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Abstract

Given a pair pM,Nq of a manifold and a submanifold, the goal of this thesis is to discuss
the bijection between germs of Euler-like vector fields and tubular neighborhood embeddings
for pM,Nq. This connection allows us to simplify the search for normal forms for certain
structures on this pair.
We will prove this relation when the submanifold is a point and in its most generality, and we
will use it to prove classical and novel results in geometry.
We will present generalizations of this bijection to more advanced settings, and we will use
them to simplify the proof of a recent result on gradient vector fields of Morse functions.
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Chapter 1

Introduction

A natural question in Differential Geometry is whether a geometrical structure S on a manifold
M can be reduced to an equivalent, simplified structure around a submanifold N .
An example of this problem is the simplification of vector fields: given a vector field X on
a smooth manifold, can we find local coordinates on which X takes a simple form, thereby
facilitating the computation of its flow?
We refer to normal form theorems to indicate those results that allow a simplification of
S. Such results often state the existence, under some conditions on S, of so-called tubular
neighborhood embeddings. They are embeddings from (an open neighborhood of the zero
section of) the normal bundle νpM,Nq of N in M to M itself that restrict to the identity
map on N (seen as the zero section of the domain) and induce the natural identification
νpM,Nq » νpνpM,Nq, Nq.
In [BLM16] was proven that germs of Euler-like vector on M are in bijective correspon-
dence with germs of tubular neighborhood embeddings. Hence, proving normal form theorems
amounts to showing the existence of an explicit Euler-like vector field somehow compatible
with the given structure S, which is a much simpler problem.
The following chapters will aim to prove this theorem in the case N “ point and for gen-
eral submanifolds N of M , and to give some applications and generalizations of the theorem
thereof.

The initial setting (chapter 2) is a particular case of Sternberg’s linearization theorem (see for
instance [Ste57, Ste58]). However, we will follow the strategy of [BBLM20] in both situations
for two primary reasons. First, understanding the proof in the point-submanifold case provides
a better insight into how the proof works and it will simplify the discussion of the general case
(chapter 3). Moreover, the analytical point of view in [Ste57], and similarly, the concise proof
in [BLM16], in contrast to [BBLM20], where the geometry is more explicit, do not always
provide a clear method for extending this result to more advanced situations, as we will see at
the end chapter 4.
In chapter 4, we will use the main theorem to prove some well-known results of differential and
symplectic geometry, namely Morse’s lemma, Darboux’s theorem, and Morse-Bott and Wein-
stein Lagrangian neighborhood theorems in a simpler way, as well as a new splitting theorem
for singular foliations presented in [BBLM20].
Chapter 5 will be devoted to generalizing the main theorem in the case of a point. We will
talk about the linearization of weighted Euler-like vector fields, and how it can be generalized
in the presence of resonances (appendix A). Our main contributions reside in the complemen-
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2 CHAPTER 1. INTRODUCTION

tary non-resonant case, where we will prove a normal form for gradient vector fields of Morse
functions. This result was proven in [Wan18], but our proof is much simplified and makes use
of the above-mentioned Sternberg’s linearization theorem.

According to our main reference, we will diverge from the discussion presented in [BLM16] and
not talk about germs of Euler-like vector fields or tubular neighborhood embeddings. Instead,
we will rephrase the result of [BLM16] into the following implications

Theorem 1.1 (ð). If ψ : νpM,Nq Ñ M is a tubular neighborhood embedding, and E is
the Euler vector field on νpM,Nq, then

X :“ ψ˚E

is an Euler-like vector field on the image of ψ.

Theorem 1.2 (ñ, Main Theorem). If X is an Euler-like vector field for the pair pM,Nq

and E is the Euler vector field on the normal bundle, then there exists a unique tubular
neighborhood embedding

ψ : νpM,Nq Ñ M

such that ψ˚E “ X|Im ψ.

To fix our notation, for any vector field X on a manifold M we will consider the Lie
derivative of a vector field Y P XpMq on M with respect to X to be the vector field

LXY “
d

dt

ˇ

ˇ

ˇ

t“0
pφX´tq˚Y “ rX, Y s

on M , where φX is the flow of X and, for any smooth map F between manifolds, we denote
the pushforward of F with F˚ and its pullback with F ˚.
Similarly, we take the Lie derivative of a differential k-form ω P ΩkpMq on M with respect to
X to be the k-form LXω on M with sign convention

LXω “
d

dt

ˇ

ˇ

ˇ

t“0
pφXt q

˚ω.



Chapter 2

Case N “ point

This chapter will aim to prove theorems 1.1, 1.2 in the case of a point in a smooth manifold
M , and will follow the work of main reference [BBLM20].
Let us give the statements adjusted to this setting

Theorem 2.1. Let p P M be a point, ψ : TpM Ñ M a tubular neighborhood embedding,
and E the Euler vector field on TpM . Then, the pushforward

X “ ψ˚E

of E is an Euler-like vector field on the image of ψ.

Theorem 2.2. An Euler-like vector field X for the pair pM, pq determines a unique
tubular neighborhood embedding

ψ : TpM Ñ M

with ψ˚E “ X|Im ψ.

2.1 Preliminaries
As mentioned earlier, this section is devoted to proving theorem 1.1 in the case of a point,
namely theorem 2.1. We will do so after saying what it means for a vector field on M to be
Euler-like and after defining the notion of tubular neighborhood embedding.
Let us start by introducing the objects in the statement and some of their properties.

Definition 2.3. Let V be a vector space. The Euler vector field on V is the unique
vector field E P XpV q such that

Epfq “ f (2.1)

for every linear function f P V ˚.

Remark 2.4. The uniqueness in the definition above is given by the fact that a vector
field on a vector space can be described uniquely by how the correspondence derivation
acts on the linear functions on this vector space, in the same way as a real vector field is
uniquely determined by how its derivation acts on the functions x1, . . . , xn. The existence
is guaranteed by the example below.
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4 CHAPTER 2. CASE N “ point

Example 2.5 (Euler vector field on V ). For a vector space V with linear coordinates
x1, . . . , xn, the Euler vector field is

E “

n
ÿ

i“1
xi

B

Bxi
. (2.2)

Indeed, if f : V Ñ R is linear, it takes the form

fpxq “

n
ÿ

i“1
λixi

with λi P R. Then,

Epfqpxq “

n
ÿ

i“1
xi

Bf

Bxi
pxq “

n
ÿ

i“1
xi ¨ λi “ fpxq.

Given a manifold M and a point p P M , we know that its tangent space at p is a vector
space on which we can take a set of linear coordinates x1, . . . , xn. The previous example shows
that the Euler vector field on TpM is defined in local coordinates by the linear functions xi as
its coefficients.
The next step will be to define Euler-like vector fields. Intuitively, we call X Euler-like if it
is equal to the Euler vector field up to higher-order terms. This idea is made precise by the
concept of linearization. Let us start by explaining what we mean by this.
Call Ip the ideal of smooth functions on M vanishing at p, and define the set1

I2
p “

!
n
ÿ

i“1
figi : n P N, fi, gi P Ip

)

.

Lemma 2.6. We have a canonical isomorphism

Φ : Ip{I2
p

„
ÝÑ T ˚

pM

defined by
Φpf ` I2

pq “ dpf.

Proof. Firstly, Φ is trivially linear and well-defined. This boils down to checking that if
f is an element of I2

p , then its derivative at p vanishes.
So, let f P I2

p . Then, f “
řn
i“1 figi with fi, gi P Ip. Taking its derivative gives

dpf “ dp
`

n
ÿ

i“1
figi

˘

“

n
ÿ

i“1

“

dpfi ¨ gippq ` fippq ¨ dpgi
‰

“ 0 P T ˚
pM

because all fi and gi vanish at p. Hence, Φ is well-defined.
Now, considering a chart ϕ : U Ñ Rn with ϕppq “ 0, without loss of generality, we can

1N :“ Zą0 “ t1, 2, 3, 4 . . .u
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work in Rn.
Let F P T ˚

0 Rn. Since d0x1, . . . , d0xn form a basis for the cotangent space at the origin,
there exist scalars λ1, . . . , λn such that

F “

n
ÿ

i“1
λid0xi and Φpxi ` I2

0 q “ d0xi

for every i. But then,

Φ
´

n
ÿ

i“1
λixi ` I2

0

¯

“

n
ÿ

i“1
λid0xi “ F.

So, Φ is surjective. To conclude the proof, we only have to show the injectivity.
Suppose Φpf ` I2

pq “ dpf “ 0. We have to prove that f P I2
p . Take a smooth bump

function ϕ : M Ñ r0, 1s identically equal to 1 in a neighborhood U of p and zero outside a
neighborhood of p containing U . Since f “ ϕf`p1´ϕqf and by construction p1´ϕqf P I2

p ,
it suffices to prove that ϕf P I2

p . Or equivalently, that f P I2
p in a neighborhood of p,

since f “ ϕf in U . We can now take a chart of U to Rn and without loss of generality
consider p P Rn and f as a function Rn Ñ R such that

fppq “ 0 and Bf

Bxi
ppq “ 0 for every i, (2.3)

because dpf “ 0.
Then, by Taylor’s expansion, we know that there exist smooth functions gj vanishing at
p (i.e. gj P Ip), for j “ 1, . . . , n, such that

fpxq “ fppq `

n
ÿ

i“1

Bf

Bxi
ppqpxi ´ piq `

n
ÿ

i,j“1
gjpxqpxi ´ piq.

By condition (2.3), we have that

fpxq “

n
ÿ

i,j“1
gjpxqpxi ´ piq P I2

p .

This gives the injectivity and concludes the proof.

Definition 2.7. Given Y P XpMq such that Yp “ 0, define the linearization of Y to be
the vector field νpY q P XpTpMq acting on the linear functions on TpM as

νpY qpdpfq :“ dppY pfqq (2.4)

or equivalently
νpY qpf ` I2

pq :“ Y pfq ` I2
p .

Remark 2.8. 1. The operation that associates to a vector field its linearization as de-
fined above is linear over R. This follows from the linearity of the derivative. In
local coordinates, the components of νpXq will be the first-order terms of the Taylor
expansion of the components of X at p. Hence the name.
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2. Note that the property in the definition characterizes a unique vector field on TpM
because, as in remark 2.4, if V is a vector space, a vector field on V is determined
by how the correspondence derivation acts on the linear functions of V , i.e. on
T ˚
pM » Ip{I2

p . Recall that the linear functions on TpM are exactly the derivatives
at p of smooth functions on M .

3. The definition is well-posed, i.e. Y pfq ` I2
p depends only on f ` I2

p not on f itself.
Indeed, if f ` I2

p “ g ` I2
p , then f “ g `

ř

i figi and

Y pfq “ Y pgq `
ÿ

i

“

Y pfiqgi ` fiY pgiq
‰

. (2.5)

But Y pfiq is a map M Ñ R and pY pfiqqppq “ Yppfiq “ 0, because Yp “ 0. Then,
Y pfiq P Ip and similarly Y pgiq P Ip. This means that the second term on the
right-hand side of equation (2.5) is an element of I2

p , thus

νpY qpf ` I2
pq “ Y pfq ` I2

p “ Y pgq ` I2
p “ νpY qpg ` I2

pq.

Definition 2.9. Fix p P M . A vector field X P XpMq is Euler-like for the pair pM, pq if
it is complete2, Xp “ 0, and the linearization νpXq “ E, the Euler vector field on TpM .

Example 2.10 (Euler-like vector fields). Consider M “ R2, p “ 0, and

X “ px ` y2
q

B

Bx
` yex

B

By
.

Then,
X “ x

B

Bx
` y

B

By
` y2 B

Bx
` ypex ´ 1q

B

By

and if fpx, yq “ λx ` µy is linear, then

νpXqpf ` I2
pq “ Xpλx ` µyq ` I2

p

“ λx ` µy ` λy2
` µypex ´ 1q ` I2

p

“ λx ` µy ` I2
p

“ f ` I2
p .

Since νpXq and E are characterized by the same action, we conclude that νpXq “ E, so
X is an Euler-like vector field.
In general, X is Euler-like for pM, pq if and only if in local coordinates around p it has
the form

X “
ÿ

i

pxi ` bipxqq
B

Bxi
, (2.6)

for smooth functions bi that vanish to the second order at the origin.

Remark 2.11. In definition 2.9 we require that X be complete. This condition will be
necessary in the proof of theorem 2.1, but we see that if Xp “ 0 and νpXq “ E, we can
find a complete vector field that agrees with X in a neighborhood of p. Indeed, suppose

2i.e. its integral curves φX
t are defined for all t P R
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X is a vector field satisfying these two requirements. Then, X has local form (2.6), and
since the functions bi have vanishing derivative at p, near this point the flow φXs of X
behaves like the flow φEs of E. In particular, since

lim
sÑ8

φE´spmq “ p

for every m P M , in a small enough neighborhood U of p we have

lim
sÑ8

φX´spmq “ p.

Hence, by multiplying X by a bump function that is zero outside U and 1 in a neighbor-
hood of p contained in U , we can complete the vector field.
So, from now on we will consider X to be automatically complete whenever Xp “ 0 and
νpXq “ E.

Lemma 2.12. If X P XpMq is Euler-like and f P C8pMq vanishes at p, then

Xpfq ´ f

vanishes to the second order at p. This means that Xpfq ´ f and its derivative vanish at
p.

Proof. The proof is straightforward.

pXpfq ´ fqppq “ Xppfq ´ fppq “ 0 ´ 0 “ 0,

and
dppXpfq ´ fq “ dppXpfqq ´ dpf

“ νpXqpdpfq ´ dpf

“ Epdpfq ´ dpf

“ dpf ´ dpf

“ 0
where the second equality is by definition of linearization.

The second fundamental ingredient is the notion of tubular neighborhood embeddings.
Recall that an embedding is defined to be a smooth map, which is a homeomorphism on its
image and whose derivative at each point is injective.

Definition 2.13. Fix p P M . A tubular neighborhood embedding for M at p is an embed-
ding

ψ : TpM Ñ M

such that ψp0q “ p and
d0ψ : T0pTpMq Ñ TpM

is the identity map after taking the canonical identification T0pTpMq » TpM . With a
light abuse of notation we will write d0ψ as a map from TpM to itself, so that

d0ψ “ idTpM .
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Example 2.14 (Tubular neighborhood embedding for the circle at a point). Let M “ S1

embedded in R2 with the standard px, yq-coordinates, and let p “ p1, 0q P S1, so that
TpS

1 “ t1u ˆ R » R. Then,

ψ : y P TpS
1

ÞÑ pcosparctan yq, sinparctan yqq P S1 (2.7)

is a tubular neighborhood embedding, because ψp0q “ p1, 0q “ p, and

d0ψ “
d

dy

ˇ

ˇ

ˇ

y“0
ψpyq

“

´

´
sinparctan yq

1 ` y2 ,
cosparctan yq

1 ` y2

¯
ˇ

ˇ

ˇ

y“0

“ p0, 1q,

which is the identity on TpS1 via the canonical identification T0pTpS
1q » TpS

1, p0, yq ÞÑ y.

Recall the following

Lemma 2.15. Given a vector field Z on M , Zp “ 0 if and only if pZpfqqp “ 0 for any
function f on M vanishing at p.

Proof. One direction is trivial because if Zp “ 0, then pZpfqqp “ dpfpZpq “ 0.
On the other hand, if dpfpZpq “ 0 for any f as in the statement, it holds in particular for
any set of local coordinates f “ xi around p.
Then, for every i

0 “ dpxi

´

ÿ

j

zjppq
B

Bxj

ˇ

ˇ

ˇ

p

¯

“
ÿ

j

zjppq
Bxi
Bxj

ˇ

ˇ

ˇ

p
“ zippq

Thus, Zp “
ř

j zjppq B

Bxj

ˇ

ˇ

p
“ 0.

In particular, this proves that the Euler vector field vanishes at the origin because any
linear function does so, and pEpfqqp0q “ fp0q “ 0. Equivalently, example 2.5 showed that in
local x1, . . . , xn coordinates around p the Euler vector field takes form E “

ř

i xi
B

Bxi
, which

vanishes at zero.
As stated at the beginning of this chapter, we now have all the notions needed to prove
theorem 2.1.

Theorem 2.1. Let p P M be a point, ψ : TpM Ñ M a tubular neighborhood embedding,
and E the Euler vector field on TpM . Then, the pushforward

X “ ψ˚E

of E is an Euler-like vector field on the image of ψ.

Proof of theorem 2.1. By remark 2.11, we only have to prove that Xp “ 0 and that the
linearization νpXq of X is the Euler vector field on the tangent space.
For the first goal, since ψ is a homeomorphism on the image, ψ´1ppq “ 0, and we have

Xp “ pψ˚Eqp “ dψ|ψ´1ppqpEψ´1ppqq “ d0ψpE0q “ E0 “ 0.



2.1. PRELIMINARIES 9

To prove that νpXq “ E, it is enough to show that the linearization vector field acts on
the space of linear functions over TpM as the identity because, by remark 2.4, E is the
only vector field over the tangent space with this property.
Recall that all linear functions over TpM are derivatives at p of smooth functions over M .
So, let f : M Ñ R be smooth and dpf its derivative.
Then, by definition of linearization of a vector field,

νpXqpdpfq “ νpψ˚Eqpdpfq “ dppψ˚Epfqq. (2.8)

Observe that for a general vector field V , we have

pψ˚V pfqqpqq “ pψ˚V qqpfq “ dqfppψ˚V qqq

“ dqfpdψ´1pqqψpVψ´1pqqqq

“ dψ˝ψ´1pqqf ˝ dψ´1pqqψpVψ´1pqqq

“ dψ´1pqqpf ˝ ψqpVψ´1pqqq

“ pV pf ˝ ψq ˝ ψ´1
qpqq,

(2.9)

for any q P M , using the chain rule in the fourth and fifth equalities. Then, equation (2.8)
becomes

νpXqpdpfq “ dppEpf ˝ ψq ˝ ψ´1
q

“ d0Epf ˝ ψq ˝ dpψ
´1

“ d0pLEpf ˝ ψqq ˝ dpψ
´1.

(2.10)

Recall that the exterior derivative and the Lie derivative commute, i.e. for any function f
and vector field X on M , dpLXfq “ LXpdfq. Moreover, one has the well-known Cartan’s
metric formula that states

LXω “ dpιXωq ` ιXdω, (2.11)
where ω is a differential m-form and ιXω is the pm ´ 1q-form defined as the contraction
of ω with X, i.e. for vector fields X1, . . . , Xm´1,

ιXωpX1, . . . , Xm´1q “ ωpX,X1, . . . , Xm´1q.

Then, calling ω “ dpf ˝ ψq, we have

dpLEpf ˝ ψqq “ LEpωq “ dpιEωq ` ιEdω “ dpιEωq, (2.12)

because ω is exact. Since ω is then closed, it locally takes the form

ω “
ÿ

i

uidxi,

and contracting with E gives

ιE

´

ÿ

i

uidxi

¯

“
ÿ

i

uidxi

´

ÿ

j

xj
B

Bxj

¯

“
ÿ

i

uixi. (2.13)

Hence,
dpιEωq|0 “ d

´

ÿ

i

uixi

¯
ˇ

ˇ

ˇ

0
“
ÿ

i

`

xidui ` uidxi
˘
ˇ

ˇ

0

“

´

ÿ

i

uidxi

¯
ˇ

ˇ

ˇ

0
“ ω|0 “ d0pf ˝ ψq

“ dpf ˝ d0ψ.

(2.14)
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Thus, equation (2.10) together with equations (2.12)-(2.14), and the fact that pd0ψq´1 “

dppψ
´1q gives

νpXqpdpfq “ dpf.

As we said, this implies νpXq “ E.

Given an embedding ψ and a vector field X, none of them necessarily linear, the derivative
d0ψ and the linearization of X are linear. Intuitively, the linearization should split ψ˚X into
its linear parts, one associated to ψ, the other to X. The next proposition shows how this
works.

Proposition 2.16. If ψ : TpM Ñ M is an embedding with ψp0q “ p and Y is a vector
field on TpM , we have

νpψ˚Y q “ pd0ψq˚pνpY qq. (2.15)

Proof. Let f : M Ñ R smooth. Then, we have

pd0ψq˚pνpY qqpdpfq
(2.9)
“ νpY qpdpf ˝ d0ψq ˝ pd0ψq

´1

“ νpY qpd0pf ˝ ψqq ˝ dpψ
´1

“ d0pY pf ˝ ψqq ˝ dpψ
´1

“ dppY pf ˝ ψq ˝ ψ´1
q

(2.9)
“ dppψ˚Y pfqq

“ νpψ˚Y qpdpfq,

where in the third and sixth equality we used the definition of linearization of vector
fields, and in the second and fourth the chain rule.

We see then that with this result the proof of theorem 2.1 is trivial, because if Y “ E the
Euler vector field, and ψ is a tubular neighborhood embedding, then d0ψ “ idTpM and, since
E is already linear,

νpXq :“ νpψ˚Eq “ νpEq “ E.

The two proofs give two different ways to approach the problem, one more computational, the
second more conceptual.

2.2 Deformation Space
In this section, we describe one of the most important objects necessary for the proof of
theorem 2.2, the deformation space.

Definition 2.17. Fix a point p P M . The deformation space DpM, pq for the pair pM, pq

is the set3

DpM, pq “ pTpM ˆ 0q \ pM ˆ Rˆ
q (2.16)

equipped with the unique manifold structure determined by the following properties:
3To make the presentation more clear, with a little abuse of notation, we generally identify pv, 0q P

TpM ˆ 0 with v P TpM , and with Rˆ :“ Rzt0u.
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1. the map

π : DpM, pq Ñ R,

#

v P TpM ÞÑ 0
pm, tq P M ˆ Rˆ ÞÑ t

(2.17)

is a smooth submersion;

2. the map

κ : DpM, pq Ñ M,

#

v P TpM ÞÑ p

pm, tq P M ˆ Rˆ ÞÑ m
(2.18)

is smooth;

3. for every function f P C8pMq vanishing at the point p, the map

f̃ : DpM, pq Ñ R,

#

v P TpM ÞÑ vpfq “ dpfpvq

pm, tq P M ˆ Rˆ ÞÑ 1
t
fpmq

(2.19)

is smooth.

To fix our notation, we will denote with v (or pv, 0q) a vector in TpM (or in TpM ˆ 0),
with pm, tq a point in M ˆ Rˆ, and with x a general point in DpM, pq. Additionally, we will
refer to TpM “ π´1p0q as the zero fiber (of π).
Since the definition is fairly involved and getting an idea of how the deformation space looks
like is a non-trivial exercise, before giving an explicit example we show that DpM, pq is a
smooth manifold and we introduce a set of local coordinates on it.
We equip DpM, pq with the smallest topology such that the maps π, κ, f̃ are continuous (for
all smooth f), and with abuse of notation, we denote the map π simply by its image t. This
topology is trivially Hausdorff and locally Euclidean.

Lemma 2.18 ([Hig10], Lemma 4.3). Let U be an open subset of M and pU, y :“ py1, . . . , ynqq

be a local chart of M around p (i.e. y is an homeomorphism from U to an open subset of
Rn). Then,

ỹ1, . . . , ỹn, t (2.20)

define an homeomorphism from an open subset DpU, pq of DpM, pq to an open in Rn`1.

We will call the functions in (2.20) a set of local coordinates for the deformation space.

Proof. Let y1, . . . , yn be defined on an open U Ă M . Then, DpU, pq “ κ´1pUq is open
because κ is continuous. The map

u P DpU, pq
ϕ
ÝÑ pỹpuq, tq :“ pỹ1puq, . . . , ỹnpuq, πpuqq P Rn`1 (2.21)

is continuous and bijective on its image, because its components are such.
Now, the map

ψ : ϕpDpU, pqq Ă Rn`1
Ñ DpU, pq

defined by

px, tq ÞÑ

#

`

y´1ptxq, t
˘

if t ‰ 0
`

d0y
´1pxq, 0

˘

if t “ 0
(2.22)
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is the inverse of ϕ. To prove its continuity, it is enough to show that its compositions with
the maps in definition 2.17 are continuous. This check is trivial for π and κ, so consider
a smooth function f vanishing at p. Then,

f̃ ˝ ψpx, tq “

#

1
t
pf ˝ y´1qptxq if t ‰ 0
d0pf ˝ y´1qpxq if t “ 0

, (2.23)

where we used the chain rule and y´1p0q “ p for the case t “ 0. This map is continuous
because the two terms agree to the limit t Ñ 0, being f and y´1 continuous functions.
This proves the claim or, equivalently, that the pair pDpU, pq, ϕq is a local chart on the
deformation space.

Note that, if y1, . . . , yn is a set of coordinates on an open subset U of M which does not
contain p, then the set (2.20) allows us to cover only U ˆ Rˆ.
The following result shows the existence of a smooth atlas on the deformation space. For a
further characterization of this structure, we refer to [Hig10], Proposition 4.5.

Proposition 2.19. The deformation space has a smooth atlas consisting of charts pDpU, pq, ϕq

as above.

Proof. The only thing left to prove is that the transition functions are smooth. So, take
two charts pDpU, pq, ϕq, pDpV, pq, ψq, with DpU, pq X DpV, pq ‰ H and

ϕ “ pỹ, tq, ψ “ pz̃, tq,

as above. Then, by equations (2.21), (2.22),

ϕ ˝ ψ´1
px, tq “

#

`1
t
py ˝ z´1qptxq, t

˘

if t ‰ 0
`

d0py ˝ z´1qpxq, 0
˘

if t “ 0
, (2.24)

where we used again the chain rule and z´1p0q “ p for the case t “ 0. Observe that
this composition is smooth for both t “ 0 and t ‰ 0, because of the smoothness of the
transition functions y ˝ z´1 on (an open subset of) M . Moreover, since y ˝ z´1p0q “ 0, the
two terms smoothly agree at the limit t Ñ 0, again by the smoothness of the transition
functions. This shows the smoothness of ϕ ˝ ψ´1 and concludes the proof.

Now that we have given coordinates on the deformation space, it is time to consider a
simple but effective example.

Example 2.20 (Deformation space for an interval). Let M “ p´1, 1q Ă R be an interval
and p “ 0 P M .
Then, TpM » R and

D :“ Dpp´1, 1q, 0q “ pR ˆ 0q \ pp´1, 1q ˆ Rˆ
q.

Let y : p´1, 1q Ñ R be the standard (global) coordinate on p´1, 1q that vanishes at 0.
Then, D has (global) coordinates ỹ, t, where on p´1, 1q ˆ Rˆ

ỹpr, tq :“ 1
t
yprq “

r

t
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and on T0p´1, 1q

ỹ
´

r
B

By

ˇ

ˇ

ˇ

r0

¯

“ d0y
´

r
B

By

ˇ

ˇ

ˇ

r0

¯

“ r
By

By

ˇ

ˇ

ˇ

r0
“ r.

Hence, identifying T0p´1, 1q » R via r B

By

ˇ

ˇ

ˇ

r0
ÞÑ r, we have ỹ “ idRˆ0. Then, D can be

viewed in pỹ, tq coordinates as in figure 2.1. These coordinates are simply a restriction of
the Cartesian coordinates on the plane.

Figure 2.1: The deformation space in case M is an interval. The dashed lines are the loci
ỹ “ ˘1{t, the blue area is p´1, 1q ˆ Rˆ, and the blue line is T0p´1, 1q » R

Below we list some basic properties of the deformation space.

(a) for any smooth map ϕ : M1 Ñ M2, we can smoothly extend the map ϕˆid : M1ˆRˆ Ñ

M2 ˆ Rˆ to a map
Dpϕq : DpM1, pq Ñ DpM2, ϕppqq (2.25)

whose restriction to the zero fibers is the usual derivative, dpϕ.
This is simply because taking the derivative of ϕ ˆ id, we get

dpp,0qpϕ ˆ idq “ dpϕ ˆ d0 id “ dpϕ ˆ id

as a map TpM1 ˆ 0 Ñ TϕppqM2 ˆ 0.
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(b) We have a canonical vector field θ on the deformation space that in local coordinates
takes the form

θ “ t
B

Bt
´
ÿ

i

ỹi
B

Bỹi
. (2.26)

θ satisfies the following

θptq “ t, θpκ˚fq “ 0, θpg̃q “ ´g̃ (2.27)

for every smooth functions f and g on M , with g vanishing at p.
Indeed,

θptq “ t
Bt

Bt
´
ÿ

i

ỹi
Bt

Bỹi
“ t.

For the other equations, note that θ “ tB{Bt in the py1, . . . , yn, tq coordinates onMˆRˆ.
Indeed, if we call, to avoid confusion, pỹ1, . . . , ỹn, sq “ py1{t, . . . , yn{t, tq the "new"
coordinates on M ˆ Rˆ, by the chain rule we have

B

Bs
“

Bt

Bs

B

Bt
`
ÿ

i

Byi
Bs

B

Byi
“

B

Bt
`
ÿ

i

1
t
yi

B

Byi

B

Bỹi
“

Bt

Bỹi

B

Bt
`
ÿ

j

Byj
Bỹi

B

Byj
“ t

B

Byi
.

(2.28)

Then, by equation (2.26)

θ “ s
B

Bs
´
ÿ

i

ỹi
B

Bỹi

“ t
B

Bt
`
ÿ

i

yi
B

Byi
´
ÿ

i

yi
t
t

B

Byi
“ t

B

Bt
.

(2.29)

Hence, since κ˚f is constant on TpM and independent of t on M ˆ Rˆ,

θpκ˚fq “ 0.

Now, on M ˆ Rˆ

θpg̃q “ θpg{tq “ gt
B

Bt
p1{tq “ ´t{t2g “ ´g̃,

and on TpM » Rn, if g̃ “ pg̃1, . . . , g̃nq,

θpg̃q “ ´
ÿ

i

ỹi
B

Bỹi
pg̃1, . . . , g̃nq “ ´pg̃1, . . . , g̃nq “ ´g̃

and this concludes the proof of the system (2.27).
Since,

θ|π´1p0q “ ´
ÿ

i

ỹi
B

Bỹi
, (2.30)

θ restricts to a vector field on the zero fiber. In this case, we say that θ is tangent to
π´1p0q “ TpM . In general,
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Definition 2.21. Let S Ă M be a submanifold. A vector field X P XpMq is called
tangent to S if for all p P S, the vector Xp lies in TpS Ă TpM . (Thus X restricts to
a vector field X|S P XpSq).

Additionally, calling for t ‰ 0

jt : π´1
ptq “ M ˆ ttu ãÑ DpM, pq (2.31)

and for t “ 0
j “ j0 : π´1

p0q “ TpM ãÑ DpM, pq (2.32)
the inclusions, we have that ´j˚pEq “ θ and we write

´E „j θ. (2.33)

In this case, we say that θ and ´E are j-related.

(c) Given a vector field Y P XpMq, we have a vector field Ŷ on the deformation space
defined via

Ŷ “

#

Yp on TpM
tY on M ˆ Rˆ

, (2.34)

where on the tangent space Ŷ is the constant vector field v ÞÑ Yp P TpM » T0pTpMq

for every v P TpM .
Ŷ satisfies a set of equations similar to (2.27), namely

Ŷ ptq “ 0, Ŷ pκ˚fq “ tκ˚
pY pfqq, Ŷ pg̃q “ κ˚

pY pgqq. (2.35)

To prove this, focus on M ˆ Rˆ first. If Y is a vector field on M , by the inclusion, we
can see it as a vector field on M ˆRˆ that is tangent to M ˆ ttu for all t, in particular
Y ptq “ 0. Since multiplying by t contributes only to the magnitude of the field, tY will
still be tangent to M ˆ ttu, hence

Ŷ ptq “ ptY qptq “ 0.

Now, the function κ˚f “ f ˝ κ takes pm, tq to fpmq, so

Ŷ pκ˚fq “ ptY qpf ˝ κq “ tY pfq “ tκ˚
pY pfqq.

Finally,
Ŷ pg̃q “ ptY qpg{tq “ t{tY pgq “ κ˚

pY pgqq.

On TpM instead, t “ 0 and κ˚f “ fppq constant. Hence, the first two equations of
(2.35) hold trivially. For the last equation, observe that if we have coordinates x1, . . . , xn
on TpM , calling ej :“ dxj, we obtain

Ŷ pg̃q “ Yppdpgq “
ÿ

i

vippq
B

Bei

ˇ

ˇ

ˇ

p

´

ÿ

j

Bg

Bxj
ppq ej|p

¯

“
ÿ

i

vippq
Bg

Bxj
ppq

Bej
Bei

ˇ

ˇ

ˇ

p

“

´

ÿ

i

vi
Bg

Bxj

¯

ppq “
`

Y pgq
˘
ˇ

ˇ

p

“ κ˚
`

Y pgq
˘

,



16 CHAPTER 2. CASE N “ point

where the third equality holds because Bg
Bxj

does not depend on ei.
Since the system (2.35) tells us how Ŷ smoothly acts on the smooth functions on the
deformation space, we have that Ŷ as defined above is a smooth vector field.

(d) If Y P XpMq vanishes at p, then Ŷ is zero along the zero fiber π´1p0q “ TpM and
hence is divisible by t. Indeed, if t ÞÑ Ŷ p¨, tq vanishes at zero, then Ŷ p¨, tq “ tZp¨, tq for
some vector field Z on DpM, pq, i.e. Ŷ is divisible by t. Hence, we have a well-defined
vector field DpY q :“ t´1Ŷ on the whole deformation space. By construction, DpY q is
simply Y ˆ 0 on M ˆ Rˆ, so it follows straightforwardly from (2.35) that on M ˆ Rˆ

we have

DpY qptq “ 0, DpY qpκ˚fq “ κ˚
pY pfqq, DpY qpg̃q “ ĆY pgq. (2.36)

By continuity, they hold also on TpM .
Observe that, since Yp “ 0, the last equation in (2.36) translates on TpM to

DpY qpdpgq “ dppY pgqq,

which is the property definition of the linearization of Y . Thus,

DpY q “

#

νpY q on TpM
Y ˆ 0 on M ˆ Rˆ

. (2.37)

To get a better understanding of these vector fields let us study them in the frame of example
2.20.

Example 2.22 (Vector fields on the deformation space). Let M “ p´1, 1q, p “ 0.
If we consider the standard py, tq coordinates on p´1, 1q ˆ Rˆ, a natural vector field to
consider in our context is t B

Bt
, being the Euler vector field on txuˆRˆ for each x P p´1, 1q,

and similarly on TpM “ R we could consider ´y B

By
. Now, intuitively, the way θ is formed

is simply deform the coordinate y of p´1, 1q ˆ Rˆ via 1
t
y to get the coordinate ỹ and

obtain the canonical vector field we defined in equation (2.26)

θ “ t
B

Bt
´ ỹ

B

Bỹ
.

Figure 2.2 shows a plot of the vector field θ on the first quadrant of the pt, ỹq-plane. By the
symmetries of θ, we can reconstruct its form on the other quadrants by simply reflecting on
each axis. The length of the vectors in the plot is rescaled to avoid intersections between
them. The next step is to visualize the vector fields Ŷ and DpY q for some vector field Y .
So, let us first consider Y “ B

By
, the constant vector field of length one on p´1, 1q. Then,

on the zero fiber Ŷ “ B

Bỹ
as constant vector field of length one, while on p´1, 1q ˆ Rˆ,

Ŷ “ tY “ t
B

By
“

B

Bỹ
.

Hence, Ŷ is the constant vector field of length one on the deformation space.
Observe that since Y does not vanish at the origin, DpY q is not defined.
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Figure 2.2: The vector field θ in the first quadrant after rescaling.

Another vector field worth considering is Y “ y B

By
. In py, tq coordinates on p´1, 1q ˆ Rˆ,

Ŷ takes the form ty B

By
, which in pỹ, tq coordinates becomes

Ŷ “ tptỹq
Bỹ

By

B

Bỹ
“ tỹ

B

Bỹ
.

On the other hand, on the zero fiber Ŷ “ Y0 “ 0, the zero vector field.
Now, since Y vanishes at zero, we can construct DpY q “ t´1Ŷ . Since

νpY q “ ν
´

y
B

By

¯

“ y
B

By
,

which is ỹ B

Bỹ
in pỹ, tq coordinates, by equation (2.37), we have

DpY q “ ỹ
B

Bỹ

on the whole deformation space.

2.3 Proof of Main Theorem
Our goal in this section is to prove the previously mentioned
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Figure 2.3: The vector field DpY q in the first quadrant, when Y “ y B

By
. Reflecting along

each axis gives the full behavior.

Theorem 2.2. An Euler-like vector field X for the pair pM, pq determines a unique
tubular neighborhood embedding

ψ : TpM Ñ M

with ψ˚E “ X|Im ψ.

As we said in remark 2.11, the condition of X being complete can be omitted, since we
can multiply by a suitable bump function to get a complete vector field. On the other hand,
if one was not to follow such a process and work only with non-complete vector fields, the
result would be a tubular neighborhood embedding from an open neighborhood of the origin
in TpM to an open neighborhood of p in M .
We will need some results before getting into the proof itself.
Lemma 2.23. If X P XpMq is Euler-like, then B

Bt
` 1

t
X P XpM ˆRˆq extends to a vector

field W P XpDpM, pqq.

Proof. If X is Euler-like, then Xp “ 0 and we can construct DpXq. By equation (2.37),
DpXq|TpM “ νpXq “ E the Euler vector field on TpM , i.e. E „j DpXq, where j : TpM ãÑ

DpM, pq is the inclusion. Moreover, by construction ´E „j θ.
Hence, θ ` DpXq vanishes on TpM “ π´1p0q. This means that θ ` DpXq “ tW for some
vector field W P XpDpM, pqq. Then, W “ 1

t
pθ ` DpXqq is the required extension because

on M ˆ Rˆ it restricts to 1
t
pt B

Bt
` X ˆ 0q “ B

Bt
` 1

t
X.
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Remark 2.24. Recall that if X is Euler-like, by equation (2.6) in local coordinates X “
ř

ipyi ` bipyqq B

Byi
, for functions bi vanishing to second order at y “ 0. Then, on M ˆ Rˆ

DpXq “
ÿ

i

ptỹi ` biptỹqq
ÿ

j

Bỹi
Byi

B

Bỹj
“
ÿ

i

`

ỹi `
1
t
biptỹq

˘ B

Bỹi
.

Note that for t Ñ 0 we have 1
t
biptỹq Ñ 0 because biptỹq vanishes to the second order at

zero. So, we see that DpXq is defined also for t “ 0 and equals νpXq “ E.
Moreover,

W “
1
t

pθ ` DpXqq

“
1
t

`

t
B

Bt
´
ÿ

i

ỹi
B

Bỹi
`
ÿ

i

ỹi
B

Bỹi
`

1
t

ÿ

i

biptỹq
B

Bỹi

˘

“
B

Bt
`
ÿ

i

1
t2
biptỹq

B

Bỹi
,

which confirms that W is defined also for t “ 0.

Lemma 2.25. If X is an Euler-like vector field on M , then

rDpXq,W s “ 0 (2.38)

on DpM, pq.

Proof. On M ˆ Rˆ,

rDpXq,W s “

”

X ˆ 0, 1
t
X `

B

Bt

ı

“

”

X ˆ 0, 1
t
X
ı

`

”

X ˆ 0, B

Bt

ı

“
1
t

rX,Xs ` pX ˆ 0q

´1
t

¯

X

“ 0,

where in the third equality we used the fact that X independent of t, so the commutator
of X and B

Bt
vanishes everywhere, and the well-known formula

rX, fY s “ f rX, Y s ` XpfqY. (2.39)

By continuity, rDpXq,W s “ 0 also on the zero fiber.

From now on, we will denote the flow of W with φW .

Lemma 2.26. For every v P TpM Ă DpM, pq the integral curve φWs pvq of W is defined
for all s P R.

Proof. We will show that for all v P TpM , φWs pvq is defined for all s ą 0. The case s ă 0
is similar and we know it is defined for s “ 0 as φW0 pvq “ v.
Since W and B

Bt
are π-related, we have that

π ˝ φWs “ φ
B
Bt
s ˝ π, (2.40)
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where φ
B
Bt
s ptq “ t ` s.

Since πpvq “ 0 by definition and πpφWs pvqq “ φ
B
Bt
s pπpvqq “ φ

B
Bt
s p0q “ s P Rą0 for all s ą 0,

by short time existence, we have that φWs pvq P M ˆ Rą0 for all s ą 0 and small enough.
Hence, it suffices to prove that for any pm, tq P M ˆ Rą0 Ă DpM, pq, the integral curve
φWs pm, tq is defined for all s ą 0.
Now, on M ˆ Rą0 we have W “ 1

t
X ` B

Bt
, hence

φWs pm, tq “ pφXlogps{t`1qpmq, t ` sq (2.41)

for ´1 ă s{t ă `8.
Indeed, on this interval,

W |pφX
logps{t`1q

pmq,t`sq “

´1
t
X `

B

Bt

¯

|pφX
logps{t`1q

pmq,t`sq

“
1

t ` s
X|φX

logps{t`1q
pmq `

B

Bt
,

and

d

ds
pφXlogps{t`1qpmq, t ` sq “ X|φX

logps{t`1q
pmq ¨

d

ds
plogps{t ` 1qq `

B

Bt

“
1

t ` s
X|φX

logps{t`1q
pmq `

B

Bt
.

Now, since t ą 0, φWs is defined for all s ą 0 because φXr is defined over R (X is Euler-like,
thus complete).

We are now ready to prove the main theorem.

Proof of theorem 2.2. Existence.
Call Ds Ă DpM, pq the domain of the diffeomorphism φWs , for fixed s P R. By lemma
2.26, Ds is an open neighborhood of TpM in DpM, pq for all s P R. Hence, for any s ‰ 0
we have a smooth map ψs :“ κ ˝ φWs ˝ j

TpM ã
j

ÝÝÝÝÑ Ds
φW

s
ÝÝÝÝÝÝÑ DpM, pq

κ
ÝÝÝÝÑ M. (2.42)

Equivalently, ψs is the restriction of φWs to a map from the submanifold π´1p0q “ TpM
of its domain to the submanifold π´1psq “ M of the image. Thus, since φWs is a dif-
feomorphism, ψs is a diffeomorphism on its image (because by the proof of lemma 2.26,
ψspTpMq Ď M).
Recalling definition 2.13, we still need to prove that the derivative of ψs is everywhere
injective (so ψs will be an embedding), that for some s not zero d0ψs is the identity map,
that ψsp0q “ p, and pψsq˚pEq “ X.
Let us show these results, starting with pψsq˚pEq “ X.
Observe that rDpXq,W s “ 0, by lemma 2.25. Hence, the pushforward of φWs preserves
DpXq, i.e. pφWs q˚DpXq “ DpXq, in the sense that

dxφ
W
s pDpXqxq “ DpXqφW

s pxq. (2.43)
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By consequence,

pψsq˚pDpXq|TpMq “ κ˚ ˝ pφWs q˚ ˝ j˚pDpXq|TpMq

“ κ˚ ˝ pφWs q˚pDpXq|TpMˆ0q

“ κ˚pDpXq|φW
s pTpMˆ0qq

“ κ˚pX ˆ 0q

“ X,

(2.44)

where we used the fact that φWs pTpM ˆ 0q Ă M ˆRˆ for any s ‰ 0, as shown in the proof
of lemma 2.26.
But, DpXq|TpM “ νpXq “ E. Thus,

pψsq˚pEq “ X. (2.45)

Let now 0 P TpM be the zero vector. Then, φWs p0q “ pp, sq P tpu ˆ R because W on
tpu ˆ R “ κ´1ppq restricts to B

Bt
. Thus,

ψsp0q “ pκ ˝ φWs ˝ jqp0q “ p. (2.46)

Let us show that the derivative of ψs is the identity map for some value of s.
Let v P TpM . Then, we can find a vector field Y on M such that Yp “ v. But, on TpM

we have that Ŷ “ Yp as a constant vector field, so Ŷp “ v.
Now, similarly to the proof of lemma 2.25, we find that

rW, Ŷ s “ D
`

Y ` rX, Y s
˘

. (2.47)

But, for any smooth function f on M vanishing at p, we have
`

Y ` rX, Y s
˘

pfqppq “ Y pfqppq ` XpY pfqqppq ´ Y pXpfqqppq

“ Y pf ´ Xpfqqppq

“ 0,
(2.48)

where in the second equality we used that by definition Xp “ 0 and in the third that
f ´Xpfq vanishes to second order at p, by lemma 2.12.Then, by lemma 2.15, Y ` rX, Y s

vanishes at p, hence on tpuˆRˆ the commutator of W and Ŷ vanishes, because it coincides
with pY ` rX, Y sq ˆ 0, and by continuity it does so also on tpu ˆ R.
We claim that on tpu ˆ R

pφWs q˚Ŷ “ Ŷ . (2.49)
Indeed, by definition of Lie derivative, for any s and any vector fields X, Y , we have

pφXs q˚LXY “ pφXs q˚

d

dt

ˇ

ˇ

ˇ

t“0
pφX´tq˚Y

“
d

dt

ˇ

ˇ

ˇ

t“0
pφX´t`sq˚Y

“ ´
d

dt

ˇ

ˇ

ˇ

t“s
pφXt q˚Y

“
d

ds

`

pφX´sq˚Y
˘

,

(2.50)
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where we used t Ø ´t`s in the third equality and s Ø ´s in the last. Hence, d
ds

`

pφX´sq˚Y
˘

vanishes on tpuˆR, i.e. pφX´sq˚Y is constant in s on tpuˆR. Observing that pφX0 q˚Y “ Y ,
we have pφXs q˚Y “ Y on tpu ˆ R, proving our claim.
By consequence of equation (2.49),

dpp,0qφ
W
s pvq “ dpp,0qφ

W
s pŶpq

(2.49)
“ ŶφW

s pp,0q “ Ŷpp,sq

“ ptY qpp,sq “ sYp

“ sv.

(2.51)

Then,
d0ψs “ dpp,sqκ ˝ dpp,0qφ

W
s ˝ d0j “ s ¨ idTpM . (2.52)

This tells us that for every s ‰ 0 the derivative of ψs is injective, and in particular that
ψs is an embedding for s ‰ 0. Then, taking s “ 1, ψ1 is the desired tubular neighborhood
embedding.

Uniqueness.
Suppose that there exist two tubular neighborhood embeddings ϕ, ψ : TpM Ñ M such
that ϕ˚E “ X “ ψ˚E.
Then, χ :“ ϕ´1 ˝ ψ : TpM Ñ TpM satisfies

χp0q “ 0, d0χ “ idTpM , χ˚pEq “ E. (2.53)

By the last equation,
χ ˝ φE´s “ φE´s ˝ χ,

and since φE´spvq “ e´sv, we have

χpe´svq “ e´sχpvq (2.54)

for all v P TpM .
Now, since TpM is a vector space, we can consider a norm (any) and by the Taylor
expansion of χ at 0, for any u P TpM close enough to 0 we have

χpuq “ χp0q ` d0χpuq ` Hpuq, (2.55)

where H : TpM Ñ TpM is such that ||Hpuq|| “ Op||u||2q. Hence, recalling the system
(2.53) we can find a constant a such that

||χpuq ´ u|| ď a||u||
2. (2.56)

In particular, we can take u “ e´tv and the last inequality will hold for every v P TpM
and t P R large enough. By equation (2.54),

e´t
||χpvq ´ v|| “ ||χpuq ´ u|| ď a||u||

2
“ ae´2t

||v||
2

and
||χpvq ´ v|| “ lim

tÑ8
||χpvq ´ v|| ď lim

tÑ8
e´ta||v||

2
“ 0

for any v P TpM . This implies that ||χpvq ´ v|| “ 0 and so χpvq “ v for every v P TpM .
Thus, ϕ´1 ˝ ψ “ χ “ idTpM and ϕ “ ψ.
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Remark 2.27. We say that a vector field X on M is linearizable at p if there exists a
tubular neighborhood embedding ψ : TpM Ñ M such that

ψ˚pνpXqq “ X.

In particular, theorem 2.2 tells us that Euler-like vector fields are linearizable.

Example 2.28 (Linearizable vector fields on R). An easy application of theorem 2.2 is
the following characterization:
If M “ R and p “ 0, a non-zero vector field

X “ fpxq
B

Bx
,

with fp0q “ 0, is linearizable at the origin if and only if f 1p0q ‰ 0.
Indeed, suppose X is linearizable, then there exists a smooth map ψ : R » T0R Ñ R,
with ψp0q “ 0, ψ1p0q “ 1 such that

ψ˚pνpXqq “ X.

But,
νpXq “ f 1

p0qx
B

Bx
.

So, if f 1p0q “ 0, then νpXq “ 0 and

0 “ ψ˚p0q “ X ‰ 0

which leads to a contradiction.
On the other hand, if f 1p0q ‰ 0, the vector field 1

f 1p0q
X is Euler-like for pR, 0q, hence

linearizable by theorem 2.2.
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Chapter 3

Case N Ă M general submanifold

In this chapter, we generalize to submanifolds the notions and the results studied previously.
For this reason, the discussion will be rather fast and we will dive into detail only when major
differences with the previous case occur. We will follow our main reference [BBLM20].
The purpose will be to prove

Theorem 1.1. If ψ : νpM,Nq Ñ M is a tubular neighborhood embedding and E is the
Euler vector field on νpM,Nq, then

X :“ ψ˚E

is an Euler-like vector field on the image of ψ.

Theorem 1.2 (Main Theorem). If X is an Euler-like vector field on M and E is the
Euler vector field on the normal bundle, then there exists a unique tubular neighborhood
embedding

ψ : νpM,Nq Ñ M

such that ψ˚E “ X|Im ψ.

3.1 Preliminaries
In the last chapter, we defined the notion of an Euler vector field on a vector space, in
particular the tangent space. We can now generalize this notion to vector bundles over a
smooth manifold.

Definition 3.1. Let V π
ÝÑ M be a vector bundle over a smooth manifold. The Euler

vector field E on V is the unique vector field on V that restricts to the Euler vector field
on the fibers in the sense of definition 2.3.

Observe that the uniqueness of E follows from the uniqueness of the Euler vector field on
the fibers.

Proposition 3.2. The following are equivalent

1. E is the Euler vector field for V

2. Epfq “ f for any linear map f on V

25
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3. E “
ř

i xi
B

Bxi
on each fiber of V with linear coordinates x1, . . . , xn.

Proof. Since E is defined fiber-wise and by example 2.5 the three properties are equivalent
on each fiber, we have the conclusion.

A natural generalization of the tangent space of M to a point is the notion of normal
bundle for a submanifold in M . Here is its definition.

Definition 3.3. Let M be a smooth manifold and N Ă M a submanifold. We define the
normal bundle of N in M (or for the pair pM,Nq) to be the vector bundle

νpM,Nq :“ TM |N{TN (3.1)

over N . We will denote by i : N ãÑ M the inclusion and by pr : νpM,Nq ↠ N the
projection map.

νpM,Nq

N M

pr

i

With a small abuse of notation, in equation (3.1) we wrote TM |N instead of TM |ipNq. Addi-
tionally, whenever the ambient space is obvious, we will denote the normal bundle with νN .
With this definition at hand, from now on we will refer to the Euler vector field as being an
element of XpνpM,Nqq.

Example 3.4. Observe that if N is a point, then TN “ 0, because the only paths on N
are the constant paths, whose derivatives are zero.
Additionally, TM |N “ TM |tpu “ TpM . Then,

νN “ TM |N{TN “ TpM{0 “ TpM.

I.e. in the case N “ tpu, the normal bundle is simply the tangent space at the point and
we recover the theory explained in the previous chapter.

Remark 3.5. Recall that if f : pM,Nq Ñ pM 1, N 1q is smooth (i.e. f : M Ñ M 1 is smooth
and such that fpNq Ă N 1), then we have an induced map, its derivative, on the tangent
spaces f˚ : TM Ñ TM 1 sending TN to TN 1. Thus, we have a unique linear map νpfq on
the quotients defined by νpfqpv ` TNq “ vpfq ` TN 1, and making the following diagram
with exact rows commute

0 TN TM |N νN 0

0 TN 1 TM 1|N 1 νN 1 0

i˚ p

pi1q˚ p1

pf |Nq˚ f˚|N νpfq

where p and p1 are the respective projections on the quotients.
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Definition 3.6. With the notation above, we will call νpfq the linearization of the map
f .

In particular, if pM 1, N 1q “ pR, 0q and f P C8pMq such that f |N “ 0, then

νpfq : νN Ñ R, v ` TN ÞÑ vpfq. (3.2)

Example 3.7. If N “ tpu and f : M Ñ R vanishes at p, then νpfq is the usual derivative
of f at p.

Remark 3.8. νpM,Nq is a quotient of the vector bundle TM |N , on which the linear
functions are all and only the derivatives f˚|N of some smooth function f over M vanishing
on N . Hence, all and the only linear functions on the normal bundle are linearizations of
functions over M vanishing at N . In particular, by proposition 3.2, the Euler vector field
E is defined by the property

Epνpfqq “ νpfq (3.3)
for all f as above.

Definition 3.9. Let X P XpMq be tangent to N . We define the linearization of X to be
the unique vector field νpXq P XpνNq acting on linear functions over the normal bundle
via

νpXqpνpfqq “ νpXpfqq. (3.4)

Definition 3.10. A vector field X P XpMq is Euler-like for the pair pM,Nq if it is
complete, X|N “ 0, and νpXq “ E.

Remark 3.11. Observe that lemma 2.12 can be generalized to the following characteriza-
tion in the submanifold case: X is Euler-like if and only if

Xpfq ´ f

vanishes to the second order on N for any smooth f : M Ñ R that vanish on N .
Indeed, if X is Euler-like, then

pXpfq ´ fq|N “ X|Npfq ´ f |N “ 0

and

νpXpfq ´ fq “ νpXpfqq ´ νpfq

(3.4)
“ νpXqpνpfqq ´ νpfq

“ Epνpfqq ´ νpfq

(3.3)
“ 0.

Conversely, assume that Xpfq ´ f vanishes to second order on N for any f such that
f |N “ 0. Then,

0 “ pXpfq ´ fq|N “ X|Npfq.

So, by lemma 2.15, X|N “ 0. Moreover,

0 “ νpXpfq ´ fq “ νpXqpνpfqq ´ νpfq,

showing that νpXq acts on linear functions the same way that E does. Thus, νpXq “ E.
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Example 3.12 (Euler-like vector fields in local coordinates). Consider M “ R2 with the
standard x, y coordinates and N “ R “ tx P Ru.
Then,

TM |N{TN “
ğ

rPR
pTrR2

{TrRq »
ğ

rPR
pR2

{Rq » R ˆ R. (3.5)

For any x P R the Euler vector field on the fiber pr´1pxq “ tpx, yq : y P Ru » R takes
form Ex “ y B

By
, independently on x. Hence, the Euler vector field on the normal bundle

R ˆ R is
E “ y

B

By
,

which is significantly different from the Euler vector field E “ x B

Bx
` y B

By
on R ˆ R “ R2

as a vector space! Special attention is, thus, needed when working with these objects.
Then, an Euler-like vector field for the pair pR2,Rq as above takes the form

X “ apx, yq
B

Bx
` py ` bpx, yqq

B

By
, (3.6)

with a, b P C8pR2q vanishing for y “ 0 and Bb
By

px, 0q “ 0.
Analogously, forM “ Rm, N “ Rn with n ă m, and standard coordinates x1, . . . , xn, y1, . . . , ym´n

such that x1, . . . , xn are the standard coordinates on Rn and yi|Rn “ 0 for every i “

1, . . . ,m ´ n, an Euler-like vector field for pM,Nq takes form

X “

n
ÿ

i“1
aipx, yq

B

Bxi
`

m´n
ÿ

j“1
pyj ` bjpx, yqq

B

Byj
, (3.7)

with functions ai, bj respectively satisfying the same conditions for a, b above for every i, j.
This extends to a general manifoldM and submanifoldN with local coordinates x1, . . . , xn, y1, . . . , ym´n

such that x1, . . . , xn restricts to local coordinates on N and yi|N “ 0. In this setting, an
Euler-like vector field will again take the form (3.7).

Definition 3.13. A tubular neighborhood embedding for the pair pM,Nq is an embedding

ψ : νN Ñ M

that restricts to the identity on N , seen as the zero section of the normal bundle, and
such that the induced map νpψq is the natural identification

νpνpM,Nq, Nq » νpM,Nq.

Let us unroll this definition. Viewing N Ă νpM,Nq as the zero section, the first condition
states to

ψ|N “ idN ,

or, equivalently, to ψp0pq “ p for every p P N , where 0p is the zero vector of the fiber
νpN “ pr´1ppq. The second condition, instead, says that after canonically identifying
νpνpM,Nq, Nq » νpM,Nq1, the linearization (i.e. the induced map on νpM,Nq) of ψ is
the identity on the normal bundle.

1In general, for any vector bundle E Ñ N , we have a natural isomorphism νpE,Nq » E
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Remark 3.14. In the case M “ S2 and N “ S1 seen as the equator, the normal bundle
will be S1 ˆR, i.e. a "tube", or cylinder (see picture 3.1). In general, the normal bundle of
a submanifold N in M will, intuitively, be a "tube" of base N . In this context, one usually
refers to a tubular neighborhood of N in M to indicate an open neighborhood of N in M
that "locally looks like a tube", i.e. that is diffeomorphic to (an open neighborhood of the
zero section of) the normal bundle, where this diffeomorphism restricts to the identity on
the zero section and induces the identity on the normal bundle. In particular, the image
of a tubular neighborhood embedding is a tubular neighborhood, explaining the name.

S1

νS1

ψ
S1

S2

pr

S1

νpS
1

p

Figure 3.1: Qualitative example of a tubular neighborhood embedding ψ for M “ S2

and N “ S1. The open neighborhood of S1 Ă νS2 delimited by the dashed circles
is diffeomorphically mapped to the tubular neighborhood of S1 Ă S2 delimited by the
dashed circles. In red are shown the fiber pr´1ppq “ νpS

1 at p P N and its image under
ψ.

With these concepts at hand, we can now prove theorem 1.1.

Proof of theorem 1.1. The proof follows essentially the same logic of theorem 2.1 and
proposition 2.16.
For every p P N we have

Xp “ pψ˚Eqp “ dψ´1ppqpEψ´1ppqq “ d0pψpE0pq “ 0,

where the last equality holds because the Euler vector field on the fiber at p, as shown in
the previous chapter, vanishes at zero.
Moreover, observe that

νpψ˚Eq “ νpψq˚pνpEqq (3.8)

for any smooth map ψ and vector field E. This is proven analogously to equation (2.15)
because the linearization of a map is simply its derivative modulo TN , as in equation
(3.2). Hence,

νpXq “ νpψ˚Eq “ νpψq˚pνpEqq “ E.
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3.2 Deformation Space
In the previous chapter, we saw that the deformation space is a construction that "enhances",
for t Ñ 0, the tangent directions to a point in a manifold. We also saw in example 3.4, that
the normal bundle for a point in a manifold is exactly the tangent space to this point. Hence,
we can rephrase the intuition behind the deformation space by saying that it is a construction
that "enhances" the normal directions to a given point. We will see now how this notion
generalizes to general submanifolds.

Definition 3.15. Let N Ă M be a submanifold. The deformation space for the pair
pM,Nq is the set2

DpM,Nq “ pνpM,Nq ˆ 0q \ pM ˆ Rˆ
q,

equipped with the unique manifold structure determined by the following conditions:

1. the map

π : DpM,Nq Ñ R,

#

v ` TN ÞÑ 0
pm, tq ÞÑ t

(3.9)

is a smooth submersion,

2. the map

κ : DpM,Nq Ñ M,

#

v ` TN ÞÑ i ˝ prpv ` TNq

pm, tq ÞÑ m
(3.10)

is smooth,

3. for any f P C8pMq vanishing on N , the map

f̃ : DpM,Nq Ñ R,

#

v ` TN ÞÑ vpfq

pm, tq ÞÑ 1
t
fpmq

(3.11)

is smooth.

Note that the restriction of f̃ to the zero fiber π´1p0q “ νN is the linearization νpfq.
We will denote again π as an element of C8pDpM,Nqq by its image t.

Lemma 3.16. Let x1, . . . , xn, y1, . . . , ym´n be a set of local coordinates3 on M such that
the xi’s restrict to local coordinates on N and yj|N “ 0, for every j4. Then,

κ˚x1, . . . , κ
˚xn, ỹ1, . . . ỹm´n, t (3.12)

is a set of local coordinates on DpM,Nq.
2We use the following convention for points in the deformation space:

v ` TN P νN, pm, tq P M ˆ Rˆ, x P DpM,Nq, where Rˆ :“ Rzt0u.
3In the sense that this set defines a homeomorphism from an open subset U of M to an open subset

of Rn.
4In the literature, such coordinates on M are called adapted to N .
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Proof. The proof is similar to the case N “ tpu (lemma 2.18).
Let x1, . . . , xn, y1, . . . , ym´n be defined on an open U Ă M . Then, the set DpU,N XUq “

κ´1pUq is open because κ is continuous, and the map

ϕ : DpU,N X Uq Ñ Rn
ˆ Rm´n

ˆ R, (3.13)

defined by (3.12), is smooth and bijective on its image. Now, viewing U ˆRˆ as an open
in Rn ˆ Rm´n ˆ Rˆ via the coordinates on M , and νpU,N X Uq as pN X Uq ˆ Rm´n via
the local trivialization of the normal bundle, the map

pu, v, tq P Rn
ˆ Rm´n

ˆ Rˆ
ÞÑ

#

pu, v, 0q P pN X Uq ˆ Rm´n ˆ 0
pu, tv, tq P Rn ˆ Rm´n ˆ Rˆ

(3.14)

is the continuous inverse of ϕ.
The smoothness of the transition functions is proven analogously to the N “ point case
(see proposition 2.19).

The algebra of smooth functions on the deformation space is generated by t (seen as the
function π), and by functions of the form κ˚f and g̃ for f, g P C8pMq such that g|N “ 0. This
follows by the previous lemma because, if F P C8pDpM,Nqq and κ˚x1, . . . , κ

˚xn, ỹ1, . . . ỹm´n, t
is a set of local coordinates for DpM,Nq, we can see F as a composition of such maps with
a function Rn`1 Ñ R.
Hence, to define a vector field on the deformation space is sufficient to define its action on
functions t, κ˚f, g̃ as above.
With abuse of notation, we will denote the coordinate κ˚xi by xi, and the inclusions of the
fibers π´1ptq in DpM,Nq by jt, with j :“ j0.
The following properties are proven in the same way as in the previous chapter. For any
smooth functions f, g on M with g|N “ 0:

(a) For any morphism φ : pM,Nq Ñ pM 1, N 1q, we can extend the map φˆ idRˆ to a map

Dpφq : DpM,Nq Ñ DpM 1, N 1
q

that restricts to νpφq on π´1p0q “ νN .

(b) We have a canonical vector field θ P XpDpM,Nqq satisfying

θptq “ t, θpκ˚fq “ 0, θpg̃q “ ´g̃. (3.15)

In local x1, . . . , xn, ỹ1, . . . , ỹm´n, t coordinates,

θ “ t
B

Bt
´
ÿ

j

ỹj
B

Bỹj
, (3.16)

from which we see that θ is tangent to the zero fiber π´1p0q “ νN , where

´E „j θ. (3.17)
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(c) For any vector field Y on M , we can define a vector field Ŷ P XpDpM,Nqq by

Ŷ “

#

Y |N ` TN on νN
tY on M ˆ Rˆ

, (3.18)

where Ŷ is seen on νN as the fiber-wise constant vector field of value Y |N ` TN . Ŷ
satisfies

Ŷ ptq “ 0, Ŷ pκ˚fq “ tκ˚
pY pfqq, Ŷ pg̃q “ κ˚

pY pgqq. (3.19)

(d) If Y P XpMq is tangent to N (in the sense of definition 2.21), then Y |N ` TN “ 0νN ,
i.e. Ŷ vanishes on π´1p0q “ νN . Thus, Ŷ is divisible by t and we can define a vector
field DpY q on DpM,Nq by DpY q “ t´1Ŷ , which by the system (3.19) satisfies

DpY qptq “ 0, DpY qpκ˚fq “ κ˚
pY pfqq, DpY qpg̃q “ ĆY pgq. (3.20)

Recalling that g̃|π´1p0q “ νpgq, by the last equation of (3.20), we have that DpY q|π´1p0q “

νpY q. Hence,

DpY q “

#

νpY q on νN
Y ˆ 0 on M ˆ Rˆ

. (3.21)

Remark 3.17. Consider a set of local coordinates for pM,Nq as in lemma 3.16. A general
vector field on M takes local form

Y “
ÿ

i

aipx, yq
B

Bxi
`
ÿ

j

bjpx, yq
B

Byj
.

Then, on M ˆ Rˆ with coordinates xi, ỹj :“ 1
t
yj, t, we have that

Y ˆ 0 “
ÿ

i

aipx, tỹq
B

Bxi
`

1
t

ÿ

j

bjpx, tỹq
B

Bỹj
.

So, we see that tY “ tpY ˆ0q can be extended to a vector field Ŷ on the whole deformation
space, while Y ˆ 0 can be extended to a vector field DpY q if and only if bjpx, 0q “ 0 for
every j. Since N is defined by the vanishing of the y´coordinates, this is equivalent to
asking that

Y |N “
ÿ

i

aipx, 0q
B

Bxi
,

i.e. that Y be tangent to N .

3.3 Proof of Main Theorem
As stated in the introduction, the goal of this section is to prove the main theorem 1.2. To
provide some context, let us report the statement here.
Theorem 1.2. If X is an Euler-like vector field on M and E is the Euler vector field on
the normal bundle, then there exists a unique tubular neighborhood embedding

ψ : νpM,Nq Ñ M

such that ψ˚E “ X|Imψ.
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Remark 3.18. Analogously to remark 2.27, we say that a vector field X on M is linearizable
around a submanifold N if there exists a tubular neighborhood embedding ψ : νpM,Nq Ñ

M such that
ψ˚pνpXqq “ X,

In particular, the previous theorem states that Euler-like vector fields for pM,Nq are
linearizable around N .

We will need several preparatory results for the actual proof of the theorem. One of the
main tools will be a particular vector field W . The following lemma shows its construction
and is proven in the same way as lemma 2.23, so the proof will be omitted.

Lemma 3.19. If X P XpMq is Euler-like, the vector field 1
t
X ` B

Bt
on M ˆ Rˆ can be

extended to the vector field
W :“ 1

t
pDpXq ` θq

on DpM,Nq.

Observe that, given a general vector field X on M , taking into account the three properties
in definition 3.15, 1

t
X ` B

Bt
is a natural vector field to consider on M ˆ Rˆ.

Remark 3.20. Consider the usual local coordinates on the pair pM,Nq and the corre-
sponding ones on DpM,Nq as in lemma 3.16. Then, we know that

θ “ t
B

Bt
´
ÿ

j

ỹj
B

Bỹj

X “
ÿ

i

aipx, yq
B

Bxi
`
ÿ

j

`

yj ` bjpx, yq
˘ B

Byj
,

with ai, bj smooth functions on M vanishing at y “ 0, such that Bbj

Byk
px, 0q “ 0 for any

i, j, k. Since X|N “ 0, we can construct DpXq, which on M ˆ Rˆ takes form

DpXq “
ÿ

i

aipx, tỹq
B

Bxi
`
ÿ

j

`

ỹj `
1
t
bjpx, tỹq

˘ B

Bỹj
. (3.22)

Then,
1
t

`

DpXq ` θ
˘

“
B

Bt
`

1
t

ÿ

i

aipx, tỹq
B

Bxi
`

1
t2

ÿ

j

bjpx, tỹq
B

Bỹj
. (3.23)

Since aipx, 0q “ 0 for every i, the limit for t Ñ 0 of aipx, tỹq{t is well-defined, and similarly
is that of bjpx, tỹq{t2, because the functions bj vanish to the second order for t “ 0. This
shows in a coordinate-dependent way that 1

t
X ` B

Bt
extends to the whole deformation

space.

Lemma 3.21. For any vector field Y P XpMq and any Euler-like vector field X, the
vector field Y ` rX, Y s is tangent to N , and

rW, Ŷ s “ DpY ` rX, Y sq. (3.24)

Moreover, if Y is tangent to N ,

rW,DpY qs “
1
t
DprX, Y sq. (3.25)
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Before starting the proof of lemma 3.21, recall the following
Proposition 3.22 ([Lee13], Proposition 8.22). A vector field Z on M is tangent to N if
and only if Xpfq|N “ 0 for every smooth function f over M vanishing on N .
Proof of lemma 3.21. We want to use the last proposition to show that Y ` rX, Y s is
tangent to N . Take f P C8pMq such that f |N “ 0. Then,

pY ` rX, Y sqpfq|N “ Y pfq|N ` pX ˝ Y qpfq|N ´ pY ˝ Xqpfq|N

“ Y pf ´ Xpfqq|N .

because X|N “ 0. Seeing Y as a derivation, since Xpfq ´ f vanishes to second order by
remark 3.11, Y pf ´Xpfqq|N “ 0. Hence, Y ` rX, Y s is tangent to N , by proposition 3.22.
To prove equation (3.24), recall the well-known formulas

rX, fY s “ f rX, Y s ` XpfqY

rfX, Y s “ f rX, Y s ´ Y pfqX.
(3.26)

Then, on M ˆ Rˆ we have

rW, Ŷ s “

”1
t
X `

B

Bt
, tY

ı

“ t
”1
t
X, Y

ı

`

´1
t
X
¯

ptqY ` t
”

B

Bt
, Y

ı

`
Bt

Bt
Y

“ t
”1
t
X, Y

ı

` Y

“ t
1
t

rX, Y s ´ tY p1{tqX ` Y

“ rX, Y s ` Y,

where in the third and fourth equality we used the fact X and Y are independent of t, so
when applied to functions of t they vanish. For the same reason, the Lie derivative of Y
in the direction of B

Bt
is zero, i.e. their commutator vanishes.

Since all the vector fields above can be extended to the whole deformation space and they
agree on an open dense subset (M ˆ Rˆ), by continuity, equation (3.24) holds on the
whole deformation space.
Equation (3.25) follows from equation (3.24). By continuity, it is again sufficient to prove
it only on M ˆ Rˆ.

rW,DpY qs “

”

W,
1
t
Ŷ
ı

“ W
´1
t

¯

Ŷ `
1
t

rW, Ŷ s

(3.24)
“

´

B

Bt
`

1
t
X
¯´1

t

¯

tY `
1
t
DpY ` rX, Y sq

“ ´
1
t2
tY `

1
t
X
´1
t

¯

tY `
1
t

`

Y ` rX, Y s
˘

“ ´
1
t
Y `

1
t
Y `

1
t

rX, Y s

“
1
t

rX, Y s

“
1
t
DprX, Y sq.

(3.27)

This concludes the proof.
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The proof of the following result is similar to the previous case, so it will be omitted.

Lemma 3.23. Denote by φW the flow of W . Then, for any v ` TN P π´1p0q “ νN , the
integral curve φWs pv ` TNq is defined for all s P R.

Let us now discuss the proof of our main theorem in the most general case. It will follow
the logic of the previous case with some adjustments.

Proof of theorem 1.2. For any s P R, call Ds Ă DpM,Nq the domain of φWs , which by
lemma 3.23 is an open neighborhood of νN in DpM,Nq. Then, for any s ‰ 0, we have a
well-defined smooth map ψs :“ κ ˝ φWs ˝ j

νpM,Nq ã
j

ÝÝÝÝÑ Ds
φW

s
ÝÝÝÝÝÝÑ DpM,Nq

κ
ÝÝÝÝÑ M, (3.28)

that is a diffeomorphism on its image.
By equation (3.25), rW,DpXqs “ 1

t
DprX,Xsq “ 0. Thus, pφWs q˚DpXq “ DpXq and

consequently, as in equation (2.44),

pψsq˚E “ X.

To conclude the proof, we still have to show that ψ restricts to the identity on N and its
linearization is the identity on the normal bundle.
For the first claim, since W |NˆR “ B

Bt
, we have φWs |NˆR “ φ

B
Bt
s |NˆR, and

ψs|N “ κ ˝ φWs ˝ j|N

“ κ ˝ φWs |NˆR

“ κ ˝ φ
B
Bt
s |NˆR

“ κ|NˆR

“ idN ,

where the second to last equality holds because the flow of the translation vector field
leaves N unchanged.
We are left to show that νpψsq “ idνN for some s P R. So, take a general vector v ` TN
on the fiber by a point q P N . We can find a vector field Y on M such that

Ŷpq,0q “ Yq ` TN “ v ` TN.

Note that, since by lemma 3.21 pY ` rX, Y sq ˆ 0 is tangent to N ˆ ttu for all t ‰ 0, we
have that DpY ` rX, Y sq is tangent to N ˆ ttu for all t by continuity. Hence, by

LW Ŷ “ rW, Ŷ s
(3.24)

“ DpY ` rX, Y sq, (3.29)

we have that

pφWs q˚Ŷ ´ Ŷ “

ż s

0

d

dr
ppφWr q˚Ŷ q dr

(2.50)
“

ż s

0
pφW´rq˚pLW Ŷ q dr (3.30)

is tangent to N ˆ ttu for all t.
This means that the flow of W preserves the vector field Ŷ up to a vector field tangent
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to N ˆ ttu, say U .
But then,

`

pφWs q˚Ŷ
˘

pq,0q
“ ŶφW

s pq,0q ` UφW
s pq,0q

“ Ŷpq,sq ` Upq,sq

“ sYq ` Upq,sq.

(3.31)

On the other hand,
`

pφWs q˚Ŷ
˘

pq,0q
“ dpq,0qφ

W
s pŶpq,0qq “ dpq,0qφ

W
s pv ` TNq. (3.32)

Combining equations (3.31) and (3.32) modulo TN , we then have

νpφWs qpv ` TNq “ spv ` TNq, (3.33)

Thus,
νpψsqpv ` TNq “ νpκq ˝ νpφWs q ˝ νpjqpv ` TNq

“ νpκq ˝ νpφWs qpv ` TNq

“ νpκq
`

spv ` TNq
˘

“ spv ` TNq.

(3.34)

Then, ψs is an embedding, and νpψsq “ idνN if and only if s “ 1. So, ψ1 is the desired
tubular neighborhood embedding.
The uniqueness is analogous to the proof of theorem 2.2.



Chapter 4

Applications

In this chapter, we will discuss some applications of our main theorem, both in the point-
submanifold and general cases. In primis, we will prove Morse lemma and Darboux theorem
via theorem 2.2 (see [Mei21], section 2.2). In the second and third sections, we will show
the generalizations of these two results to submanifolds aided by theorem 1.2 (see [Mei21],
sections 4.1-2). Finally, in the last section, we will present and prove a splitting theorem for
singular foliations (see [BBLM20], section 2.4).

4.1 Morse Lemma and Darboux Theorem
We saw that if E is the Euler vector field on a vector space V , then Epfq “ f for any linear
function f on V . There is a similar property for k-homogeneous polynomials, namely
Lemma 4.1. If E P XpV q is the Euler vector field on V and f is a homogeneous polyno-
mial on V of degree k, then

Epfq “ kf.

Proof. Without loss of generality by the linearity of f ÞÑ Epfq, consider f “ f1 ¨ ¨ ¨ fk,
where all fi are linear maps of V . Then,

Epfq “ Epf1qf2 ¨ ¨ ¨ fk ` . . . ` f1 ¨ ¨ ¨ fk´1Epfkq “ kf1 ¨ ¨ ¨ fk.

The last fact turns out to be useful in proving our first application of theorem 2.2; the
Morse lemma, a normal form result for Morse functions.
Recall that if f is a smooth function on a manifold M and p P M is such that dpf “ 0, then
we can define the Hessian1 of f at p to be the symmetric bilinear form Hess fppq on TpM
defined by

Hess fppqpu, vq :“ XpY pfqqppq, (4.1)
for any pair of vector fields X, Y on M such that Xp “ u, Yp “ v P TpM .
Observe that this definition does not depend on the choice of the two vector fields, and the
symmetricity follows from dpf “ 0, indeed

XpY pfqqppq ´ Y pXpfqqppq “ rX, Y spfqppq “ dpfprX, Y spq “ 0,

for any vector fields X, Y on M .
1See for instance [Pla13]

37
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Definition 4.2. A smooth function f on a manifold M is called Morse if all its critical
points are non-degenerate, i.e. for all p P M such that dpf “ 0 we have that Hess fppq is
non-degenerate.

Since the Morse lemma is a local condition around a critical point, we can reduce to the
case M “ Rn and p “ 0, with fp0q “ 0.

Lemma 4.3 (Morse). Let f P C8pRnq be a Morse function having a critical point at the
origin, with fp0q “ 0. Then, there exists a tubular neighborhood embedding ψ defined on
a neighborhood of the origin such that

ψ˚fpxq “

n
ÿ

i“1
˘x2

i . (4.2)

.

Proof. By expanding f at the origin, we have

fpxq “ fp0q `
ÿ

i

Bf

Bxi
p0qxi `

1
2
ÿ

i,j

B2f

BxiBxj
p0qxixj ` Rpxq,

with Rpxq vanishing to third order. Since fp0q “ 0 and Bf
Bxi

p0q “ 0 for all i, we can rewrite
f as

fpxq “
1
2
ÿ

i,j

Hijpxqxixj, (4.3)

where x ÞÑ Hpxq is a smooth matrix-valued function with H symmetric and Hp0q “

Hess fp0q.
The derivative of f then satisfies

Bf

Bxj
pxq “

ÿ

k

Gjkpxqxk, (4.4)

with
Gjkpxq “ Hjkpxq `

1
2
ÿ

l

BHkl

Bxj
pxqxl. (4.5)

Since Gp0q “ Hp0q “ Hess fp0q, H and G are non-degenerate (and hence invertible) in a
neighborhood of the origin.
Then, we can define a smooth vector field in a neighborhood of 0 by

X “
ÿ

i,j

pHpxqGpxq
´1

qijxi
B

Bxj
. (4.6)

X is then Euler-like since HG´1 is the identity up to higher-order terms (simply observe
that HG´1 “ pI ` pG ´ HqH´1q´1, which is the geometric series close enough to the
origin). Then, by theorem 2.2, there exists a tubular neighborhood embedding ψ on a
neighborhood of the origin such that ψ˚E “ X.
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Now, by equations (4.4) and (4.6),

Xpfq
(4.6)
“

ÿ

i,j

pHpxqGpxq
´1

qijxi
Bf

Bxj

(4.4)
“

ÿ

i,j,k

pHpxqGpxq
´1

qijxiGjkpxqxk

“
ÿ

i,k

Hikpxqxixk

“ 2f,

and recalling equation (2.9),

Epψ˚fq
(2.9)
“ ψ˚

pXpfqq “ 2ψ˚f. (4.7)

By lemma 4.1, ψ˚f is a homogeneous quadratic polynomial, which then defines a bilinear
form that is symmetric and thus diagonalizable.
Hence, up to a change of coordinates where this bilinear form is diagonal, we have ψ˚f “
ř

i λix
2
i , for some real numbers λi, which by a coordinate rescaling takes the form (4.2).

In the same fashion, we can prove the Darboux theorem for 2-forms. It relies on the
following

Lemma 4.4. If E is the Euler vector field on a vector space V and ω P ΩkpV q, then
LEω “ kω if and only if ω has constant coefficients.

Proof. Without loss of generality by linearity of the Lie derivative, consider ω “ f dx1 ^

. . . ^ dxk. Then,

LEω “ LEf dx1 ^ . . . ^ dxk ` fLEpdx1 ^ . . . ^ dxkq.

The second term on the right-hand side, using Cartan’s magic formula, becomes

fιEdpdx1 ^ . . . ^ dxkq ` fdιEpdx1 ^ . . . ^ dxkq.

Since dx1 ^ . . . ^ dxk is a closed form and its contraction with E is
ÿ

i

p´1q
i´1xidx1 ^ . . . ^ xdxi ^ . . . ^ dxk,

where the symbol xdxi means that we omit dxi, and the exterior derivative of this contrac-
tion is kdx1 ^ . . . ^ dxk, we have that

LEω “ LEf dx1 ^ . . . ^ dxk ` kfdx1 ^ . . . ^ dxk.

Hence, LEω “ kω if and only if LEf “ 0, i.e. f is constant along the integral curves of
E, which are rays through the origin. Since f is continuous, the value of this constant on
each ray is fp0q, i.e. f is constant on V .

Theorem 4.5 (Darboux). Let ω P Ω2pR2nq be closed and non-degenerate (i.e. symplec-
tic). Then, there exists a tubular neighborhood embedding ψ defined on a neighborhood of
the origin such that ψ˚ω is constant.
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Remark 4.6. The classical statement of Darboux theorem actually states the existence of
a coordinate system pq1, . . . , qn, p1, . . . , pnq on a neighborhood U of the origin such that

ω|U “

n
ÿ

i“1
dqi ^ dp1. (4.8)

This is equivalent to asking that there is a tubular neighborhood embedding ψ on a
neighborhood of the origin such that ψ˚ω takes form (4.8). Now, if ψ˚ω is constant,
since on a vector space for a form being closed is equivalent to being skew-symmetric,
by a classical result of linear algebra (see for instance [Con], theorem 5.4), there exists a
coordinate system on which ψ˚ω takes the form (4.8). This shows the equivalence between
of the two statements of Darboux theorem.

Proof. Since ω is a closed 2-form on R2n, by the Poincaré lemma, there exists a 1-form α
on R2n such that dα “ ω and we can take the coordinate expressions

ω “
ÿ

iăj

pωij ` Op|x|qqdxi ^ dxj

α “
1
2
ÿ

i,j

pωijxi ` Op|x|
2
qqdxj

(4.9)

in a neighborhood of zero, where ωij “ ´ωji.
Since ω is non-degenerate at the origin, and by continuity also in a neighborhood of 0,
the equation

ιXω “ 2α

has a solution X P XpUq in a neighborhood U of 0.
By equation (4.9),

X “
ÿ

i

pxi ` Op|x|
2
qq

B

Bxi
,

i.e. X is an Euler-like vector field for the pair pU, 0q. Hence, there exists a tubular
neighborhood embedding ψ : pU, 0q Ñ pR2n, 0q such that ψ˚E “ X. Since ω is closed, by
Cartan’s magic formula, we have

LXω “ dιXω ` ιXdω “ dp2αq “ 2ω. (4.10)

Then,
LEpψ˚ωq

(2.9)
“ ψ˚

pLψ˚Eωq “ ψ˚
pLXωq “ 2ψ˚ω. (4.11)

By the previous lemma, ψ˚ω has constant coefficients.

4.2 Morse-Bott Functions
In this section, we prove the analogue of Morse lemma for submanifolds, the Morse-Bott
lemma.
Let N Ă M be a submanifold and f P C8pMq. If f vanishes to second order along N , then
we can define its quadratic approximation to be the function fr2s P C8pνpM,Nqq made on
each fiber νxpM,Nq of the second-order terms of the Taylor expansion of f at x P N . Then,
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for every x P N , its corresponding symmetric bilinear form on νxpM,Nq is called the normal
hessian of f

Hesspfqx : νxpM,Nq ˆ νxpM,Nq Ñ R.

Definition 4.7. A function f P C8pMq that vanishes to second order along N is called
Morse-Bott for the pair pM,Nq if Hesspfqx is non-degenerate for every x P N .

Lemma 4.8 (Morse-Bott). If f is a Morse-Bott function for the pair pM,Nq, there exists
a tubular neighborhood embedding

ψ : O Ă νpM,Nq Ñ M,

with O being an open neighborhood of N in the normal bundle, such that

ψ˚f “ fr2s.

Proof. By taking an eventual initial tubular neighborhood embedding, we can consider M
to be an open neighborhood of N in νpM,Nq. By hypothesis, we have a Morse function
on (a neighborhood of the origin of) each fiber of the normal bundle, so we can construct
an Euler-like vector field on each νxpM,Nq as in the proof of Morse lemma (equation
(4.6)). Analogously to the proof of lemma 4.3, we then have an Euler-like vector field X
on a neighborhood O of N in the normal bundle such that

Xpfq “ 2f.

By theorem 1.2, there exists a tubular neighborhood embedding ψ as in the statement
satisfying ψ˚E “ X, so that

Epψ˚fq “ 2ψ˚f,

i.e. by lemma 4.1, ψ˚f is a homogeneous polynomial of degree 2. Hence, since νpψq is
the identity, we have the conclusion.

4.3 Weinstein Lagrangian Neighborhood Theorem
The next application of theorem 1.2 we want to discuss is the well-known Weinstein Lagrangian
neighborhood theorem in symplectic geometry, the analogous of Darboux theorem 4.5 for
Lagrangian submanifolds.
Start considering a manifold M and a differential k-form ω on M , together with a submanifold
i : N ãÑ M such that

i˚ω “ 0.
Then, κ˚ω is a differential k-form on the deformation space DpM,Nq that vanishes on the
zero fiber, because on νpM,Nq it is simply pr˚i˚ω “ pr˚0 “ 0, by definition of κ (see
definition 3.15).
This means that κ˚ω is divisible by t on the deformation space, or equivalently, that 1

t
pωˆ0q P

ΩkpM ˆ Rˆq extends to a form

Dpωq :“ 1
t
κ˚ω P Ωk

pDpM,Nqq.
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Definition 4.9. We define the linearization of ω to be the pullback

νpωq :“ j˚
pDpωqq P Ωk

pνpM,Nqq, (4.12)

where j : νpM,Nq ãÑ DpM,Nq is the inclusion.

In particular, if pM,ωq is a symplectic manifold with Lagrangian submanifold i : N ãÑ M
(so, i˚ω “ 0), the linearization of ω is a well defined 2-form

νpωq P Ω2
pνpM,Nqq,

which, since N is Lagrangian, is symplectic along the zero section N of the normal bundle.
To see this, note that since 1

t
pω ˆ 0q is closed on each π´1ptq “ M ˆ ttu, by the smoothness

of its extension, the form Dpωq is closed also on the zero fiber, where it coincides with νpωq.
The non-degeneracy can easily be checked using local coordinates.
Now, since νpωq is symplectic along the zero section of the normal bundle, it is so also in a
neighborhood of N Ă νN . We claim that νpωq is symplectic on the whole νN . To check
this, first observe the following

Lemma 4.10. νpωq defined above is a linear 2-form on νN , in the sense that it is linear
on the fibers or, equivalently, that

LEνpωq “ νpωq, (4.13)

where E is the Euler vector field on the normal bundle.

Proof. Recall that we can construct a canonical vector field θ on DpM,Nq that takes the
form t B

Bt
on M ˆ Rˆ, whereas Dpωq “ 1

t
pω ˆ 0q. But then, on M ˆ Rˆ, taking the Lie

derivative in direction of ´θ,

L´θDpωq
ˇ

ˇ

MˆRˆ “ L´t B
Bt

1
t

pω ˆ 0q “
1
t

pω ˆ 0q “ Dpωq|MˆRˆ .

Hence, by continuity, we have L´θDpωq “ Dpωq on the totality of DpM,Nq. In particular,
the equality holds also on the zero fiber νN , where ´θ is E and Dpωq is νpωq, i.e.

LEνpωq “ νpωq,

concluding the proof.

In particular, equation (4.13) tells us that the flow of E preserves our linear form νpωq.
Hence, by eventually pulling back νpωq to a neighborhood where it is symplectic, we find that
νpωq is symplectic on the entire normal bundle.
We then proved that νN has a natural symplectic structure, given by νpωq.
The following normal form states that if we are interested in the behavior of ω around N , we
might as well view it as its linearization on νN .

Theorem 4.11 (Weinstein Lagrangian neighborhood). If pM,ωq is a symplectic manifold
and N is a Lagrangian submanifold, then there exists a tubular neighborhood embedding

ψ : O Ă νpM,Nq Ñ M,

with O being an open neighborhood of N in νpM,Nq, such that

ψ˚ω “ νpωq.
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Remark 4.12 ([Mei21], Remark 4.1). Consider a vector bundle V Ñ N with a linear
symplectic form ω on V , in the sense of lemma 4.10. We know that TV |N “ V ‘ TN , so
restricting ω to TV |N gives a pairing between V and TN via

xv,Xy :“ ω|TV |N

`

pv, 0q, p0, Xq
˘

,

for all v P V, X P TN . Since this pairing is non-degenerate, we obtain an isomorphism

V Ñ T ˚N, v ÞÑ xv, ¨y. (4.14)

Furthermore, this map pushes the form ω on V to the standard symplectic form ΩT˚N on
T ˚N , i.e. is a symplectomorphism.
Hence, taking V “ νpM,Nq with symplectic form νpωq, gives us a diffeomorphism between
νpM,Nq and T ˚N preserving the symplectic structures.

This consideration allows us to recover the Weinstein neighborhood Lagrangian theorem
in its most-known form

Theorem 4.13. Let N be a Lagrangian submanifold of pM,ωq. Then, there exist a
neighborhood U of N in M , a neighborhood V of N in T ˚N , and a symplectomorphism

ψ : pU, ωq Ñ pV,ΩT˚Nq

that restricts to the identity map on N .

Let us prove theorem 4.11 by means of our main theorem 1.2.

Proof. By the tubular neighborhood theorem, without loss of generality, consider M to be
a fiber-wise convex, open neighborhood of N in νpM,Nq. Since, ω pulls back to zero (via
the inclusion) on N , by the relative Poincaré lemma, there exists a primitive α of ω that
vanishes on N , and is constructed via

α “

ż 1

0

1
t
κ˚
t pιEωq dt, (4.15)

where κt is the multiplication by t. Then, taking its linearization gives

νpαq “

ż 1

0

1
t
κ˚
t νpιEωq dt

“

ż 1

0

1
t
κ˚
t pινpEqνpωqq dt

“

ż 1

0
ιE

1
t
κ˚
t νpωq dt

“ ιEνpωq

ż 1

0
dt

“ ιEνpωq,

(4.16)

where in the third equality we used the fact that νpEq “ E and in the second to last
that, since νpωq is linear, 1

t
κ˚
t νpωq “ νpωq, which does not depend on t. Now, define
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X P XpMq via the equation ιXω “ α (which has solutions because ω is non-degenerate).
Then, taking the linearization on both sides,

νpαq “ νpιXωq “ ινpXqνpωq.

Hence, again by non-degeneracy of ω, we have νpXq “ E, i.e. X is Euler-like (it might not
be complete). Then, by theorem 1.2 and remark 2.11, there exists a tubular neighborhood
embedding as in the statement such that ψ˚E “ X. But,

LEpψ˚ωq “ ψ˚
pLXωq “ ψ˚

pιXdω ` dιXωq “ ψ˚ω, (4.17)

where in the second equality we used Cartan’s magic formula and in the last that ω is
closed and dιXω “ dα “ ω. This means that ψ˚ω is linear, and since νpψq is the identity,
it coincides with νpωq.

4.4 Splitting Theorem for Singular Foliations
Recall that a foliation on a manifold M can be seen as an involutive distribution, i.e. a
subbundle of TM closed with respect to the Lie bracket of sections. In this context, all
the leaves have the same dimension. Singular foliations extend this notion by allowing the
dimension of the leaves to vary.
Following the flow of [BBLM20], our goal is to prove a so-called splitting theorem for these
objects. The definition of singular foliations first appeared in [AS07], where the authors
were inspired by earlier works of Stephan [Ste74] and Sussmann [Sus73]. One can consult
[AS07, AZ16] for general discussions about the topic.

Definition 4.14. A singular foliation F on M is a C8pMq-submodule of XpMq such
that

a. F is local: if X P XpMq such that for any m P M there exists Y P F and a
neighborhood U Ă M of m such that X|U “ Y |U , then X P F

b. F is locally finitely generated: for any m P M there exists a neighborhood U of m
such that F |U is spanned by finitely many Y1, . . . , Yk P F

c. F is involutive: rF ,Fs Ă F .

Remark 4.15. One can show (see [AZ16], theorem 5.1) that C8pMq-submodules of XpMq

that are local in the sense of the previous definition are in bijective correspondence with
C8pMq-submodules of the compactly supported vector fields XcpMq. Hence, we can
define singular foliations to be C8pMq-submodules of XcpMq that are involutive and
locally finitely generated.

Definition 4.16. Define exp F to be the group generated by the time-1 flow expX of
vector fields X of F , and AutpM,Fq to be the group made of diffeomorphisms ϕ : M Ñ M
that preserve the foliation, i.e. ϕ˚F “ F .

Proposition 4.17 ([AS07], Proposition 1.6). exp F is a normal subgroup of AutpM,Fq.

We propose here a sketch of the proof by Androulidakis-Skandalis. For another equivalent
proof, see [GY18].
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Sketch of the proof. Let us first show that exp F is a subgroup of AutpM,Fq. We want
to show that if X P F , then expX P AutpM,Fq.
We claim that it is enough to prove that

pexpXq˚F Ă F . (4.18)

Indeed, any Y P F can be written as

Y “ pexpXq˚

`

exp p´Xq
˚
Y
˘

and, since ´X P F , if equation (4.18) holds, exp p´Xq
˚
Y P F . This means that every

Y P F can be written as Y “ pexpXq˚Z for some Z P F , i.e. Y P pexpXq˚F , proving
that pexpXq˚F “ F , so that expX P AutpM,Fq.
So, let us now prove the inclusion (4.18). Replacing eventually M with a neighborhood of
the support of X, we can assume that F be generated by a finite number of vector fields
Y1, . . . .Yn P F .
By involutivity of the foliation, rX, Yis P F for any i. Hence, there exist smooth functions
αij on M such that

rX, Yis “
ÿ

j

αjiYj. (4.19)

Call L the linear mapping

L : C8
pNq

n
Ñ C8

pNq
n, pf1, . . . , fnq ÞÑ pg1, . . . , gnq, (4.20)

with gi :“ Xpfiq `
ř

j αijfj, and define a surjective map

S : C8
pNq

n
Ñ F , pf1, . . . , fnq ÞÑ

ÿ

i

fiYi. (4.21)

Then, for any f1, . . . , fn P F , we have

pLX ˝ Sqpf1, . . . .fnq “ LX

´

ÿ

i

fiYi

¯

“
ÿ

i

XpfiqYi ` rX, Yis

“
ÿ

i

XpfiqYi `
ÿ

i,j

αjifiYj

“
ÿ

i

XpfiqYi `
ÿ

i,j

αijfjYi

“
ÿ

i

`

Xpfiq `
ÿ

j

αijfj
˘

Yi

“ pS ˝ Lqpf1, . . . , fnq,

where in the third equality we used equation (4.19) and in the fourth we renamed the
indices i Ø j.
This shows that LX ˝ S “ S ˝ L. One can then prove that

pexpXq˚ ˝ S “ S ˝ expL.2 (4.22)
2Here expL “

ř8

i“0 L
i{i!, where Lk is the composition of L k times and L0 is the identity map.
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Since S is surjective,

pexpXq˚F “
`

pexpXq˚ ˝ S
˘`

C8
pNq

n
˘ (4.22)

Ď S
`

C8
pNq

n
˘

“ F .

This proves equation (4.18) and hence that expX P AutpM,Fq.
To show that exp F is a normal subgroup, take g P AutpM,Fq. Then, since X and
g˚X P F are g-related by definition, g ˝ expX “ exp pg˚Xq ˝ g, i.e.

g ˝ expX ˝ g´1
“ exp pg˚Xq P AutpM,Fq,

proving our claim.

Definition 4.18. Given a singular foliation F on M , define its leaves as the orbits of the
action of the group exp F on M , that on the generators is defined via

exp F ˆ M Ñ M, pexpX,mq ÞÑ expXpmq.

Example 4.19 (A singular foliation on R). Let M “ R. Then, F :“ SpanC8pRqtx
B

Bx
u is

a singular foliation. Indeed, x B

Bx
is the Euler vector field on R, so its flow is ϕtpyq “ ety,

thus its time-1 flow is the multiplication by e. The leaves of F are then

p´8, 0q, t0u, p0,`8q,

so, in contrast with regular foliations, the dimension of the leaves can vary. This explains
why such objects are called singular.

Definition 4.20. We say that a smooth map ϕ : N Ñ M is transverse to F if for every
n P N

TϕpnqM “ Impdnϕq ` tYϕpnq : Y P Fu. (4.23)

Clearly, submersions are transverse to any given singular foliation.
Recall that if we have a vector bundle π : E Ñ M and a smooth map ϕ : N Ñ M , we can
define the pullback bundle pr1 : ϕ˚pEq Ñ N , where

ϕ˚
pEq “ tpn, eq P N ˆ E : ϕpnq “ πpequ3 Ă N ˆ E (4.24)

and pr1 is the projection onto the first component. The projection onto the second component,
pr2, makes the following diagram commute

ϕ˚pEq E

N M

pr2

pr1

ϕ

π

If E is a submodule of ΓcpEq, define the pullback module ϕ˚pEq to be the submodule of
Γcpϕ˚pEqq generated by elements f ¨ pξ ˝ ϕq, with f P C8pNq, ξ P E .

3In the literature, one often says that ϕ˚pEq is the fibered product of N and E over M , denoted with
ϕ˚pEq :“ N ˆM E
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Definition 4.21. Given a smooth map ϕ : N Ñ M transverse to a singular foliation F
on M , define the pullback foliation ϕ!pFq to be the C8pNq-submodule of XcpNq4 defined
by

ϕ!
pFq :“ tX P XcpNq : dϕpXq P ϕ˚

pFqu

“ tX P XcpNq : dϕpXq “

n
ÿ

i“1
fi ¨ pYi ˝ ϕq, fi P C8

pNq, Yi P Fu,
(4.25)

seeing dϕpXq as a section of ϕ˚pTMq.

ϕ˚TM TM

TN

N M

pr2

pr1 π

dϕ

ϕ

Remark 4.22. Observe that the definition is well-posed. Indeed, ϕ!pFq is always involutive
and, if ϕ is transverse to F , it is locally finitely generated (see [AS07], proposition 1.10).
Remark 4.23. Observe that if ϕ is a submersion, then the pullback foliation can be defined
by

ϕ!F :“ SpanC8
c pNq

␣

X P XpNq ϕ-related to an element of F
(

Consider a submanifold N of M . If the inclusion i : N ãÑ M is transverse to F , then we
have a singular foliation

i!pFq “ tX|N P XpNq : X P F is tangent to Nu. (4.26)

Moreover, calling p : νpM,Nq Ñ N the projection (instead of pr as in definition 3.3, for
convenience of notation), we have a natural singular foliation on the normal bundle, which we
will call linear approximation of F around N , defined by

νpFq :“ p!i!pFq. (4.27)

νpM,Nq N M

p!i!pFq i!pFq F

p i

We now have all the tools to prove the following5

Theorem 4.24 (Splitting Theorem for Singular Foliation). Let F be a singular foliation
on M , N be a submanifold transverse (i.e. the inclusion is transverse) to F . Then, there
exists a tubular neighborhood embedding ψ : νpM,Nq Ñ M such that

ψ!
pFq “ νpFq.

4Here we use the equivalence between the two definitions of singular foliations, explained in remark
4.15

5see [BBLM20], Theorem 2.8.
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The proof of this result is not a direct implication of theorem 1.2, instead it follows the logic
of its proof due to [BBLM20], showing an instance of how we can generalize its geometry to
more advanced situations. This approach has not been possible yet, at least to our knowledge,
by means of the Moser trick, used in the proofs of theorem 1.2 by [BLM16], or theorem 5.5
by [Mei21].

Proof. First of all, let us show that F contains an Euler-like vector field.
Denote by r “ dimM ´ dimN . Since the inclusion N ãÑ M is transverse to F , for any
point n P N there exist a neighborhood V of n and vector fields Y1, . . . , Yr P F |V spanning
a subbundle K Ă TM |V such that

TM |NXV “ K|NXV ‘ TN |NXV . (4.28)

By lemma 3.9 of [BLM16], there exists a section σ P ΓpKq such that σ|N “ 0 and is Euler-
like6. Since K is finitely generated, σ “

ř

i fiYi for some fi P C8pV q, hence σ P F |V .
Using a partition of unity, by the locality of F , we can construct a vector field X P F
which is Euler-like for pM,Nq.
Recall that we have a canonical vector field θ on the deformation space DpM,Nq that
by the system (3.15) satisfies θ „κ 0, with κ as in definition 3.15. Additionally, if X is
Euler-like, we can construct a vector field DpXq on DpM,Nq such that DpXq „κ X (see
equation (3.21)). This means

dκpθq “ 0, dκpDpXqq “ X.

But then, since a vector field Y on DpM,Nq is an element of κ!pFq if it is of the form

dκpY q “
ÿ

i

fipYi ˝ κq,

with fi P C8pNq and Yi P F for all i, we have that θ and DpXq both lie in κ!pFq.
Hence, also the vector field W :“ 1

t

`

θ ` DpXq
˘

P κ!pFq. By proposition 4.17, its integral
curves φs “ exp sW are automorphisms of DpM,Nq that preserve κ!pFq. But then,

pφsq
!
pκ!

pFqq “ κ!
pFq.

Since the inclusion j : νpM,Nq ãÑ DpM,Nq and κ|π´1psq : π´1psq Ñ M for s ‰ 0 are
foliation preserving in a trivial way, denoting ψs “ κ ˝ φs ˝ j, we have

ψ!
sF “ pκ ˝ φs ˝ jq!F

“ j!
pφsq

!κ!F
“ j!κ!F
“ p!i!F
“ νpFq,

(4.29)

where the third equality holds because, by definition, κ ˝ j :“ i ˝ p.
By the proof of theorem 1.2, we find that ψ :“ ψ1 is the desired tubular neighborhood
embedding.

6The lemma applies to anchored vector bundles, but one can show that it holds also with our hypothesis
in two ways; either by observing that anchored vector bundles define a singular foliation as the image of
their anchor, or by mimicking the proof of the lemma.
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Remark 4.25. The name splitting theorem comes from the fact that if N̂ is a "small enough"
slice at a point x in M , i.e. it is an embedded submanifold transverse to the leaf of F
at x, then there exists a neighborhood W of x in M such that F restricted to W is
diffeomorphic to the product of a trivial foliation with i!F , with i : N “ N̂ XW ãÑ W is
the inclusion. For more context, see [BBLM20] or [AZ11].
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Chapter 5

Generalizations

In this chapter, we generalize theorem 2.2 by introducing a notion of weights on the local
coordinates of a manifold, and of eigenvalues of vector fields on this manifold. We will first
consider positive integer weights (see [Mei21]), which we will further generalize whenever we
are in the presence of resonances.
In section 5.2 we will present a result on non-resonant eigenvalues (Sternberg linearization
theorem, see [Ste57, Ste58]) and use it to prove a normal form for gradient vector fields of
Morse functions, first shown (to our knowledge) in [Wan18] via analytic techniques. Our
main contribution was to simplify the proof of this result by applying Sternberg’s theorem to
proposition 2.6 of [Wan18], which we demonstrated in a similar way, after having eliminated
some redundancies.

5.1 Weighted Setting
Let us fix a point p P M and a set of local coordinates x1, . . . , xn around p, so that without
loss of generality we can present the theory on M “ Rn.
We will follow the point of view of [Mei21] and, in contrast with the previous chapters, we
will prove the analogue of theorem 2.2 employing germs of vector fields and functions.

Definition 5.1. We refer to an n-tuple of positive integers w “ pw1, . . . , wnq P Nn as a
weight sequence (or simply weight) and we call weighted scalar multiplication associated
to w the smooth map

κt : Rn
Ñ Rn, x “ px1, . . . , xnq ÞÑ ptw1x1, . . . , t

wnxnq. (5.1)

Define the weighted Euler vector field associated to the weight w to be the unique vector
field whose flow is ϕs “ κexp s.

Example 5.2. A straightforward computation shows that the weighted Euler vector field
associated to w takes form

E “
ÿ

i

wixi
B

Bxi
. (5.2)

Recall that, if ϕ is a local diffeomorphism of Rn around the origin and X is a vector field
on Rn, we can define the pullback ϕ˚X to be the pushforward pϕ´1q˚X.

51
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Figure 5.1: Portion of the weighted Euler vector field on R2 associated to the weight
w “ p1, 2q

Definition 5.3. A vector field X “
ř

i aipxq B

Bxi
P XpRnq is called weighted Euler-like for

pRn, 0q if X0 “ 0 and
lim
tÑ0

κ˚
tX “ E, (5.3)

or equivalently, if
lim
tÑ0

t´wiaipκtpxqq “ wixi (5.4)

for all i “ 1, . . . , n.

Observe that for w “ p1, . . . , 1q, this notion restricts to that of Euler-like vector field as in
definition 2.9 whenever X is complete. As we introduced, we can drop this assumption since
we are interested in germs of X.

Example 5.4 (Weighted Euler-like vector fields on R2). Consider R2 with weight w “

p1, 2q, m P N, and the vector fields

X “ px ` ymq
B

Bx
` 2y B

By

Y “ x
B

Bx
` p2y ` xmq

B

By
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vanishing at the origin.
Then, X is weighted Euler-like for all m P N. Indeed,

lim
tÑ0

t´1a1ptx, t2yq “ lim
tÑ0

t´1
ptx ` t2my2m

q

“ x ` lim
tÑ0

t2m´1y2m

“ x,

because 2m ´ 1 ą 0 for any value of m (the check for a2 is trivial. This is the case
whenever such a coefficient has already the form of the corresponding coefficient of the
Euler vector field).
On the other hand, Y is weighted Euler-like if and only if m ě 3 because, following the
same logic,

lim
tÑ0

t´2
p2t2y ` tmymq “ 2y ` lim

tÑ0
tm´2xm “ 2y

if and only if m ě 3.
Intuitively, this example tells us that a vector field is weighted Euler-like if its 0th order
terms (with respect to the weights) agree with the terms of the weighted Euler vector field.
All the higher order terms do not contribute at all. It is useful to remark the following
case: if m “ 2, then Y as above takes the form

Y “ x
B

Bx
` p2y ` x2

q
B

By
.

So, up to the "usual" higher-order terms, Y coincides with the weighted Euler vector field,
i.e. νpY q “ E, but we just saw that it is not weighted Euler-like as in definition 5.3
because, taking into account the weights, the term x2 B

By
has order 0.

The following is the analogue of theorem 2.2 in the weighted setting. For sake of simplicity,
we prove it accordingly to [Mei21], via a Moser -type argument, without passing through the
deformation space, but losing the interesting geometrical picture related to it. For this version
of the proof in the submanifold case, we refer to [Mei21], section 5.

Theorem 5.5. If X is a weighted Euler-like vector field on pRn, 0q, then there exist a
germ ψ at 0 of tubular neighborhood embeddings1 Rn Ñ Rn such that

ψ˚X “ E,

with E the weighted Euler vector field on pRn, 0q as in definition 5.1.

Proof. Consider the time-dependent family of vector fields

Xt “ κ˚
tX “

ÿ

i

aipκtpxqq

twi

B

Bxi
(5.5)

for t ‰ 0. Since X is weighted Euler-like, by definition,

lim
tÑ0

Xt “ E, (5.6)

1In fact, of diffeomorphisms such that ψp0q “ 0 and d0ϕ “ idRn
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i.e. Xt extends to a smooth vector field at time 0 with X0 “ E2.
Now,

dXt

dt
“

1
t

rE,Xts (5.7)

because for any vector fields Z, Y with the flow of Z being denoted by φr, we have

d

dr
pφ´rq˚Y “ pφ´rq˚

d

ds

ˇ

ˇ

ˇ

0
pφ´sq˚Y

“
d

ds

ˇ

ˇ

ˇ

0
pφ´sq˚

`

pφ´rq˚Y
˘

“ LZ

`

pφ´rq˚Y
˘

“ rZ, φ˚
rY s

so that, if Z “ E and Y “ X, we have φr “ κexp r, and substituting r “ ln t,

rE, κ˚
tXs “

´dpln tq
dt

¯´1 d

dt
pκ´tq˚X “ t

d

dt
κ˚
tX.

Additionally, we can define a new time-dependent family of vector fields tWtut‰0 by

Wt “
1
t

pE ´ Xtq (5.8)

for t ‰ 0, which extends at t “ 0 because of equation (5.6). Call tϕtut the germ of flow of
the time-dependent vector field tWtut, with ϕ0 “ idRn .
Then,

d

dt
ϕ˚
tXt “ ϕ˚

t

`

LWtXt

˘

` ϕ˚
t

d

dt
Xt

“ ϕ˚
t

´

rWt, Xts `
dXt

dt

¯

(5.7)
“ ϕ˚

t

´”

Wt `
1
t
E,Xt

ı¯

(5.8)
“ ϕ˚

t

´”1
t
Xt, Xt

ı¯

(3.26)
“ ϕ˚

t

´1
t

rXt, Xts ` Xtp1{tqXt

¯

“ 0.

This shows that ϕ˚
tXt is constant. Hence, calling ψ “ ϕ1, we have

ψ˚X “ ϕ˚
1X1 “ ϕ˚

0X0 “ E.

Moreover, for any given t, the time-dependent vector field tWtut vanishes to second order
at the origin (to see this, combine equations (5.5) and (5.8)). Hence, its flow satisfies
d0ϕt “ idRn for any t. In particular, d0ψ “ idRn .

2This is why, as explained at the end of the previous example, in definition 5.3 we required the 0th
order terms with respect to the weights to agree with the corresponding terms of the Euler vector field.
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Remark 5.6. Opposite to the non-weighted case, the germ of tubular neighborhood embed-
dings we find is not unique. For instance, in the setting of example 5.4 the diffeomorphism

ϕ : R2
Ñ R2, px, yq ÞÑ px, y ` x2

q (5.9)

commutes with the weighted scalar multiplication, thus it preserves the weighted Euler
vector field. Moreover, d0ϕ “ idR2 . Hence, if ψ is a germ of tubular neighborhood
embeddings as in the theorem, ϕ ˝ ψ is one as well, and

pϕ ˝ ψq˚X “ ϕ˚E “ E. (5.10)

Remark 5.7. The previous theorem shows in particular that the vector fields X and Y in
example 5.4 can be linearized to the weighted Euler vector field for all m and for m ě 3,
respectively.
A closer look at this example tells us something more. Consider a vector field

X “ E `
ÿ

i

aipxq
B

Bxi
, (5.11)

where E is the weighted Euler vector field associated to a weight w, and the non-linear
parts ai are monomials in x1, . . . , xn of degree at least 2 (we can extend this discussion to
polynomials and formal polynomials). For instance, take

aipxq “ xk1
1 ¨ ¨ ¨ xkn

n ,

with kj P N for all j and k1 ` . . . ` kn ě 2. Let us define the total weight of ai to be its
degree as a monomial taking into account the weight on each xi, i.e.

w1k1 ` . . . ` wnkn,

and the total weight of B

Bxi
to be ´wi.

Hence, the computations in example 5.4 tell us that the vector field X is weighted Euler-
like, hence linearizable (to E), if and only if the total weight of each component aipxq B

Bxi
,

i.e.
w1k1 ` . . . ` wnkn ´ wi

is positive.
Given that X is linearizable if and only if ´X is linearizable, and ´X will have negative
total weights whenever X has positive total weights, we can conclude that a vector field
of the form (5.11) is linearizable to the weighted Euler vector field whenever the total
weights of its non-linear parts are either all positive or all negative.
As we will see in appendix A, it turns out that this statement is true (at least in the formal
case) not only for positive integer weights but also when w P Qn. Actually, this statement
can be relaxed, since linearizability is granted by theorem 5.9 in the next section if the
"weights" are non-resonant. In fact, appendix A will discuss the complementary resonant
case.
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5.2 Non-Resonant Eigenvalues
The aim of this section is to prove theorem 5.11 (see [Wan18], Theorem 1.2). It gives
conditions under which the gradient vector field of a Morse function on a Riemannian manifold
is linearizable. Our proof will be similar, but simpler and more geometric, and will rely on
Sternberg’s linearization theorem 5.9.
Fix a manifold M and a point p P M , and consider a vector field X on M vanishing at p,
whose linearization νpXq, in local coordinates around p, takes form

νpXq “

n
ÿ

i,j“1
aijxj

B

Bxi
, (5.12)

where aij P R and the matrix A “ raijsi,j has non-zero (possibly complex) eigenvalues
λ1, . . . , λn. We define the eigenvalues of νpXq to be the eigenvalues of A.

Definition 5.8. We say that a set of (possibly complex) numbers λ1, . . . , λn is non-
resonant (or satisfies the N0

3-linearity condition) if for any pk1, . . . , knq P Nn
0 with

řn
j“1 kj ě

2
n
ÿ

j“i

kjλj ´ λi ‰ 0 (5.13)

for all i “ 1, . . . , n.
Equivalently, if every sum (with possible repetitions) of at least two elements in tλ1, . . . , λnu

does not belong to tλ1, . . . , λnu.

The following is a classical result due to Sternberg (see [Ste58], theorem 2).

Theorem 5.9 (Sternberg’s Linearization). Let X be a vector field on M vanishing at
p. If the eigenvalues of its linearization νpXq are non-resonant, then there exists a local
diffeomorphism

ψ : U Ă TpM Ñ U 1
Ă M,

with 0 P U, p P U 1, such that ψp0q “ p and

ψ˚X “ νpXq,

i.e. X is linearizable.

5.2.1 Gradient Vector Fields of Morse Functions
Let pM, gq an n-dimensional Riemannian manifold with metric g P ΓpT ˚M bT ˚Mq and Levi-
Civita connection ∇. Recall that for a smooth map f : M Ñ R, we can define its gradient
(vector field) ∇f (or Grad f) as the unique vector field on M such that

gp∇f,Xq “ dfpXq, (5.14)

and the Hessian of f to be the section Hess f P ΓpT ˚M b T ˚Mq given by

Hess fpX, Y q “ gp∇X Grad f, Y q (5.15)
3N0 :“ Zě0 “ t0, 1, 2, 3, . . .u
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for every X, Y P XpMq.
We call a point p P M a critical point for f if

Grad f |p “ 0. (5.16)

If additionally Hess f |p is non-degenerate (as a bilinear form on TpM), p is said to be a non-
degenerate critical point.
Now, for a bilinear form B on TpM , we can consider its associated linear map

rB : TpM Ñ T ˚
pM, v ÞÑ Bpv, ¨q,

which is non-degenerate (equivalently, invertible) if and only if B is.
Hence, fixing a point p, we can think of pg´1 ˝ Hess fq|p as its associated linear map

`

rg´1
˝ ČHess f

˘
ˇ

ˇ

p
: TpM Ñ TpM.

Definition 5.10. A smooth function f : M Ñ R is a Morse function if all its critical
points are non-degenerate.
So, if f is a Morse function and p is a critical point, pg´1 ˝ Hess fq|p has n non-zero
eigenvalues counted with multiplicity, called Morse eigenvalues of f at p.

It turns out that the Morse eigenvalues are all real. In fact, in the proof of proposition
5.12 we will show that pg´1 ˝ Hess fq|p is self-adjoint.
In Morse lemma 4.3, we stated that there exists a local change of coordinates on Rn under
which a Morse function takes the following normal form

fpxq “
ÿ

i

˘x2
i . (5.17)

Hence, in Euclidean metric on Rn, its gradient vector field is

∇f “
ÿ

i

˘xi
B

Bxi
,

i.e. it is a linear vector field.
For a general metric g, there is no reason why, in the above-mentioned coordinates, should
both f take the form (5.17) and g be the Euclidean metric (or even a general flat metric).
It is then natural to ask when the gradient vector field of a Morse function on a Riemannian
manifold is linearizable.
With the next theorem we show that, under some conditions on f and g, the gradient vector
field of f admits a normal form, even though the metric alone does not.

Theorem 5.11. If f : M Ñ R is a Morse function on pM, gq whose Morse eigenvalues
at a critical point p are non-resonant, then there exists a local diffeomorphism

ψ : U Ă TpM Ñ U 1
Ă M,

with 0 P U, p P U 1, such that ψp0q “ p, that linearizes ∇f .
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The proof of the previous theorem is a straightforward application of Sternberg lineariza-
tion theorem 5.9 to the following result. Its proof is taken from [Wan18], but with some
redundancies here simplified.

Proposition 5.12. If f is a Morse function on pM, gq, there exists a local chart pU, px1, . . . , xnqq

around every critical point p such that

∇fpxq “
ÿ

i

pλixi ` aipxqq
B

Bxi
, (5.18)

where the ai’s are functions vanishing to second order at x “ 0 and the λi’s are the Morse
eigenvalues of f at p.

Proof. By the proof of Morse lemma 4.3, we can find a chart around p where f takes form
(4.3)

fpxq “
1
2
ÿ

i,j

Hijpxqxixj,

with Hpxq symmetric and Hp0q “ Hess f |0.
We claim that the linear map associated to h :“ pg´1Hess fq|x“0 “ g´1p0qHp0q is self-
adjoint, i.e. that for any v, w P TpM

gph̃v, wq “ gpv, h̃wq. (5.19)

Indeed,
g
`

prg´1
|0 rH|0qpvq, w

˘

“ rH|0pvqpwq “ Hess f |0pv, wq,

and since g is symmetric

g
`

v, prg´1
|0 rH|0qw

˘

“ g
`

prg´1
|0 rH|0qw, v

˘

“ rH|0pwqpvq “ Hess f |0pw, vq.

So, we have our claim by the symmetricity of the Hessian.
Since pg´1Hess fq|x“0 is self-adjoint, we can find an orthogonal matrix (i.e. a coordinate
change x ÞÑ y) that diagonalizes pg´1Hess fq|x“0 into the diagonal matrix of (Morse)
eigenvalues λ1, . . . , λn, i.e.

g´1Hess f |y“0 “

¨

˚

˝

λ1 0
. . .

0 λn

˛

‹

‚

. (5.20)

Hence, expanding at y “ 0 by Hadamard theorem, we find
ÿ

k

pg´1
qikpyqHkjpyq “ pg´1

pyqHpyqqij “ λiδij ` Op||y||q. (5.21)

Recalling that by equations (4.4) and (4.5),

Bf

Byj
pyq “

ÿ

k

Hjkpyqyk `
1
2
ÿ

k,l

BHkl

Byj
pyqykyl, (5.22)

and that the gradient has local expression

∇fpyq “
ÿ

i,j

pg´1
qijpyq

Bf

Byj
pyq

B

Byi
, (5.23)
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plugging equation (5.22) into (5.23) and using (5.21), we obtain

∇fpyq “
ÿ

i,j

`

pg´1
ij pyq

ÿ

k

Hjkpyqyk ` Op||y||
2
q
˘ B

Byi

“
ÿ

i,k

`

yk
ÿ

j

pg´1
ij pyqHjkpyq ` Op||y||

2
q
˘ B

Byi

“
ÿ

i

pλiyi ` Op||y||
2
qq

B

Byi

concluding the proof.

Remark 5.13. Observe that the coefficients λ1, . . . , λn do not depend on the local chart.
Indeed, in the previous proof, they are constructed as the eigenvalues of g´1 Hess f |0, and
we know that the eigenvalues of a matrix do not depend on the choice of coordinates.

Proof of theorem 5.11. By the last proposition, under a suitable local chart, the gradient
vector field of f takes the form (5.18). Hence, its linearization is

νp∇fqpyq “
ÿ

i

λiyi
B

Byi
,

which by hypothesis has non-resonant eigenvalues λ1, . . . , λn. The conclusion holds by
applying Sternberg’s linearization theorem 5.9.





Appendix A

Resonant Eigenvalues

For the sake of completeness, we explain the problem of linearization of vector fields in the
presence of resonances. This discussion generalizes the weighted setting of section 5.1 when
the weights are resonant (in the non-resonant case, we know linearizability holds by Sternberg
theorem) and is inspired by [BG10]. An interested reader is invited to check this reference for
a richer analysis of the topic.
Without loss of generality, take M “ Rn with coordinates x1, . . . , xn and p “ 0. Consider
a formal vector field X on Rn (i.e. a derivation on the algebra of formal power series of
x1, . . . , xn over R. E.g the expansion around 0 of a vector field on Rn) vanishing at the origin,
whose linearization takes the form

νpXq “

n
ÿ

i“1
λixi

B

Bxi
,

with λ1, . . . , λn resonant and none of them zero. So that

X “ νpXq ` A,

with A being a vector field with no linear components

A “

n
ÿ

i“1

ÿ

|K|ě2
aKi x

K B

Bxi
,

for aKi P R, where K “ pk1, . . . , knq P Nn
0 multi-index, |K| “ k1 ` . . . ` kn, and xK :“

xk1
1 ¨ ¨ ¨ xkn

n .
We say that the vector field A is admissible if all linear combinations with non-negative integers
(not all zero) of its total weights

QK
i :“ k1λ1 ` . . . knλn ´ λi,

such that aKi ‰ 0 are non-zero.

Theorem A.1 ([BG10], Theorem 3.4). Let X be a (formal) vector field as above. If its
non-linear part A is admissible, then there exists a formal change of coordinates linearizing
X.

Remark A.2. Note that if all the λi are positive integers such that each of the QK
i is

positive, then any linear combination with non-negative integers of the total weights will
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again be positive. This means that weighted Euler-like vector fields, as in section 5.1,
have admissible non-linear parts (by remark 5.7) and are thus (formally) linearizable, as
we anticipated at the end of the section. Notice that in the case of non-resonant weights,
we already know by Sternberg that they can be smoothly linearized.
Similarly, if the λi P Z are such that the total weights QK

i are all positive or all negative,
then we have admissible non-linearity and the same conclusion holds. Analogously for
λi P Q, multiplying eventually by the product of the denominators of the λi’s.



Appendix B

Functoriality of Linearization

As we anticipated, the linearization of a vector field can be defined in a functorial way. We
explain this process following [BLM16], Section 2.2.
Consider a vector bundle pr : E Ñ M and a vector subbundle F Ñ N , with F Ă E and
N Ă M submanifolds. Then, by remark 3.5, pr induces a projection

νpprq : νpE,F q Ñ νpM,Nq,

turning νpE,F q into a vector bundle over νpM,Nq.
By definition of the normal bundle, we also have vector bundle structures

p : νpM,Nq Ñ N,

and
νpE,F q Ñ F.

Hence, we obtain a so-called double vector bundle

νpE,F q F

νpM,Nq N

νpprq

p

where all the horizontal and vertical maps are projections.
In particular, considering the tangent bundles E “ TM and F “ TN gives rise to a double
vector bundle

νpTM, TNq TN

νpM,Nq N

νpprq

p

(B.1)
On the other hand, we have the tangent bundle

TνpM,Nq Ñ νpM,Nq

and a vector bundle
Tp : TνpM,Nq Ñ TN
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constructed as in remark 3.5. This gives rise to another double vector bundle

TνpM,Nq TN

νpM,Nq N

Tp

p

(B.2)

By lemma B.1 below, we have an isomorphism between the double vector bundles (B.1) and
(B.2), i.e. νpTM, TNq » TνpM,Nq.
By remark 3.5, a vector field X on M tangent to a submanifold N , i.e. a smooth map of
pairs X : pM,Nq Ñ pTM, TNq, gives rise to a map

νpXq : νpM,Nq Ñ νpTM, TNq,

which by the lemma below can be seen as a map

νpXq : νpM,Nq Ñ TνpM,Nq,

i.e. a vector field νpXq on νpM,Nq.
This gives a functorial way to construct the linearization of X, which we defined via its action
in definition 3.9.
Let us now show the following

Lemma B.1. There exists a vector bundle isomorphism

νpTM, TNq
„
ÝÑ TνpM,Nq

with respect to the vector bundle structures over TN and νpM,Nq that restricts to the
identity on each base.

Proof. Consider the tangent bundle prM : TM Ñ M and the double tangent bundle

TTM TM

TM M

TprM

prTM

prM

prM

If we view an element of TTM as a double derivation at the origin of TTM , we find an
isomorphism J : TTM Ñ TTM , referred as to the canonical involution, defined by the
switching of the order of derivation

J
´

B2m

BtBs

ˇ

ˇ

p0,0q

¯

“
B2m

BsBt

ˇ

ˇ

p0,0q
,

so that TprM
˝ J “ prTM (see [Mac05], chapter 9.6).
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TTM TM

TTM TM

TM M

TM M

TprM

prT M
prT M

TprM

J

Now, for any submanifold N Ă M , we can consider the submanifolds T pTM |Nq and
T pTMq|TN of TTM . These are both double vector subbundles on which J restricts to an
isomorphism (that we call again J).

T pTM |Nq TN

T pTMq|TN TM |N

TM |N N

TN N

TprM

prT M

TprM

prT M

J

By construction J restricts to the canonical involution J : TTN Ă T pTM |Nq Ñ TTN Ă

T pTMq|TN . Hence, we have an isomorphism on the quotients

rJ : T pTM |Nq

TTN
Ñ

T pTMq|TN

TTN
,

i.e. an isomorphism of the double vector bundle

T pνpM,Nqq TN

νpTM, TNq νpM,Nq

νpM,Nq N

TN N

Tp

p

π

νpπq

rJ
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