,..., t""x,). (5.1)

Define the weighted Fuler vector field associated to the weight w to be the unique vector
field whose flow is ¢5 = Kexps-

Example 5.2. A straightforward computation shows that the weighted Euler vector field
associated to w takes form

Recall that, if ¢ is a local diffeomorphism of R™ around the origin and X is a vector field
on R", we can define the pullback ¢*X to be the pushforward (¢—!),X.

o1
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Figure 5.1: Portion of the weighted Euler vector field on R? associated to the weight
w=(1,2)

Definition 5.3. A vector field X =}, ai(:t)a%i € X(R") is called weighted Euler-like for
(R™0) if Xo =0 and

li_{% ki X = F, (5.3)
or equivalently, if
11_{% t7a;(ke(2)) = wix; (5.4)
foralls=1,...,n.
Observe that for w = (1,...,1), this notion restricts to that of Euler-like vector field as in

definition 2.9 whenever X is complete. As we introduced, we can drop this assumption since
we are interested in germs of X.

Example 5.4 (Weighted Euler-like vector fields on R?). Consider R? with weight w =
(1,2), m € N, and the vector fields

s O 0
X=(zx+y )%+2y6—y
Y=:J££+(2y+:76m)E

ox oy
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vanishing at the origin.
Then, X is weighted Euler-like for all m € N. Indeed,

%II% t_lal(tm,t2y) _ %II% t_1<t$ + tmeQm)

t?m—l 2m

= li
L L

:.’L‘,

because 2m — 1 > 0 for any value of m (the check for ay is trivial. This is the case
whenever such a coefficient has already the form of the corresponding coefficient of the
Euler vector field).
On the other hand, Y is weighted Euler-like if and only if m > 3 because, following the
same logic,

112% t2(28%y + t"y™) = 2y + %E% tmT2 ™ = 2y

if and only if m > 3.

Intuitively, this example tells us that a vector field is weighted Euler-like if its Oth order
terms (with respect to the weights) agree with the terms of the weighted Euler vector field.
All the higher order terms do not contribute at all. It is useful to remark the following
case: if m = 2, then Y as above takes the form

Y=x£+(2y+x2)

or oy’

So, up to the "usual" higher-order terms, Y coincides with the weighted Euler vector field,

ie. v(Y) = E, but we just saw that it is not weighted Euler-like as in definition
because, taking into account the weights, the term a:Za—ay has order 0.

The following is the analogue of theorem in the weighted setting. For sake of simplicity,
we prove it accordingly to [Mei21], via a Moser-type argument, without passing through the
deformation space, but losing the interesting geometrical picture related to it. For this version
of the proof in the submanifold case, we refer to [Mei21], section 5.

Theorem 5.5. If X is a weighted Euler-like vector field on (R",0), then there exist a
germ 1 at 0 of tubular neighborhood embeddingd| R™ — R™ such that

VX =E,
with E the weighted Euler vector field on (R™,0) as in definition [5.1]

Proof. Consider the time-dependent family of vector fields

" ai(k(x)) 0
Xy =kriX = E —_— 5.5
t= R - twi  Oxy (5:5)
for t # 0. Since X is weighted Euler-like, by definition,
lim X; = F, (5.6)

t—0

n fact, of diffeomorphisms such that 4(0) = 0 and do¢ = idgn
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i.e. X, extends to a smooth vector field at time 0 with Xy = EE|

Now,
ax, 1
— =—|E, X 5.7
=t = 2[E, X)) (57)
because for any vector fields Z, Y with the flow of Z being denoted by ¢,, we have

d d
T \F=r «Y = - *7‘ —s «Y
dr(s@ ) (o) s 0(@ )

T (pmael(omr)ay)

so that, if Z = F and Y = X, we have ¢, = Kexpr, and substituting » = In¢,

d(lnt)\-td d
* _ N . S R,
[E,kfX] = ( ; ) t(/ﬁ,t)*X =t tﬁ;tX.

Additionally, we can define a new time-dependent family of vector fields {WW;},.o by

YE-x) (5.8)

Wt:;

for ¢ # 0, which extends at ¢t = 0 because of equation (5.6). Call {¢;}; the germ of flow of
the time-dependent vector field {W;};, with ¢g = idgn.
Then,

d d
ﬁdﬁXt = ¢ (Lw, Xy) + 9252‘%)(}
dXt>

= ¢ <[Wt7Xt] t

ot ([wer g2.x0))
5t ([;%0x))

& (1[Xt,Xt] £ X(1/0)X,)
= 0.
This shows that ¢} X; is constant. Hence, calling 1) = ¢, we have
WX = 61X = 63 Xo = E.
Moreover, for any given ¢, the time-dependent vector field {;}; vanishes to second order

at the origin (to see this, combine equations (5.5) and (5.8)). Hence, its flow satisfies
dop; = idgn for any t. In particular, dyyp = idgn. O

2This is why, as explained at the end of the previous example, in definition we required the Oth
order terms with respect to the weights to agree with the corresponding terms of the Euler vector field.
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Remark 5.6. Opposite to the non-weighted case, the germ of tubular neighborhood embed-
dings we find is not unique. For instance, in the setting of example|5.4|the diffeomorphism

¢:R* >R’ (z,y) — (z,y + 27) (5.9)

commutes with the weighted scalar multiplication, thus it preserves the weighted Euler
vector field. Moreover, dy¢ = idg2. Hence, if 9 is a germ of tubular neighborhood
embeddings as in the theorem, ¢ o9 is one as well, and

($0 )X = ¢, F = E. (5.10)

Remark 5.7. The previous theorem shows in particular that the vector fields X and Y in
example [5.4] can be linearized to the weighted Euler vector field for all m and for m > 3,
respectively.

A closer look at this example tells us something more. Consider a vector field

0

X = E+Zaz axz

(5.11)

where E' is the weighted Euler vector field associated to a weight w, and the non-linear
parts a; are monomials in x1, ..., z, of degree at least 2 (we can extend this discussion to
polynomials and formal polynomials). For instance, take

with k; € N for all j and ky + ... + &, > 2. Let us define the total weight of a; to be its
degree as a monomial taking into account the weight on each z;, i.e.

wrk + ...+ wyky,

and the total weight of 57— to be —
Hence, the computatlons in example - 5.4] tell us that the vector field X is weighted Euler-

like, hence linearizable (to E), if and only if the total weight of each component a;(z) aii,
i.e.

wiky + ...+ wpk, —w;

is positive.

Given that X is linearizable if and only if —X is linearizable, and —X will have negative
total weights whenever X has positive total weights, we can conclude that a vector field
of the form is linearizable to the weighted Euler vector field whenever the total
weights of its non-linear parts are either all positive or all negative.

As we will see in appendix , it turns out that this statement is true (at least in the formal
case) not only for positive integer weights but also when w € Q™. Actually, this statement
can be relaxed, since linearizability is granted by theorem [5.9]in the next section if the
"weights" are non-resonant. In fact, appendix [A] will discuss the complementary resonant
case.
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5.2 Non-Resonant Eigenvalues

The aim of this section is to prove theorem (see [Wanl8|, Theorem 1.2). It gives
conditions under which the gradient vector field of a Morse function on a Riemannian manifold
is linearizable. Our proof will be similar, but simpler and more geometric, and will rely on
Sternberg's linearization theorem [5.9]

Fix a manifold M and a point p € M, and consider a vector field X on M vanishing at p,
whose linearization v(X), in local coordinates around p, takes form

S 0

X) = o 5.12
0= 3wtz (512
where a;; € R and the matrix A = [a;;];; has non-zero (possibly complex) eigenvalues

ALy -+, An. We define the eigenvalues of v(X) to be the eigenvalues of A.

Definition 5.8. We say that a set of (possibly complex) numbers Aj,...,\, is non-
resonant (or satisfies the Nﬂlineam’ty condition) if for any (ki ..., k,) € N with 37, k; >
2

n

kA=A #0 (5.13)
=i

forallz=1,...,n.

Equivalently, if every sum (with possible repetitions) of at least two elements in {A1, ..., A\, }

does not belong to {A1,..., A\, }.
The following is a classical result due to Sternberg (see [Ste58], theorem 2).

Theorem 5.9 (Sternberg’s Linearization). Let X be a vector field on M wvanishing at
p. If the eigenvalues of its linearization v(X) are non-resonant, then there exists a local
diffeomorphism

W UcT,M—U < M,
with 0 € U, p e U’, such that ¥(0) = p and

VX = v(X),

1.e. X 1is linearizable.

5.2.1 Gradient Vector Fields of Morse Functions

Let (M, g) an n-dimensional Riemannian manifold with metric g € I'(T*M ® T* M) and Levi-
Civita connection V. Recall that for a smooth map f : M — R, we can define its gradient
(vector field) V f (or Grad f) as the unique vector field on M such that

g(Vf, X) = df(X), (5.14)
and the Hessian of f to be the section Hess f € I'(T*M ® T* M) given by

Hess f(X,Y) = g(Vx Grad f,Y) (5.15)

3N0 = Z;o = {0, 1,2,3,. . }
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for every X, Y € X(M).
We call a point p € M a critical point for f if

Grad f], = 0. (5.16)

If additionally Hess f|, is non-degenerate (as a bilinear form on T, M), p is said to be a non-
degenerate critical point.
Now, for a bilinear form B on T,,M, we can consider its associated linear map

B:T,M - T:M, v+~ B(v,"),

which is non-degenerate (equivalently, invertible) if and only if B is.
Hence, fixing a point p, we can think of (g7 o Hess f)|, as its associated linear map

(57" oHessf)| : T,M — T,M.

Definition 5.10. A smooth function f : M — R is a Morse function if all its critical
points are non-degenerate.

So, if f is a Morse function and p is a critical point, (¢~ o Hess f)|, has n non-zero
eigenvalues counted with multiplicity, called Morse eigenvalues of f at p.

It turns out that the Morse eigenvalues are all real. In fact, in the proof of proposition
5.12| we will show that (¢g~* o Hess f)], is self-adjoint.
In Morse lemma 4.3 we stated that there exists a local change of coordinates on R™ under
which a Morse function takes the following normal form

f(z) = A +27. (5.17)

3
Hence, in Euclidean metric on R", its gradient vector field is

0
é’xi’

i.e. it is a linear vector field.

For a general metric g, there is no reason why, in the above-mentioned coordinates, should
both f take the form and g be the Euclidean metric (or even a general flat metric).
It is then natural to ask when the gradient vector field of a Morse function on a Riemannian
manifold is linearizable.

With the next theorem we show that, under some conditions on f and g, the gradient vector
field of f admits a normal form, even though the metric alone does not.

Theorem 5.11. If f : M — R is a Morse function on (M, g) whose Morse eigenvalues
at a critical point p are non-resonant, then there exists a local diffeomorphism

w:UcT,M—U < M,

with 0 € U, p e U’, such that 1(0) = p, that linearizes V f.
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The proof of the previous theorem is a straightforward application of Sternberg lineariza-
tion theorem [5.9| to the following result. Its proof is taken from [Wan18], but with some
redundancies here simplified.

Proposition 5.12. If f is a Morse function on (M, g), there exists a local chart (U, (z1,. .., z,))
around every critical point p such that

Vf(z) = Z(mi + ai(x))(;;,

(5.18)

where the a;’s are functions vanishing to second order at x = 0 and the \;’s are the Morse
eigenvalues of f at p.

Proof. By the proof of Morse lemma [4.3] we can find a chart around p where f takes form

#.3) X
fla) =35 > Hij(w)aa;,
4,3
with H(z) symmetric and H(0) = Hess f|o.

We claim that the linear map associated to h := (g 'Hess f)|.—0 = ¢ '(0)H(0) is self-
adjoint, i.e. that for any v, w e T, M

g(hv,w) = g(v, hw). (5.19)
Indeed, N N
9((@ oH|o)(v),w) = Hlo(v)(w) = Hess flo(v, w),

and since g is symmetric

g(v, @ YoHo)w) = g((F " |oH|o)w,v) = Hl|o(w)(v) = Hess f|o(w,v).

So, we have our claim by the symmetricity of the Hessian.

Since (g~ 'Hess f)|.—o is self-adjoint, we can find an orthogonal matrix (i.e. a coordinate
change = — y) that diagonalizes (g~ 'Hess f)|,—o into the diagonal matrix of (Morse)
eigenvalues A1, ..., \,, i.e.

At 0
9~ 'Hess fly—0 = . (5.20)
0 An

Hence, expanding at y = 0 by Hadamard theorem, we find

20 i) Hig(y) = (97 (W) H ()i = Aidiy + O(lyl])- (5.21)

Recalling that by equations (4.4) and (4.5)),

of 1« 0Hy
—(y) = > H,; = 22
37 () Ek w)ys+ 5 ;l o, W)y, (5.22)
and that the gradient has local expression
_ of 0
\V4 — 1 q(y) == , 5.23
Fw) =2974) 3, () o (5.23)

7:7j
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plugging equation ((5.22) into (5.23|) and using (5.21]), we obtain
Vi) = Z g5 ( Z Yy + 0(Hy|\2))

—Z ykZ 9" (W Hir(y) + O(lyll*) 5 - o

)

= Yo+ Ol 5,

concluding the proof. O]

Remark 5.13. Observe that the coefficients A1, ..., \, do not depend on the local chart.
Indeed, in the previous proof, they are constructed as the eigenvalues of g~* Hess f|o, and
we know that the eigenvalues of a matrix do not depend on the choice of coordinates.

Proof of theorem [5.11. By the last proposition, under a suitable local chart, the gradient
vector field of f takes the form (5.18)). Hence, its linearization is

0
y) = Z Az@i@a

%

which by hypothesis has non-resonant eigenvalues Aq,...,\,. The conclusion holds by
applying Sternberg’s linearization theorem [5.9] O






Appendix A

Resonant Eigenvalues

For the sake of completeness, we explain the problem of linearization of vector fields in the
presence of resonances. This discussion generalizes the weighted setting of section when
the weights are resonant (in the non-resonant case, we know linearizability holds by Sternberg
theorem) and is inspired by [BG10]. An interested reader is invited to check this reference for
a richer analysis of the topic.

Without loss of generality, take M = R™ with coordinates x1,...,z, and p = 0. Consider
a formal vector field X on R™ (i.e. a derivation on the algebra of formal power series of
x1,...,%, over R. E.g the expansion around 0 of a vector field on R™) vanishing at the origin,
whose linearization takes the form

= 0
X) = )\z i~
/X) = P
with A1, ..., A, resonant and none of them zero. So that

X =v(X)+ A,

with A being a vector field with no linear components

= 0
A:Z 2 aZ-K:EKa%,

i=1|K|>2

for a¥ € R, where K = (ky,...,k,) € N multi-index,
We say that the vector field A is admissible if all linear combinations with non-negative integers
(not all zero) of its total weights

K| =k +...+k, and 2 :=

QF = kA + .. koA — A,
such that af* # 0 are non-zero.

Theorem A.1 ([BGI0], Theorem 3.4). Let X be a (formal) vector field as above. If its
non-linear part A is admissible, then there exists a formal change of coordinates linearizing
X.

Remark A.2. Note that if all the \; are positive integers such that each of the QF is
positive, then any linear combination with non-negative integers of the total weights will
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again be positive. This means that weighted Euler-like vector fields, as in section [5.1},
have admissible non-linear parts (by remark and are thus (formally) linearizable, as
we anticipated at the end of the section. Notice that in the case of non-resonant weights,
we already know by Sternberg that they can be smoothly linearized.

Similarly, if the \; € Z are such that the total weights Q¥ are all positive or all negative,
then we have admissible non-linearity and the same conclusion holds. Analogously for
A € Q, multiplying eventually by the product of the denominators of the A;’s.



Appendix B

Functoriality of Linearization

As we anticipated, the linearization of a vector field can be defined in a functorial way. We
explain this process following [BLM16], Section 2.2.

Consider a vector bundle pr : £ — M and a vector subbundle I — N, with FF < E and
N < M submanifolds. Then, by remark , pr induces a projection

vipr) :v(E,F) — v(M,N),

turning v(E, F') into a vector bundle over v(M, N).
By definition of the normal bundle, we also have vector bundle structures

p: v(M,N)— N,

and
v(E,F) — F.

Hence, we obtain a so-called double vector bundle

V(E,F) ——— F

w| |
p

v(M,N) ——— N

where all the horizontal and vertical maps are projections.
In particular, considering the tangent bundles £ = T'M and F' = TN gives rise to a double

vector bundle
v(TM,TN) —— TN

V(pr)l h
p

v(M,N) —— N (B.1)

On the other hand, we have the tangent bundle
Tv(M,N) — v(M,N)
and a vector bundle

Tp:Tv(M,N) — TN
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constructed as in remark [3.5] This gives rise to another double vector bundle

Tp
Tv(M,N) ——— TN

. ]

v(M,N) —— N (B.2)

By lemma below, we have an isomorphism between the double vector bundles (B.1]) and
(B.2), i.e. v(TM,TN) ~Tv(M,N).
By remark [3.5, a vector field X on M tangent to a submanifold N, i.e. a smooth map of
pairs X : (M,N) — (T M, TN), gives rise to a map

v(X):v(M,N)—v(TM,TN),
which by the lemma below can be seen as a map

v(X):v(M,N)— Tv(M,N),

i.e. a vector field v(X) on v(M, N).

This gives a functorial way to construct the linearization of X, which we defined via its action
in definition 3.9

Let us now show the following

Lemma B.1. There exists a vector bundle isomorphism
v(TM,TN) = Tv(M, N)

with respect to the vector bundle structures over TN and v(M, N) that restricts to the
identity on each base.

Proof. Consider the tangent bundle pry, : TM — M and the double tangent bundle

TPT]M
TTM ———— TM

pTTM‘ ‘pTM
prvm
T™M — M
If we view an element of TT'M as a double derivation at the origin of TT'M, we find an

isomorphism J : TT'M — TTM, referred as to the canonical involution, defined by the
switching of the order of derivation

’m ’m
J(%‘(o,@) - @‘(0,0)7

so that T),,, o J = prras (see [Mac05], chapter 9.6).
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™™ — M

Now, for any submanifold N < M, we can consider the submanifolds T(TM|y) and
T(TM)|rn of TTM. These are both double vector subbundles on which J restricts to an
isomorphism (that we call again J).

TprM
T(TM|y) ————— TN

J \\\\‘\\\‘ TpT‘M
prrm T(TM)‘TN e TM’N
TM|y ——— N prom
TN N

By construction J restricts to the canonical involution J : TTN < T(TM|x) - TTN <
T(TM)|rn. Hence, we have an isomorphism on the quotients
5 T(TMly) | T(CM)lry
" TTN TTN

i.e. an isomorphism of the double vector bundle

T(v(M,N)) L TN
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