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Preface

This thesis is on Morse theory, the study of nice real valued functions on
manifolds, called Morse functions. While elementary, they provide great
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I would like to thank my family for their support, giving me the opportunity
to make this possible.

Lastly, Marie, thank you for the whiteboard in front of which we have spent
many hours together. It was essential for finishing this thesis. Thank you
for listening to my never ending rambles on Morse theory, proofreading my
thesis, being the test subject for my presentations and for the much needed
distraction.

Gilles, June 2021

i





1 Marston Morse. “Relations between the critical
points of a real function of n independent variables”.
In: Transactions of the American Mathematical
Society 27.3 (1925), pp. 345–396

2 Stephen Smale et al. “The generalized Poincaré
conjecture in higher dimensions”. In: Bulletin of
the American Mathematical Society 66.5 (1960),
pp. 373–375

Summary

In 1925, Marston Morse wrote his seminal paper titled ‘Relations between
the critical points of a real function of n independent variables,’1 founding
the field that is nowadays known as Morse theory. In his paper, he studies
smooth functions f : M → R that satisfy a non-degeneracy condition. The
core idea is to examine how the topology of f −1(t) changes when changing
t, in order to infer something about the manifold M itself.

Over time, the ideas of Morse have been proven very useful. For example,
handlebody decompositions and Heegaard splittings form an indispensable
tool used in low-dimensional topology. Morse functions also give rise to a
homology theory that has inspired many others, including Floer homology.
Further developments of Morse theory led to Smale’s proof of the h-cobordism
theorem and the generalized Poincaré conjecture in higher dimensions.2

The aim of this thesis is twofold. Firstly, we introduce Morse functions and
Morse homology and prove that the latter is isomorphic to singular homology.
Secondly, we prove the generalized Poincaré conjecture in higher dimensions,
following the ideas of Smale. By including more than a hundred figures and
providing many details, we aim to make this subject accessible to all.

In Chapter 1, we talk about the basics of Morse theory. We give several
equivalent definitions of a Morse function and give some examples. We
also show that Morse functions give rise to so-called handle decompositions:
there is a one-to-one correspondence between critical points of a Morse
function and so-called handles, building blocks from which any manifold can
be built. We give some very concrete examples of handle decompositions
in dimensions one, two and three. We end the chapter by showing that any
manifold admits (infinitely many) Morse functions. Even more, we show that
they are generic and stable, meaning that any function can be approximated
by a Morse function and if we perturb a Morse function, it stays Morse.

Chapter 2 concerns the concept of stable and unstable manifolds. They
form a way of understanding interaction of handles. For example, two handles
are ‘independent’ if the intersection of the associated stable and unstable
manifolds is empty, allowing us to reorder them, as we prove in Theorem 2.15.
This idea leads to the existence of self-indexing Morse functions, asserting
that we can always build a manifold by first attaching 0-handles, then 1-
handles, 2-handles, et cetera, in that order. We end the chapter by proving
a first cancellation theorem, stating that under certain circumstances, we
can cancel pairs of critical points.
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In Chapter 3, we introduce Morse homology. We first define the Morse
complex Ck(f ) and the Morse differential ∂X , which is based on counting the
number of trajectories along the (pseudo-)gradient vector field X between
critical points of a Morse function f . Morse homology HM(C•(f ), ∂X) is the
homology associated to this complex. As an illustration, we compute some
examples in two and three dimensions. The rest of the chapter covers three
important theorems in Morse theory. We prove that the Morse complex is
actually a complex (∂2

X = 0), that Morse homology is independent of the
Morse function and gradient, and lastly that Morse homology is actually
isomorphic to singular homology. The proofs of these theorems are very
geometrical in nature and their ideas have inspired many other theories.

Chapter 4 discusses some applications of Morse homology. While we now
know that it is isomorphic to singular homology, and hence it enjoys all the
properties of singular homology, it still can be illuminating to derive these facts
directly from Morse homology. For example, we can prove Poincaré duality
by simply changing the Morse function f  −f , i.e. turning the manifold
upside down. This has the effect of k-handles becoming n − k-handles and
flow lines reversing direction, from which the desired result follows rapidly.
We also discuss the Morse inequalities, giving a lower bound for the number
of critical points of a Morse function in terms of the singular homology of M:

# Critk f ≥ rankHk(M;Z).

We end the chapter by proving some related facts including a stronger version
of the Morse inequalities.

In Chapter 5, we prove that under certain conditions, the Morse inequalities
can be attained by some Morse function. In other words, there always exists
a Morse function such that # Critk f = rankHk(M;Z). We prove this by
considering an arbitrary Morse function, and then cancelling pairs of critical
points until the Morse inequalities have been reached. To this purpose, this
chapter mostly contains stronger cancellation results. In Section 5.5, all
these cancellation theorems come together and we prove the minimality
of the Morse inequalities. This has as an immediate corollary two of the
most important theorems in differential topology: the h-cobordism theorem
and the generalized Poincaré conjecture in dimension n ≥ 5, stating that a
homotopy sphere is a topological sphere. To end this thesis, we also discuss
some of the historical aspects of these theorems.
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List of symbols

M t N Transverse intersection

〈·, ·〉 Riemannian metric on a manifold or,
Inner product on space of critical points 〈c, d〉 = δcd

N · N ′ Intersection number of two manifolds

A A Z-module, i.e. an abelian group

Bn Closed disk of dimension n

Ck(f ,Z) Free module over Z generated by index k critical points of
f , i.e. the space of formal sums of index k critical points

Ck(f ,Z2) Vector space over Z2 generated by the index k critical
points of the Morse function f

codimN Codimension of N

dimN Dimension of N

Critk f Critical points of f of index k

Crit f Critical points of f

C∞(M,N) Smooth maps from M to N

∂X,k Morse differential associated to pseudo-gradient X

[∂k ] Matrix of the Morse differential ∂k : Ck → Ck−1

Dn Open disk of dimension n

grad f Gradient of f , i.e. (df )]

HM(M;Z2) Morse homology of a manifold M with coefficients in Z2

HM(M;Z) Morse homology of a manifold M with coefficients in Z

HM(C•(f ), ∂X) Morse homology of Morse function f and pseudo-gradient X

Hk(M,N) Singular homology of M relative to N

Hk(M;Z) Singular homology of M over Z

Hk(M;Z2) Singular homology M over Z2

Ind a Index of critical point a
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L(p, q) Moduli space of unbroken trajectories between p and q,
i.e.M(p, q)/R, where R acts by time translations

L(p, q) Space of broken and unbroken trajectories between p and
q, the compactification of L(p, q)

M A smooth manifold

M(p, q) Set of all points on trajectories following a pseudo-gradient
from p to q, W u(p) t W s(q)

NX(p, q) Signed number of trajectories of X connecting p to q

nX(p, q) Number of trajectories of X connecting p to q

πk(M) Homotopy group of a manifold

r0(A) Free rank of a Z-module, i.e. dimQ A⊗Q

rp(A) p-torsion rank of a Z-module, i.e. cardinality of a maximal
set of independent elements of order pk for some k

rt(A) Total torsion rank of a Z-module, i.e.
∑
rt

r(A) Total rank of a Z-module, i.e. rt(A) + r0(A)

Ss(p) Stable sphere associated to a critical point p, alternatively
called the belt sphere

Su(p) Unstable sphere associated to a critical point p, alterna-
tively called the attachment sphere

Sn Sphere of dimension n

W s(p) Stable manifold of a critical point p

W u(p) Unstable manifold of a critical point p

W
u

(p) Compactification of the unstable manifold associated to a
critical point p

X Pseudo-gradient vector field
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CHAPTER ZERO

Preliminaries

In this thesis, we assume the reader is familiar with basic concepts of dif-
ferential geometry such as smooth manifolds, vector fields, flows, bundles,
differential forms, et cetera. In this chapter, we discuss some concepts that
might be unfamiliar.

We will first focus on two concepts from differential geometry, namely
transversality and intersection numbers. The second section is on algebraic
topology, discussing homology, homotopy and their relation. We will use
these concepts from Chapter 3 and onwards.

Differential Geometry

Transversality

The first concept we want to introduce is transversality, introduced by Thom
in 1954.3 For a more in depth overview, we refer the reader to ‘Differential
Manifolds’ by Kosinski.4

Definition 0.1 (Transversality). Let M be a manifold and N1, N2 be
two submanifolds. Then N1 intersects N2 transversely if and only if for
all points of intersection p ∈ N1 ∩ N2, we have TpM = TpN1 + TpN2.
We denote this by N1 t N2.5

Note in particular that this depends on the ambient manifold M, and that if
N1 and N2 do not intersect, their intersection is vacuously transverse. We
give some examples below.

Figure 1: Examples and non-examples of transverse
intersections. Multiple configurations of two circles
are shown: thrice with ambient manifold R2, and
once embedded in R3.t t 6t 6t

If the intersection of two manifolds N1 and N2 is transverse, it is more well-
behaved than in the general case. For example the transverse intersection

1



CHAPTER 0. PRELIMINARIES

N1

N2

N1 ∩ N2

M = R2

Figure 2: Let M = R2 and let N1 and N2 be
submanifolds as in the figure. Then N1 and N2 do
not intersect transversely and their intersection is
not a manifold: it is the union of a point and an
interval.

N1 t N2 is again a manifold, which is not true in general, as Figure 2
illustrates. Moreover, we have the following:

Proposition 0.2. Let M be a manifold and N1, N2 be two submanifolds.
If N1 intersects N2 transversely, then N1 t N2 is again a manifold and

codim(N1 t N2) = codimN1 + codimN2,

where the codimensions are to be taken with respect to M, by which
we mean codimNi = dimM− dimNi . Moreover, T (N1 t N2) = TN1 t
TN2.

Proof. As this is a local statement, we prove it for M = Rm. We may
assume that N1 = f −1

1 (0) and N2 = f −1
2 (0) where fi are submersions from

Rm to Rni , where ni is the codimension of Ni . Then we can also consider
F = (f1, f2) : Rm → Rn1 × Rn2 . Notice that N1 ∩ N2 = F−1(0). Then

dimN1 ∩ N2 = dim Ker d0F

= dim(Ker d0f1 ∩ Ker d0f2)

= dim Ker d0f1 + dim Ker d0f2 − dim(Ker d0f1 + Ker d0f2)

= (m − n1) + (m − n2)−m
= m − (n1 + n2).

This also shows that Tp(N1 t N2) = TpN1 t TpN2 and that N1 t N2

is a manifold, which is not always the case when the intersection is not
transverse.

Rm

N1

N2

R n
2

0 =
f2 (N

2 )

Rn10

Rn2

F (N1)

F (N2)

R
n1

0 =
f1(
N1

)

f1

f2

Figure 3: When N1 t N2, the codimension of the
intersection is the sum of their codimensions. By
using the implicit function theorem, we straighten
the situation.

An interesting property of transversality is that it is both generic and stable.
By generic we mean that any two manifolds intersecting can be made
to intersect transversely by perturbing one of the manifolds. Stability on
the other hand means that when we perturb a transverse intersection, it
stays transverse. At the core of the proof of stability and genericness of
transversality lies the theorem of Sard:

Theorem 0.3 (Sard’s theorem). Let f : M → N be a C∞ map. Then
the set of critical values of f has measure zero in N. The set of regular
values of f is open and dense.

For a proof, see ‘Smooth manifolds and their applications in homotopy theory’
by Pontrjagin.6

6 Lev Semenovič Pontrjagin. “Smooth manifolds
and their applications in homotopy theory”. In:

Topological Library: Part 1: Cobordisms and Their
Applications. World Scientific, 2007, pp. 1–130

Note that it is the set of critical values that has measure
zero, not the set of critical points. Stability and genericness correspond to
the set of regular values being open and dense respectively. We will use this
theorem for showing that Morse functions exist, are abundant, and can be
used to approximate any other function.
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Intersection number

The second concept we want to introduce is the intersection number of two
manifolds. We again follow ‘Differential Manifolds’ by Kosinski. The idea is
to count the number of intersection points with signs:

Definition 0.4 (Intersection number). Let N and N ′ be r - and s-
dimensional submanifolds of an (r+s)-dimensional manifoldM. Suppose
N is oriented, N ′ is co-oriented and their intersection is transverse.

Let p ∈ N t N ′. Then TpN is oriented both by the orientation of N
and the co-orientation of N ′. If these orientations match, we define the
intersection number at p to be +1, otherwise we define it to be −1.

The intersection number N ′ · N is then defined as the sum of all the
intersection numbers at the points in N t N ′.

M ′

M−1
+1

Figure 4: The intersection number is defined
by comparing the orientation of N with the co-
orientation of N ′ at the points of transverse inter-
section. In this case, the ambient manifoldM = R2,
N = (0, 1) and N ′ = S1 and N ′ · N = −1 + 1 = 0.

Remark 0.5. If we change the order, the intersection number might change
sign: N · N ′ = ±N ′ · N.

By counting the number of points in the intersection with signs, we have
managed to associate a number to an intersection that is invariant under
ambient isotopies, which is not true if we simply count the number of points
in the intersection.

Proposition 0.6. The intersection number N ·N ′ does not change under
ambient isotopies of N or N ′. In particular, we can define the intersection
number of two manifolds that do not intersect transversely.

Example 0.7. Consider the intersection ofM = S1 and an interval embedded
in R2. Consider the orientation of M and co-orientation of M as defined in
Figure 4. Then M ′ ·M = −1 + 1 = 0. It is also clear that the intersection
number does not change under isotopies of the manifolds, even though the
number of intersection points does.

We will use the concept of intersection numbers in the last chapter where
we prove the generalized higher dimensional Poincaré conjecture.

Algebraic topology

Roughly stated, algebraic topology is the study of functors from the category
of topological spaces to the category of groups. In other words, we seek
ways to associate groups (and often objects with even more structure such
as R-modules) to topological spaces in such a way that homeomorphisms
give rise to homomorphisms. In this section, we will discuss two ways to do
so, resulting in homology and homotopy groups.

3



CHAPTER 0. PRELIMINARIES

CiCi+1

di+1

Ci−1

di

Hi(C•)

π

Figure 5: Homology measure exactness of a chain
complex.

Homology theory

In the context of topology, homology was constructed as a way to detect
holes in topological spaces. However, the methods and ideas generalize to
other settings as well, and we can for example define homology of groups.

In its most general form, homology measures non-exactness of a chain
complex. The following definitions can be found in any textbook on algebraic
topology or homological algebra.

Definition 0.8 (Chain complex). Let R be a commutative ring. A chain
complex of R-modules is a sequence C• of the form

· · · → C2
d2−→ C1

d1−→ C0
d0−→ C−1

d−1−−→ C−2 → · · ·

where each term Ci is an R-module and di : Ci → Ci−1 is an R-module
homomorphism such that di−1 ◦ di = 0 for all i ∈ Z.

We often suppress the indices of the maps di and the last condition then
becomes d2 = 0.

Definition 0.9 (Homology). Let C• be a chain complex of R-modules.
The i-th homology of C• is

Hi(C•) =
Ker di

Im di+1
.

This is well defined because Im(di+1) ⊂ Ker(di).

It is clear that this measures the exactness of the sequence. Indeed, if the
sequence is exact, i.e. Im di+1 = Ker di , then Hi(C•) = 0.

Definition 0.10 (Chain map). A chain map f• : C• → D• is a collec-
tion of R-module homomorphisms which makes the following diagram
commute:

· · · Ci+1 Ci Ci−1 · · ·

· · · Di+1 Di Di−1 · · ·

dCi+1

fi+1

dCi

fi fi−1

dDi+1 dDi

In other words, suppressing indices, f ◦ dC = dD ◦ f .

It is easy to check that chain maps induce a map on the level on homology
which we denote by Hi(f•) : Hi(C•)→ Hi(D•).

The following is a useful criterion for determining whether two different
chain maps f•, g• induce the same maps on the level on homology, i.e.
Hi(f•) = Hi(g•).

4



∆0 ∆2 ∆3∆1

∆2

φ

Figure 6: Top: Standard n-simplex for n =

0, 1, 2, 3. Bottom: a singular n-simplex in the torus.

Definition 0.11 (Chain homotopic). Let f•, g• be chain maps between
C• and D•. A chain homotopy from f• to g• is a collection of R-module
homomorphisms hi : Ci → Di+1 such that gi − fi = dDi+1 ◦ hi + hi−1 ◦ dCi
for all i . If such a map exists, we say that f• and g• are chain homotopic.

· · · Ci+1 Ci Ci−1 · · ·

· · · Di+1 Di Di−1 · · ·

dCi+1

fi+1 gi+1

dCi

fi gi
hi

fi−1 gi−1
hi−1

dDi+1 dDi

Suppressing indices, this becomes g − f = dh + hd .

Proposition 0.12. Let f•, g• be two chain homotopic chain maps from
C• to D•. Then Hi(f•) = Hi(f•), i.e. the maps induced on the level of
homology are identical.

Proof. Let hi be a chain homotopy between f• and g•. Let x ∈ Ker(dCi ).
Then, suppressing indices,

g(x) + Im(dD) = f (x) + (h ◦ dC)(x) + (dD ◦ h)(x) + Im(dD)

= f (x) + h(0) + Im(dD)

= f (x) + Im(dD).

Singular homology

In Algebraic topology, the most important form of homology is singular
homology. In order to define the chain complex, we first need to introduce
the concept of a simplex.

Definition 0.13 (Standard n-simplex). We define the standard n-simplex
to be

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0}.

A singular n-simplex is a continuous map φ : ∆n → M, where M is a
topological space.

Remark 0.14. The name ‘singular’ comes from the fact that φ does not
need to be a homeomorphism. Hence, φ can ‘squash’ simplices, making them
singular.

5



CHAPTER 0. PRELIMINARIES

σρ

φ

Figure 8: Some 1-chains in M = R2 \D2.

Definition 0.15 (Boundary of a singular n-simplex). Let φ : ∆n → M

be a singular n-simplex. We define the i-th boundary of φ to be

∂iφ : ∆n−1 → X : (t0, . . . , tp−1) 7→ φ(t0, t1, . . . , ti−1, 0, ti , . . . , tp−1).

We define the boundary of φ to be

∂φ =
∑

(−1)i∂iφ.

Example 0.16. Consider the singular 2-symplex φ : ∆2 → R2 defined by
φ(t0, t1, t2) = t0x0 + t1x1 + t2x2 where x0, x1, x2 are points in R2 as indicated
in the figure below. Then ∂0φ is given by

(∂0φ)(t0, t1) = φ(0, t0, t1).

Viewing this singular 1-simplex as a path via the homeomorphism f : [0, 1]→
∆1 : t 7→ (1 − t, t), we can see that ∂0φ travels from x1 to x2. Similarly,
∂1φ travels from x0 to x2 and ∂2φ from x0 to x1. Combining these results
with the correct signs, we get ∂φ = ∂0φ− ∂1φ+ ∂2φ, a linear combination
of three paths travelling counter-clockwise around φ.

Figure 7: Illustrating the definition of boundary of
a singular 2-simplex. = − +

∂0φ ∂1φ ∂2φ

=

∂φ
x0 x1

x2

∂

One can show that ∂2 = 0, which allows us to define singular homology as
follows:

Definition 0.17 (Singular homology). Let M be a manifold. Let Ci(M)

be the free abelian group generated by all singular i-simplices. Elements
in Ci(M) are called chains. Then the following sequence is a chain
complex

· · · ∂−→ Cn(M)
∂−→ Cn−1(M)

∂−→ Cn−2(M)
∂−→ · · · ,

and its homology is called singular homology of M.

Remark 0.18. We take C−1(M) = C−2(M) = · · · = 0. This implies that
if M is an n-dimensional manifold, then only H0(M), . . . , Hn(M) can be
non-zero.

Let us give an interpretation of singular homology. The homology of the
above chain complex is given by

Hk(M) =
{singular k-symplices without boundary}

{singular k-symplices that bound a k + 1-simplex} .

So a non-trivial element in Hk(M) is a cycle (a chain without boundary)
that does not bound a k + 1 simplex. This should make clear how singular
homology finds holes in manifolds.

6



B

A

ρ

σ

A ∩ B

Figure 9: We can compute the homology of a torus
by covering it with two open sets A and B.

Example 0.19. Consider the situation in Figure 8 with M = R2 \D2.

• The chain ρ (which is the sum of four 1-simplices) has no boundary and
bounds itself a 2-chain (the sum of two 2-simplices). Therefore, ρ is trivial
in homology.

• The chain σ also has no boundary, but it does not bound a 2-simplex. The
chain σ represents the hole in the plane and corresponds to a non-trivial
element in homology.

• The chain φ is similar to σ. It also represent the hole in the plane
and corresponds to a non-trivial element in homology. In fact, φ and σ
represent the same element—we say that they are homologous. Indeed,
their difference φ − σ bounds the region between the hexagon and the
pentagon and we can see this as a 2-simplex by triangulating it.

Turning these ideas into a proof, one can show that

H0(M) = Z H1(M) = Z H2(M) = 0 H3(M) = 0 · · ·

Example 0.20. For a sphere, we have

Hk(Sn) =

{
Z if n = 0, k

0 else.

Computing singular homology

Homology is in many cases not so difficult to compute because it is essentially
a local, as the following theorem shows:

Theorem 0.21 (Mayer-Vietoris). Let M be a topological space covered
by the interiors of two subspaces A,B, i.e. M = Å ∪ B̊. Then the
following long exact sequence relates the homology of M with that of
A,B and A ∩ B:

· · · Hn(A ∩ B) Hn(A)⊕Hn(B) Hn(M)

Hn−1(A ∩ B) Hn−1(A)⊕Hn−1(B) Hn−1(M) · · ·

∂∗ (i∗,j∗) k∗−`∗ ∂∗

∂∗ (i∗,j∗) k∗−`∗ ∂∗

where i : A ∩ B ↪→ A; j : A ∩ B ↪→ A; k : A ↪→ M; ` : B ↪→ M are
inclusions and ∂∗ takes a chain in M, splits it up in a chain lying entirely
in A and one entirely in B and then takes the boundary of the chain
lying in A.

Example 0.22. Let us illustrate the boundary map ∂∗. Consider the torus
T 2 and the open cover by cilinders A and B are in Figure 9. Consider the
one-chain φ that goes around the hole once. We can split it up in two
chains: φ = ρ+ σ where ρ lies entirely in A and σ lies entirely in B. Then
∂∗[x ] = [∂ρ], which in this case is the difference of the points indicated in
the figure. While we have made many choices, the end result is well-defined
in homology.

7
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M

∂M

σ

Figure 10: The chain σ is an example of a 1-cycle
in the relative homology H(M, ∂M).

Writing down the long exact sequence and using the fact that the homology
of a cylinder is the same as that of S1, we find

H0(T 2) = Z H1(T 2) = Z2 H2(T 2) = Z.

Another tool for computing homology is the Künneth formula, allowing us
to compute H•(M × N). For this, let us introduce the tensor product of
complexes.

Definition 0.23 (Tensor product of complexes). Let C• and D• be two
complexes. Their tensor product is defined as

(C ⊗D)k =
⊕
i+j=k

Ci ⊗Dj ,

with boundary operator ∂C ⊗ 1 + 1⊗ ∂D.

Under the condition that C• and D• are vector spaces, i.e. that we are
working over a field, we have the following result:

Proposition 0.24. Let C• and D• be complexes over a field. The
homology of the tensor product complex is the tensor product of the
homologies:

H?(C• ⊗D•) = H?(C•)⊗H?(D•).

The Künneth formula then states the following:

Theorem 0.25 (Künneth formula). Let X and Y be topological spaces
and F a field. Then

H•(X × Y ;F ) = H•(X;F )⊗H•(Y ;F ).

A proof of this can be found in any textbook on algebraic topology.7

Example 0.26. Applying this to T n = S1 × S1 × · · · × S1, we get that

Hk(T n;Q) = Q(nk),

where we consider homology over Q, which is defined similarly as over Z,
except we allow for formal rational sums of simplices.

Relative homology and singular cohomology

Let us lastly discuss relative homology and singular cohomology.

Definition 0.27 (Relative homology). Let A be a submanifold of M.
The inclusion of A ↪→ M induces an inclusion C•(A) ↪→ C•(M). Then
the relative homology ofM w.r.t. A is the homology of the chain complex
C•(M)/C•(A) and is denoted with H•(M,A).

8



p

φ

ρ

σ

Figure 11: Examples of paths in R2 \ D2. The
paths ρ and σ are homotopic. The path φ is null-
homotopic.

If M and A are ‘nice’, you can think of the relative homology of M w.r.t A
as the homology of M/A. We will often be considering the relative homology
H(M, ∂M), where M is a manifold with boundary as illustrated in Figure 10.
As an illustration, we have drawn a chain that is not a cycle in M, but is a
cycle relative to ∂M. Indeed, relatively seen, it has no boundary, because its
boundary forms a chain in ∂M.

Singular cohomology is the dual of singular homology in the following sense:

Definition 0.28 (Singular cohomology). Let M be a manifold and let
R be a ring. The singular cohomology of M with coefficients in R is
defined to be the homology of following complex

· · · ← C∗i+1

d∗i←− C∗i
d∗i−1←−− C∗i−1 ← · · ·

where C∗i = HomR(Ci , R) and d∗(f ) = f ◦ d . We denote singular
cohomology with Hk(M,R).

Remark 0.29. If R is a field then Hk(M;R) is dual to Hk(M;R). In particular,
if the homology is finite dimensional, we have Hk(M;R) ∼= Hk(M;R).

Remark 0.30. Poincaré duality states that if M is an n-dimensional oriented
closed manifolds, then Hk(M,R) ∼= Hn−k(M,R).

Homotopy theory

Homotopy theory is similar to homology theory in the sense that it also is a
way of capturing holes in a topological space. While the ideas are similar,
homotopy turns out to be much harder to compute. For example, while the
homology of Sn is easily computed, the homotopy groups of spheres are
surprisingly complex and we still do not understand them fully.

Let us start by defining homotopy groups:

Definition 0.31 (Homotopy group). Choose a basepoint x on Sn. Let
M be a manifold and choose a basepoint p ∈ M. Then we define the
n-th homotopy group πn(M, p) to be the set of homotopy classes of
based maps f : (Sn, x)→ (M, p), i.e. maps f : Sn → M that map x to
p.

Example 0.32. Consider the situation in Figure 11. The manifold M is given
by R2 \ D2, and we have chosen a base point x0. The maps ρ and σ are
homotopic and capture the existence of the hole. The map φ corresponds to
a trivial element in the homotopy group π1(R2 \D2). One can prove that
π1(M) ∼= Z, where the isomorphism is defined by mapping a map φ to the
number of times it wraps around the hole.

Example 0.33. IfM is connected, then π0(M) = 0. IfM is simply connected,
then π1(M) = 0.

If n ≥ 1, πn(M) indeed forms a group:

9
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p

ρ

σ

ρ

σ

φ

S1 S1 ∨ S1

ρ+ σ

Figure 12: The group operation for homotopy
groups.

8 Allen Hatcher. Algebraic topology. 2005

Proposition 0.34. The homotopy group πn(M) is—as its name suggests—
a group with the following operation

[ρ] + [σ] = [h ◦ φ],

where φ : Sn → Sn ∨ Sn is a map that collapses the equator of Sn and
h : Sn ∨ Sn → M is defined to be ρ on the first copy of Sn and σ on
the second copy.

Remark 0.35. In the case of n = 1, this is simply concatenation of paths.

It is not hard to prove the following:

Proposition 0.36. Let Sn be an n-dimensional sphere. Then πn(Sn) =

Z and all the lower order homotopy groups are 0.

While this seems contradictory to the claims made in the introduction of this
section, we should note that higher order homotopy groups do not vanish:
k > n does not imply that πk(Sn) = 0. Computing these higher order groups
is where the difficulty lies.

Definition 0.37. A homotopy sphere is a manifold which has the homo-
topy groups of a sphere.

An interesting question that arises is: ‘Is a homotopy sphere an actual sphere,
i.e. homeomorphic to a sphere?’ This is exactly what the Poincaré conjecture
is about and in the last chapter of this thesis, we will prove that this is indeed
the case if the dimension of the homotopy sphere is ≥ 5.

To do so, we will in fact only use that a homotopy sphere S is a homology
sphere that is connected and simply connected. The last two properties are
clear as π0(S) = π1(S) = 0. In order to see that a homotopy sphere is a
homology sphere, we introduce the following notion of connectedness:

Definition 0.38 (k-connected). A manifold M with basepoint p is k-
connected if πi(M, p) = 0 for i ≤ k .

Clearly k-connectedness implies k − 1-connectedness and a n-dimensional
homotopy sphere is n − 1-connected. With this definition, we can state the
relation between homotopy and homology as follows:8

10



Theorem 0.39 (Hurewicz theorem). Let M be a manifold. Let α ∈
Hn(Sn) be a canonical generator. Then we can define the Hurewicz
homomorphism

hn : πn(M) −→ Hn(M)

[f ] 7−→ [f∗(α)].

If M is k − 1 connected with k ≥ 2, then hk is an isomorphism and
hk+1 is an epimorphism.

Remark 0.40. In the case of n = 1, H1(M) is the abelianization of π1(M).

This allows us to prove the result we were after:

Proposition 0.41. A homotopy sphere is a homology sphere.

Proof. An n-dimensional homotopy sphere S is n − 1-connected, hence the
morphisms h1, h2, . . . , hn−1 are isomorphisms and hn is an epimorphism. We
conclude that

H0(S) = Z H1(S) = 0 · · · Hn−1(S) = 0 Hn(S) = Z,

so S has the homology of a sphere Sn.

Let us end our short discussion of homotopy theory by stating the theorem
of Van Kampen, showing that fundamental groups are in fact fairly easy
computable (contrary to higher order homotopy groups).

Theorem 0.42 (Van Kampen). Let Aα be a cover of M by path-
connected open sets, all of which containing the basepoint p. If each
double and triple intersection (Aα ∩ Aβ and Aα ∩ Aβ ∩ Aγ) is path-
connected, then

π1(X) ∼= ∗αAα/N,

where N is the normal subgroup generated by all elements of the form
iαβ(ω)iβα(ω)−1 for ω ∈ π1(Aα∩Aβ), where iαβ : π1(Aα∩Aβ)→ π1(Aα)

is the morphism induced by the inclusion.

We will use this result in Chapter 5 to show that certain spaces are simply
connected.
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9 Marston Morse. “Relations between the critical
points of a real function of n independent variables”.
In: Transactions of the American Mathematical
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CHAPTER ONE

Morse theory

When studying manifolds it often proves useful to examine simple structures
that live on them. For example, differential forms give rise to the de Rham
cohomology, which tells us something about the global structure of the
manifold. In this thesis the objects of interest will be nice real valued
functions f : M → R, which we will call Morse functions, named after the
American mathematician Marston Morse.

We will start off this chapter by giving several definitions of Morse functions
and showing that they are equivalent. We will show that Morse functions
give rise to handlebody decompositions which decompose any manifold in
standard building blocks called handles. We will end the chapter by showing
that any manifold admits a Morse function, and in fact infinitely many.

1.1 Definition of a Morse function

A Morse function f : M → R is a ‘nice’ real valued function on a manifold,
which will in this context mean that f behaves nicely around its critical points.
Let us first recall what a critical point is.

Definition 1.1 (Critical point). Let M and N be a manifolds and f a
map from M to N. The set of critical points of f is given by

Crit f = {p ∈ M | dfp is not surjective}.

Note that in particular, if N = R we have that the set of critical points is
given by Crit f = {p ∈ M | dfp = 0}. The maps we will be considering are
then characterised as follows:

Definition 1.2 (Morse function9). Let M be a manifold. A function
f : M → R is a Morse function if for all critical points p, there exists a
chart centred around p such that f is locally given by

f (x) = f (p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n .

Such a chart is said to be a Morse chart and we call k the index of p,
which we will denote with Ind p.

13
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h

k = 2

k = 1

k = 1

k = 0

Figure 1.1: Example of a Morse function on the
torus. At each critical point, the index k, the
number of downward directions is indicated.

f

a

b

c

d

g

p

q

Figure 1.2: Two Morse functions on S2 with a
different number of critical points.

(x, y) 7→ x2

Figure 1.3: An example of an embedding where
the height function is not Morse.

x3

x3 + tx

Figure 1.4: An example of a function that is not
Morse: f : R → R : x 7→ x3. Small perturbations
of f are Morse.

Intuitively, the index of a critical point p is ‘the number of downward direc-
tions’. Let us give some examples of Morse functions.

Example 1.3. Let M be the torus T 2 embedded in R3 as illustrated in
Figure 1.1. Then the height function h : T 2 → R which is the projection on
the z-axis is a Morse function with four critical points. We have a minimum,
two saddle points and a maximum, whose indices are 0, 1, 1, 2 respectively.

Example 1.4. In Figure 1.2, we have illustrated two embeddings of S2 in
R3, and considering the corresponding height functions, we get two Morse
functions S2 → R. The first one has only two critical points: a maximum and
a minimum. The second one has two maxima, a saddle point and a minimum.
Later on we will prove that any manifold admitting a Morse function with
only two critical points is homeomorphic to the sphere.

Nonexample 1.5. Let M = R2 and f : R2 → R : (x, y) 7→ x2. Then all
points (0, y) for y ∈ R are critical points of this function. In particular, (0, 0)

is a critical point. As it is impossible to find local coordinates (x1, x2) for
which f can be written as ±x2

1 ± x2
2 , we conclude that f is not Morse.

Nonexample 1.6. Let M = R and f : R → R : x 7→ x3. Then x = 0 is
a critical point, but f is not Morse. Note however that if we add a small
perturbation to f , say gt : x 7→ x3 + tx , then for small non-zero t, g is Morse.
For t < 0, gt has two critical points: one of index 1 and one of index 0. If
t > 0, gt has no critical points.

Note that this last case where f has no critical points cannot happen if M
is compact. Indeed, any function attains it maximum and minimum on a
compact manifold, so we have at least two critical points. On the other
hand, the number of critical points is at most finite. This is because of the
definition of a Morse function: it implies that critical points are isolated,
which on a compact manifold implies that their number is finite. This also
immediately rules out the situation we had in the other example, where the
set of critical points was a straight line.

1.2 Coordinate-free definition

The attentive reader will have noticed that the notion of the index of a
critical point could possibly be coordinate dependent and hence ill-defined.
In order to show that it is not, we will give an equivalent coordinate-free
definition. For this, let us first define the Hessian:

Definition 1.7 (Hessian). Let M be a manifold and f : M → R a
function. Let p be a critical point of f . Then we define the Hessian Hp
to be the bilinear form

Hp : TpM × TpM −→ R
(X, Y ) 7−→ X(Ỹ f )|p,

where Ỹ is a local extension of Y around p.

14
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10 The difference between Hp(X, Y ) and Hp(Y,X)

is given by

Hp(X, Y )−Hp(Y,X) = X(Ỹ f )|p − Y (X̃f )|p
= [X̃, Ỹ ]f |p
= dfp[X̃, Ỹ ]|p = 0.

The value of Hp also does not depend on the ex-
tension of the vector field. Indeed, suppose Ỹ and
Y are two different extensions of Y . Then by sym-
metry of Hp, we have

X(Ỹ f )|p = Y (X̃f )|p = X(Y f )|p.

This also shows linearity of the second component.

11 John Milnor. Morse theory.(AM-51). Vol. 51.
Princeton university press, 2016, p. 6

12 If hi j is not symmetric, we can replace it by
h(i j) = 1

2
(hi j + hj i ). Then h(i j) is symmetric and

we still have
∑
xixjhi j =

∑
xixjh(i j).

Because we are only considering the Hessian Hp at critical points, this is a
well defined symmetric bilinear form.10 In case of a Morse function given
locally by f (x) = f (p)− x2

1 − · · · − x2
k + x2

k+1 + · · ·+ x2
n , the Hessian at p is

Hp = 2(−dx2
1 − · · · − dx2

k + dx2
k+1 + · · ·+ dx2

n ),

where dx2
i = dxi ⊗ dxi . Note in particular that Hp is non-degenerate and

its signature is (i−, i+) = (k, n − k), as we have k negative eigenvalues and
n − k positive eigenvalues. As the signature of a symmetric bilinear form is
coordinate independent, this shows that the index of a critical point is as
well.

Interestingly, the converse is also true: if Hp is non-degenerate for all critical
points p of f , then f is a Morse function. Many authors take this to be the
definition of a Morse function, and then prove the so-called Morse lemma
stating that there always exist local coordinates such that f is given by

f (x) = f (p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n ,

which is our definition of a Morse function. With our choice, the Morse
lemma takes on the following form:

Lemma 1.8 (Morse Lemma). Let M be a manifold and f : M → R a
smooth function. If for all p ∈ Crit f , the Hessian Hp is non-degenerate,
then f is Morse.

Proof. We follow the proof of Milnor11. We may assume that M = Rn, p is
the origin and f (p) = 0. Then by a version of Taylor’s theorem, we can write

f (x) = f (p) +

n∑
i=1

(xi − pi)gi(x)

=

n∑
i=1

xigi(x),

where gi are smooth functions. Now, as gi(0) = ∂i f (0) = 0, we can repeat
this for each gi , giving us the following:

f (x) =

n∑
i ,j=1

xixjhi j(x).

Because this sum is symmetric in i and j , we may assume that hi j is symmetric
as well.12 Note that

hi j(0) =
1

2
∂i j f (0),

which is non-degenerate by assumption.

Now we imitate the proof of diagonalization of a non-degenerate quadratic
form. We do this by induction. Suppose we have coordinates u1, · · · , un in a
neighbourhood of 0 such that

f = ±u2
1 ± · · · ± u2

r−1 +
∑
i ,j≥r

uiujHi j(u),

15
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where Hi j is a symmetric matrix. After a linear change, we may assume by
non-degeneracy that Hr r 6= 0. Then define new coordinates v1, . . . , vr as
follows:

vi =

{
ui if i 6= r√
|Hr r |(ur +

∑
i>r uiHi r/Hr r ) if i = r .

Note that we may need to restrict the neighbourhood such that
√
|Hr r | 6= 0.

Then we have that

f =
∑
i≤r
±v2

i +
∑
i ,j>r

vivjH
′
i j(v).

for some symmetric matrix H′i j . By induction, we can find coordinates such
that f =

∑n
i=1±v2

i , completing the proof.

1.3 Handle decompositions

In this section we show how a Morse function f : M → R gives rise to a step
by step guide on how to build the manifold M out of basic building blocks.
In order to show how this is done, we need to introduce the notion of a
cobordism.

Definition 1.9. A cobordism between two compact manifolds M0 and
M1 is a compact manifold M with boundary ∂M = M0 tM1.

In this text, we will often say that M is a cobordism from M0 to M1. The
term ‘cobordism’ comes from the fact that M0 tM1 are the boundary of
M, so we can think of M as the ‘co-boundary’ of M0 and M1. Cobordisms
are an interesting topic in their own right. For example, they define an
equivalence relation on all compact manifolds of the same dimension. Two
manifolds M0 and M1 are then said to be equivalent (cobordant) if there
exists a cobordism M connecting the two. This equivalence relation is much
coarser than diffeomorphism and is generally easier to study. Cobordisms
also form a category where the objects are manifolds and the morphisms are
cobordisms.

We have illustrated some examples below. Note that we may also take M0

or M1 = ∅. In particular, any closed manifold is a cobordism from ∅ to ∅.Figure 1.5: Some examples of cobordisms. Notice
that if the height function does not have critical
points, the topology of the bottom is the same as
that of the top.

∅

S1

S1

S1 t S1

∅

∅ S1 t S1 t S1

∅

S1

S1S1

S1
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M0

φ

t = 0

t = 1

(t, p)

M0

φ(t, p)
f

M1

Figure 1.6: When a cobordism has no critical points,
it is diffeomorphic to a product manifold.
14 Here we use ] and [ for the ‘musical isomor-
phisms’ induced by a metric 〈·, ·〉, given by

[ : TM −→ T ∗M : X 7−→ X[ = 〈X,−〉

] : T ∗M −→ TM : α 7−→ α],

where α] is uniquely defined by 〈α], X〉 = α(X).
In other words ] = ([)−1.

15 John Milnor. Lectures on the h-cobordism theo-
rem. Vol. 2258. Princeton university press, 2015,
p. 107

When we consider the height function f : M → [0, 1] on these examples, we
observe that the topology of the bottom is the same as that of the top if the
height function does not have critical points. In the case when the height
function has a single critical point, the topology does change and it will turn
out we can very concretely describe how this topology changes if f is Morse
(as is the case here).

Cobordisms without critical points

Let us first consider the case where the height function has no critical points.
For simplicity, we introduce the following refined definition of a Morse function
on a cobordism:

Definition 1.10 (Morse function on a cobordism13). Let M be a cobor-
dism from M0 to M1. A function f : M → [a, b] is Morse if

• M0 = f −1(a), M1 = f −1(b)

• All critical points lie interior in M and are non-degenerate.

13 John Milnor. Lectures on the h-cobordism
theorem. Vol. 2258. Princeton university press,
2015, p. 8

Let us now prove our first observation:

Proposition 1.11. Suppose f : M → [a, b] is a Morse function on a
cobordism M from M0 to M1. If f has no critical points, then M is
diffeomorphic to [a, b]×M0.

Proof. Choose a Riemannian metric 〈·, ·〉 on M. Because f has no critical
points, the gradient vector field W = grad f := (df )] never vanishes.14 Now
we normalize the vector field as follows:

V =
1

〈W,W 〉W.

Then df (V ) = 1
〈W,W 〉df (W ) = 1. Consider

φ : [0, 1]×M0 −→ M

(t, p) 7−→ θtV (p),

where θtV is the flow along V . Then f (φ(t, p)) = t for all p ∈ M0, as
df (V ) = 1. The map φ is injective because of the uniqueness of flows, and
surjective because given a point p in M, we can always flow back along V
for a time t to find a p0 ∈ M0 which then satisfies φ(t, p0) = p. Because
this is also smooth, this proves that φ is a diffeomorphism.

Remark 1.12. While almost trivial, this result is very useful and lies at the
basis of the proof of the h-cobordism theorem, stating that a cobordism
satisfying certain properties is a trivial cobordism.15 We will prove this in
Chapter 5 by showing that an h-cobordism admits a Morse function without
any critical points, implying the result.

In general, this result can be used to show that two manifolds are diffeomor-
phic. If we can construct a cobordism from M0 to M1 and we can prove the
existence of a Morse function without critical points, then M0

∼= M1.

17



CHAPTER 1. MORSE THEORY

Cobordisms with a single critical point

Let us now investigate the situation when a Morse function f does have a
single critical point, say p and assume f (p) = 0. Then we know f is locally
of the following form:

f (x1, . . . , xn) = −x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n .

Figure 1.7: Around a critical point of a Morse
function, we can find a chart as on the left. The
dark region corresponds to f (x) < 0 and the light
region to f (x) > 0. The level set f −1(0) is not a
manifold. x1, . . . , xk

xk+1, . . . , xn

f (x) = 0
f (x) = −ε

f (x) = ε

0f
xk+1, . . . , xn

x1, . . . , xk

Above, we have plotted the first k variables (the ‘downward directions’) on
the horizontal axis, and the last n − k variables on the vertical axis. Then
the level set f −1(0) is given by

x2
1 + · · ·+ x2

k = x2
k+1 + · · ·+ x2

n ,

which consists of the two crossing lines in the figure, corresponding to the
crossing part of the figure-eight on the right. Level sets of values slightly
above and below 0 look locally like hyperbolas on our figure, but recall that
the axes consist of multiple dimensions, so it would be more precise to call
them hyperboloids. We give some more concrete examples for n = 2, 3 and
k = 0, 1, 2, 3 in the following table:

Table 1.1: Some examples of Morse charts in di-
mension two and three. We have indicated the
level sets of the Morse function.

x1

x2

x1

x2

x1

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

n
k 0 1 2 3

2

3
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x1, . . . , xk

xk+1, . . . , xn

f (p) = 0

f (p) = −ε

f (p) = ε

Figure 1.8: A Morse chart with negative gradient
flow lines added. The coloured area represents a
handle. Its boundary consists of parts of level sets
of f and flow lines of grad f .

f (ε)

f (−ε)

Figure 1.9: A cobordism with one critical point
splits up in product structures and a handle.

To better understand the effect of the critical point, we want to isolate its
behaviour. We will do this by cutting out a part of a Morse neighbourhood
of p of a very specific form, as shown in yellow in Figures 1.8 and 1.9. The
part we cut out is bounded by level sets f (p) = ±ε and negative gradient
flow lines of f .16

16 Two remarks. First, while it does not really
matter if we choose the negative or positive
gradient, it is customary in Morse theory to use
the latter. The gradient flow of a height function
flows then from top to bottom which is arguably
more intuitive when one thinks of it like water
flowing down a mountain.

Secondly, a gradient is a choice, and here we
choose the gradient w.r.t. the standard metric on
Rn. More explicitly, we know that locally around a
critical point p, f is given by

f (x1, . . . , xn) = f (p)− x2
1 − · · · − x2

k

+ x2
k+1 + · · ·+ x2

n .

Then the standard negative gradient of f is

− grad f = 2x1∂1 + · · ·+ 2xk∂k

− 2xk−1∂k−1 − · · · − 2xn∂n.

The advantage of cutting in this specific way, is that we
have split up the cobordism in three parts which we understand well:

A The part below −ε and the part above ε have a product structure, because
we assumed the only critical value was 0. We can simply repeat the proof
above.

B The part of M that lies between −ε and ε without H also has a product
structure. To see this, extend the metric introduced on H for defining
the gradient to the whole manifold. Then, because f has no critical values
outside H , we can flow along gradient lines giving us a product structure.
Now it should be clear why we wanted to cut along gradient lines.

Riemannian metrics that are an extension of standard metrics around
critical points are called ‘adapted.’ Using a partition of unity argument,
one can show any manifold equipped with a Morse function admits such
metrics. In most cases, we will often forget about the metric itself and
simply consider vector fields which are gradient-like for f :

Definition 1.13 (Pseudo-gradient). Let f : M → R be a Morse
function on a manifold M. A pseudo-gradient is a vector field X such
that

– df (X) ≤ 0 and df (X) = 0 only at critical points

– X coincides in Morse charts with the usual negative gradient for
the standard metric on Rn.

H The yellow part is what we call a handle of index k , and is homeomorphic to
Bk ×Bn−k . This is the only non-trivial part of our cobordism. We call the
bottom part of the border the attachment region, which is homeomorphic
to Sk−1 × Bn−k .

Definition 1.14 (k-handle). A k-handle is a thickened up k-cell: Bk×
Bn−k . The bottom of the handle, Sk = ∂Bk ×Bn−k = Sk−1 ×Bn−k
is called the attachment region.

We conclude that a cobordism with exactly one critical point consists of
product structures and a k-handle, where k is the index of the critical point.

In this context the concept of a handle is something that arises from an
existing Morse function f : M → R on a manifold. However we can also view
them as standalone objects that we can attach to an existing manifold with
boundary, in this case N = f −1(−∞,−ε]. In general, the act of attaching a
k-handle to a manifold N is gluing a handle Bk ×Bn−k to the boundary of N
along its attachment region Sk via a chosen embedding Sk → ∂N. We should
remark that the resulting manifold is not always smooth, although there exist
techniques to ‘smooth the corners’.. An overview is given in Figure 1.10. We
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18 Michèle Audin and Mihai Damian. Morse theory
and Floer homology. Springer, 2014, p. 40

19 If p is a critical point of f + h, then df (X) +

dh(X) = 0 in p. Outside of the Morse charts,
df (X) + dh(X) < 0, so p lies in a Morse chart.
This implies that df (X) + dh(X) = df (X) = 0,
so p is a critical point of f . Conversely, if p is a
critical point of f , then because h is constant on
Morse charts, it is also a critical point of f + h.

see that the cobordism M with one critical point of index k is diffeomorphic
to N with a ‘smoothed k−handle’ attached. This is homeomorphic to N ∪H,
which is the same as N ∪ Bk × Bn−k . Finally, this is homotopy equivalent
to N with a k-cell added (i.e. N ∪ Bk). Proofs of these statements can be
found in Morse Theory and Floer Homology by Audin and Damian17

17 Michèle Audin and Mihai Damian. Morse theory
and Floer homology. Springer, 2014, p. 32

.

homeo homeo homotopy eq.diffeo

(a) (b) (c) (d) (e)

Figure 1.10: Equivalences of handle structures.

Handle decomposition of closed manifolds

Our goal now is to prove that any closed manifold M admits a handle
decomposition. We will do this by splitting M into cobordisms that only have
a single critical point. For this to work, we will need that the critical values
are isolated, which is exactly what the following proposition states:

Proposition 1.15. Let f : M → R be a Morse function on a closed
manifold. Then there exists another function g arbitrarily close to f in
C1 sense that takes distinct values at all of its critical points. Moreover,
if X is a pseudo-gradient field adapted to f , then we can choose g such
that X is adapted to g as well.

Proof. We follow the proof of Audin and Damian18. Let U =
⋃
p∈Crit f Up

be the union of Morse neighbourhoods of critical points. Let X be a pseudo-
gradient field. Then by compactness, df (X) < −ε0 outside U for some
ε0 > 0. Let h : M → R be a function that is constant on each Morse chart
such that |dh(X)| < 1

2ε0 and

f (p) + h(p) 6= f (q) + h(q),

where p 6= q are critical points. Then f + h is still a Morse function, because
it has exactly the same critical points as f .19 Furthermore the critical points
of f + h are distinct and the vector field X is still adapted.

Now we are ready to prove one of the fundamental theorems in Morse theory.

Theorem 1.16. Any closed manifold has a handle decomposition.

Proof. We will later prove that that any closed manifold admits a Morse
function f : M → R. By the previous proposition, we may assume that the
critical values of f are distinct. Then we can split M in cobordisms each
having a single critical point. More explicitly, let pi be the critical points of
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f and ai = f (pi). As ai are distinct, we can choose regular values bi lying
between ai :

a0 < b0 < a1 < · · · < an < bn. f

a0

a1

a2

a3

b2

b0

b1

b4

Figure 1.11: By splitting up a closed manifold in
cobordisms with a single critical point, we find a
handle decomposition.

Then we split M =
⋃
Mi as follows:

M0 = f −1[a0, b0] M1 = f −1[b0, b1] · · · Mn−1 = f −1[bn−1, bn].

Each of these sets is a cobordism with exactly one critical value. As we have
seen earlier, we can split each of these cobordisms in product structures and
handles, giving rise to a handle decomposition of the total manifold M.

Handles in low dimensions

Let us now discuss some examples of handle decompositions in low dimensions.
We will consider manifolds of dimension one, two and three and our examples
will give rise to some interesting questions to which we will find an answer in
the next chapter. Let us start with one dimensional handles.

Handles in dimension one

Handles in dimension one are the simplest ones. We only have two types:

0-handle B0 × B1 = [−1, 1], with attachment region ∅.

1-handle B1 ×B0 = [−1, 1] with attachment region S0 = {−1, 1}.

Combining these two handles, we can build any compact one dimensional
manifold, one example being S1. Apart from the obvious way to do so, more
involved handle decompositions also exist, as we show in the next example:

Example 1.17. Below in Figure 1.12, two handle decompositions of S1 are
illustrated. The first one is based on the height function f when embedding
S1 in R2. For the second decomposition, g is again defined as a height
function, but this time we embedded S1 in R2 in a non-standard way. This
results in two different handle decompositions of the same manifold.

Figure 1.12: Two handle decompositions of S1.f

0-handle 1-handle

g

0-handle 0-handle 1-handle 1-handle+ + +

+

This example illustrates that handle decompositions are not unique. We can
however construct an isotopy from the second to the first embedding that
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Figure 1.14: The standard embedding of the torus
in R3 gives rise to a handle decomposition consisting
of a 0-handle, two 1-handles and one 2-handle.

Figure 1.15: Embedding S2 in R3 in an unusual
way gives rise to a handle decomposition with one
0-handle, one 1-handle and two 2-handles.

cancels two critical points. Interestingly, the height function is Morse for all
t, except at the exact moment when the cancellation happens, indicated in
yellow in below. A local model for this is t 7→ x3 + tx as in Figure 1.4. This
raises then the question: when is it possible in general to find an isotopy that
cancels two critical points? What are possible obstructions?

Figure 1.13: There exists an isotopy between the
two handle decompositions described above.

Handles in dimension two

In dimension two, we have three types of handles:

0-handle B0 × B2 with attachment region ∅.

1-handle B1 × B1 with attachment region B1 × S0.

2-handle B2 × B0 with attachment region B0 × S1.

Example 1.18 (Handle decomposition of the torus). Consider the height
function on the torus embedded in R3. This Morse function gives rise to
the handle decomposition in Figure 1.14: a 0-handle, two 1-handles and one
2-handle.

Example 1.19 (The ‘other sphere’). In Figure 1.15, an embedding of S2

in R3 is given, and we again consider the height function. This function is
Morse, and gives rise to a handle decomposition with a 0-handle, a 1-handle
and two 2-handles.

Handles in dimension three

The last examples we will give will be three dimensional and quite a bit more
interesting than the previous ones. We have four types of handles:

0-handle B0 × B3 with attachment region ∅

1-handle B1 × B2 with attachment region S0 × B2

2-handle B2 × B1 with attachment region S1 × B1

3-handle B3 × B0 with attachment region S2 × B0

Drawing three-dimensional handle decompositions is sometimes difficult.
Most of the times we suppress the 0-handle and also the 3-handle is not
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∪ 3-handle

∪ 3-handle

Figure 1.16: Top: S1 × S2 can be decomposed
using a 0-handle, 1-handle, 2-handle and 3-handle.
Bottom: same handle decomposition, but drawn
differently to show that a 0-handle and a 1-handle
are diffeomorphic to S2 × [0, 1].

drawn. If a 3-handle is to be attached, to ‘cap it off’, we usually write “∪
3-handle”. The first three examples will be (products of) spheres, i.e. S3,
S1 × S2 and S1 × S1 × S1.

Example 1.20 (Handle decomposition of S3). Consider S3 ⊂ R4 and the
height function f , the projection on the last coordinate. Then f has two
critical points: (0, 0, 0,±1) of index 0 and 3. The handle decomposition is
then a 0-handle glued to a 3-handle, which is in this case two balls B3 glued
along their boundary.

Example 1.21 (Handle decomposition of S1 × S2). An example of a handle
decomposition of S1 × S2 is illustrated in Figure 1.16. The construction
starts with a 0-handle, which is just a three dimensional ball. Then we glue
on a 2-handle. The resulting manifold is then a thickened up two sphere,
B1 × S2. Then we add a 1-handle connecting the inside to the outside and
we cap off with a 3-handle, which has the effect of identifying the end points
of B1, i.e. this transforms B1 × S2 into S1 × S2.

Example 1.22 (T 3 = S1 × S1 × S1). To find a handle decomposition of T 3,
we identify T 3 with R3/Z3 and consider the following map

f : T 3 −→ R
(x, y , z) 7−→ 2 cos(2πx) + 3 cos(2πy) + 4 cos(2πz).

Then we have

df = −4π sin(2πx)dx − 6π sin(2πy)dy − 8π sin(2πz)dz,

so critical points are all (x, y , z) ∈ R3/Z3 for which x, y , z ∈
{

0, 1
2

}
. In total

we have 8 distinct critical points and they are all non-degenerate, because
the Hessian of f , given by

H(x,y ,z)f = −8π2 cos(2πx)dx2 − 12π2 cos(2πy)dy2 − 16π2 cos(2πz)dz2

is non-degenerate at each of the critical points. To find the handle decompo-
sition induced by f , we have to determine the index of the critical points. As
discussed earlier, the index is the number of downward directions, which is
also equivalent to the number of negative eigenvalues of H(x,y ,z)f . We find
that the index of a critical point (x, y , z) is the number of zeros occurring in
the triplet (x, y , z). Hence we get the following table:

x y z f (x, y , z) Index
0 0 0 9 3
1
2 0 0 5 2

0 1
2 0 3 2

0 0 1
2 1 2

1
2

1
2 0 −1 1

1
2 0 1

2 −3 1

0 1
2

1
2 −5 1

1
2

1
2

1
2 −9 0

We conclude that we can decompose T 3 in one 0-handle, three 1-handles,
three 2-handles and one 3-handle. We have illustrated the construction
below.
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Figure 1.18: An example of a 3-manifold where a
1- and 2-handle can be cancelled.

Figure 1.17: Step by step construction of T 3

adding one handle at the time. Here, T 3 = R3/Z3,
and

[
− 1

2
, 1

2

]3
is drawn.

The construction starts with a 0-handle. In the
first three steps, each time a 1-handle is added. In
the consequent steps, three holes are filled with
2-handles, leaving us with a single void we fill up
with a 3-handle.

While this choice of Morse function may seem unmotivated, it is actually
based on an example we saw before, namely S1 with its height function.
Indeed, if we identify S1 = R/Z, then gr (x) = r cos(2πx) is exactly the
height function of a sphere of radius r . Taking the product of S1 three
times and adding their corresponding Morse functions (with carefully chosen
coefficients in order to have distinct critical values), we end up with the given
example: S1 × S1 × S1 and f = g2(x) + g3(y) + g4(z). This method of
constructing a Morse function on the product is something that works in
general and we will be considering this in more detail later on.

Example 1.23. As a last example, we have illustrated a 3-manifold with
boundary in Figure 1.18. It consists of a 0-handle, a 1-handle and a 2-handle.
Here, the 2-handle is placed on top of the 1-handle. It is also easy to see
that the 1- and 2-handle can be cancelled by an isotopy.

This is an example where the order of the handles is important: we cannot
attach the 2-handle before the 1-handle. This is not always the case: in
the example discussing the handle decomposition of S1 × S2, we see that
the 1- and 2-handle are independent. This raises the question: ‘Under what
conditions can we reorder the attachment of handles?’ We will answer this
question in the next chapter.

1.4 Existence and abundance of Morse functions

We end this chapter with a more technical result. In this section we show
that any manifold admits uncountably many Morse functions and that the set
of Morse functions form a dense subset of all smooth functions M → R. In
other words, almost any function is a Morse function and we can approximate
any function by a Morse function.

Let us first recall the following result, due to Whitney.

Theorem 1.24 (Whitney Embedding Theorem). Any smooth manifold
M of dimension m can be embedded into R2m+1.

This allows us to assume that M is a submanifold of Rn, making the con-
structions more straightforward. The following theorem says that there is an
abundance of Morse functions on any manifold.
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Proposition 1.25. Let M ⊂ Rn be a submanifold. Then for almost
every point p ∈ Rn, we have that

fp : M → R : x 7→ ‖x − p‖2

is a Morse function.

p

Figure 1.19: An embedding of the torus T 2 in R3.
The level sets of fp are spheres. We see that fp
has four critical points: a maximum, a minimum
and two saddle points.

Example 1.26. Consider Figure 1.19, where we have embedded the torus
T 2 ↪→ R3 and have drawn some level sets of fp. If should be intuitively clear
that fp is a Morse function.

Let us also give an example when fp is not a Morse function:

Nonexample 1.27. Let M = S1 = {‖x‖2 = 1 | x ∈ R2}. Then the map
f(0,0) : (x1, x2) 7→ x2

1 + x2
2 is not a Morse function. Indeed, f(0,0) ≡ 1, so in

particular the second derivative is degenerate (it vanishes everywhere).

More generally, fp is not a Morse function when infinitesimally close normals
intersect in p, because then the distance (squared) to that point fp is constant
up to second order. Such points p are called focal points. To make this
precise, we will show that Hp is non-degenerate if p is a critical value of the
map

E : NM → Rn : (x, v) 7→ x + v ,

where NM is the normal bundle of M. Then Sard’s theorem will immediately
imply that fp is Morse for almost all p.

Figure 1.20: Visualization of the normal bundle of
M, a submanifold of Rn, and the map E used in
the proof.

0

M = E(M, 0)

E(x, v)

x
(x, 0)

(x, v)

NM

V

E : (x, v) 7→ x + v

Proof. With this idea, the proof reduces to a straightforward although tedious
calculation. First note that x is a critical point of fp only if x − p ⊥ TxM.
Indeed:

dfp =

n∑
i=1

d(xi − pi)2 = 2

n∑
i=1

(xi − pi)dxi = 0 if x − p ⊥ TxM.

Let d = dimM and (u1, . . . , ud) 7→ x(u1, . . . , ud) be a local parametrization
of M. Then we have

∂i fp = 2(x − p) · ∂ix

and for the Hessian we have

Hp = ∂i j fp = 2 (∂jx · ∂ix + (x − p)∂i jx) ,
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u1

t1 (u, t) 7→ (x(u), tiv(ui ))

∂2x

∂1x

vi

u2

Figure 1.21: Parametrization of the normal bundle
of M.

where we denoted ∂i = ∂
∂ui

. We will show that Hp is not of full rank if and
only if p is a critical value of

E : NM → Rn : (x, v) 7→ x + v ,

where NM is the normal bundle to M w.r.t. the Euclidean metric on Rn.

First we define a local parametrization of NM:

(u1, . . . , ud , t1, . . . , tn−d) 7→
(
x(u1, . . . , ud),

n−d∑
i=1

tivi(u1, . . . , ud)
)
,

where the vi form a local orthonormal basis at each point, normal to TM.
Then in these coordinates,

∂iE = ∂ix +

n−d∑
k=1

tk∂ivk ∂tjE = vj .

To see whether these vectors are independent, we compute the inner products
with the n independent vectors ∂1x, . . . , ∂dx, v1, . . . , vn−d . This gives the
following matrix with the same rank as E∗:(

(∂ix · ∂jx +
∑

k tk∂ivk · ∂jx)
∑n−d

k=1 ∂ivk · v`
0 Id

)
.

Therefore E∗ is of full rank iff the matrix with entries

Ai ,j = ∂ix · ∂jx +

n−d∑
k=1

tk∂ivk · ∂jx

is of full rank. Now in the second term, we can move ∂i from vk to x and
get a minus sign in return:

∂ivk · ∂jx = ∂i(vk · ∂jx)− vk · ∂i∂jx
= −vk · ∂i∂jx,

as vk ⊥ ∂jx . This allows us to rewrite the matri

Ai j = ∂ix · ∂jx −
n−d∑
k=1

tkvk · ∂i∂jx

= ∂ix · ∂jx − v · ∂i∂jx
= ∂ix · ∂jx + (x − p) · ∂i∂jx
= (Hp)i j .

Therefore, E∗ is of full rank iff Hp is of full rank. This concludes the proof.

Apart from the abundance of Morse functions, we also have that any smooth
function can be approximated by a Morse function. By this we mean the
following:

Proposition 1.28. Let f : M → R be a function. Let k be an integer.
Then f and all its derivatives of order ≤ k can be uniformly approximated
by Morse functions on every compact subset.
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Figure 1.22: We can approximate any smooth func-
tion with a Morse function. On the left, we plotted
the level sets of f itself. Because the coordinates
are f and h2, these level sets are vertical planes.
The two right plots show level sets of gc for c = 10

and c = 100, which are circles. We see that gc
approximates f if c →∞.

f

h2

f

h2
f (x, y) g10(x, y)

f

h2

(−10, 0)

g100(x, y)

The idea of the proof goes as follows. We choose an embedding of M where
f is the first coordinate on M, so we can think of f as a simple projection:
x 7→ x1.20 Then this function can be approximated in the following way:

x1 ≈
(x1 + c)2 − c2

2c
as c →∞,

and even when taking extra dimensions into account, the approximation still
works:

x1 ≈
‖x − p‖2 − c2

2c
with p = (−c, 0, . . . , 0) and c →∞.

20 Start with an embedding φ : M ↪→ Rn for large
enough n. Then consider
ψ : M → Rn+1 : x 7→ (f (x),Φ(x)). Then the
height function of this embedding is exactly f .

Now, note that the right hand side is almost always a Morse function. Hence,
we can the proposition as follows.

Proof. Using the Whitney embedding theorem, embed M in Rn for n suffi-
ciently large such that f is the first coordinate:

h(x) = (f (x), h2(x), . . . , hn(x)).

Let c ∈ R. For almost every point p = (−c + ε1, ε2, . . . , εn), the function

gc(x) =
‖x − p‖2 − c2

2c

is Morse. Then

gc(x) =
1

2c

n∑
i=1

(xi − pi)2 − c2

=
1

2c

(
(f (x) + c − ε1)2 + (h2(x)− ε2)2 + · · ·+ (hn(x)− εn)2

)
= f (x) +

f (x)2 +
∑
hi(x)2

2c
−
ε1f (x) +

∑
εihi(x)

c
+

n∑
i=1

ε2
i − ε1.

This concludes the proof. Indeed, let K be a compact subset of M. The
functions d j

dx j
(f (x)2 +

∑
hi(x)2) for j = 1, . . . , k all attain their maximum on

K, so by choosing c big enough, we can make them simultaneously arbitrarily
small in a uniform way. Similarly for the third term. Lastly, we can also make
εi arbitrarily small while still retaining that g is a Morse function.
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x1, . . . , xk

xk+1, . . . , xn

W u(p)

W s(p)

Figure 2.1: Locally in a Morse chart, stable and
unstable manifolds are given by the vertical and
horizontal axis, i.e. x1 = · · · = xk = 0 and xk+1 =

· · · = xn = 0.

CHAPTER TWO

Stable and unstable manifolds

In this chapter, we address two natural questions that came up when dis-
cussing examples of handle decompositions: ‘When can we reorder handles
in a handle decomposition?’ and ‘Under what conditions can we cancel two
critical points?’ To answer these questions, we introduce the concept of
stable and unstable manifolds. While we previously viewed handles as a local
phenomenon, these new concepts will allow us to understand how multiple
handles can interact on a more global scale. Moreover, stable and unstable
manifolds will give rise to trajectory spaces between critical points which will
play a key role in the upcoming chapters.

2.1 Definition of stable and unstable manifolds

Stable and unstable manifolds associated to a critical point p consist of
points that under the flow of the (negative) gradient reach p in the limit.

Definition 2.1. Let p be a critical point of a Morse function f . Denote
by ψt the flow of a pseudo-gradient. Then the unstable manifold is
defined as

W u(p) =
{
x ∈ M | lim

t→−∞
ψt(x) = p

}
,

and its stable manifold is defined as

W s(p) =
{
x ∈ M | lim

t→∞
ψt(x) = p

}
,

Just like their names imply, these sets are indeed manifolds. Around a
critical point p, the unstable manifold W u(p) is in a Morse chart U given by
xk+1 = · · · = xn = 0, so it is diffeomorphic to an open disk Dk . The points
in W u(p) that lie outside U can then be obtained by flowing the boundary of
Dk along the pseudo-gradient, which is diffeomorphic to Sk−1 ×R. All in all
when gluing this to Dk , we end up with something that is indeed a manifold
diffeomorphic to Dk . A similar reasoning for the stable manifold shows that
W s(p) ∼= Dn−k . In summary, we have obtained the following result:
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Proposition 2.2. Stable and unstable manifolds of a critical points are
submanifolds diffeomorphic to open disks. Moreover,

dimW u(p) = codimW s(p) = Ind p.

Example 2.3. Let us consider T 2 embedded in R3 in the standard way and
consider the height function. This function has 4 critical points and is clearly
Morse. Let X = − grad f be the negative gradient of f w.r.t. the standard
metric on R3. Then the stable and unstable manifolds of the critical points of
f are illustrated in Figure 2.2. We have similarly done so for an embedding
of S2 in Figure 2.3.

W s(b)W s(a) W s(c) W s(d)

W u(d)W u(a) W u(c)W u(b)

a

b

c

d

f

Figure 2.2: Stable and unstable manifolds for all critical points of the height function on
the torus with the standard gradient on R3. All of them are diffeomorphic to either D2,
D1 or D0. Note that W s(b) and W u(c) do not intersect transversely.

f

a

b

c

d

W s(b)W s(a) W s(c) W s(d)

W u(d)W u(a) W u(c)W u(b)

Figure 2.3: Stable and unstable manifolds of the ‘other sphere’. Note that all of them
intersect transversely.
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W u(p)

W s(p)

p

q

W s(q)

W u(q)

Figure 2.4: A cobordism from S1 to S1 t S1 t S1.
Stable and unstable manifolds do not intersect,
which implies we can reorder the critical points p
and q.

f

q

p

W u(q)

W s(p)

Figure 2.5: The intersection of stable and unstable
manifolds is not empty, indicating the dependence
of the 2-handle on the 1-handle.

21 Michèle Audin and Mihai Damian. Morse theory
and Floer homology. Springer, 2014

2.2 Intersections of (un)stable manifolds

Stable and unstable manifolds give us information about interaction of handles.
For example, consider the situation in Figure 2.4. None of the stable and
unstable manifolds intersect, indicating the independence of the two handles.
This allows us attach both handles at the same time or attach them in a
different order. In terms of the Morse function, this means we can modify f
such that f (p) > f (q).

In Figure 2.5, the situation is different. The intersection of W s(p) and W u(q)

is not empty, indicating the dependence of the 2-handle associated to q on
the 1-handle associated to p. We cannot first attach the 2-handle first and
then attach the 1-handle.

This motivates us to in investigate necessary and sufficient conditions for the
stable and unstable manifolds to intersect. Suppose p and q are two critical
points of a Morse function f : M → R and let us consider W s(p) ∩W u(q).
If f (p) > f (q), then W s(p) ∩W u(q) = ∅, because f (W s(p)) > f (W u(q)).
In the other case when f (p) ≤ f (q), the intersection W s(p) t W u(q) can
be non-empty. Moreover, if we assume that the intersection is transverse, we
can say something about its dimension. Indeed, Proposition 0.2 implies that

codim(W s(p) t W u(q)) = codimW s(p) + codimW u(q),

so we have
dim(W s(p) t W u(q)) = Ind q − Ind p.

In particular, we have that if Ind q < Ind p, W s(p) t W u(q) = ∅, which in
other words means that lower index handles do not depend on higher index
handles, i.e. we can always attach lower index handles before higher index
ones.

This transversality assumption has a name:

Definition 2.4 (Smale condition). A pseudo-gradient field addapted to
a Morse function f is said to satisfy the Smale condition if for all pairs
of critical points {p, q} ⊂ Crit f , we have that W s(p) intersects W u(q)

transversely, i.e.

W s(q) t W u(p) for all p, q ∈ Crit f .

It turns out that this condition is not at all restricting: we can always perturb
the pseudo-gradient field such that it satisfies the Smale condition.

Theorem 2.5. Any Morse function f : M → R admits a pseudo-gradient
field that satisfies the Smale condition

This should be intuitively clear as transverse intersections are generic and
stable. This means that a small perturbation of W s(q) and W u(p) is enough
to make their intersection transverse, and we can accomplish this perturbation
by perturbing X. A rigorous proof of this is rather technical and we refer the
reader to Audin and Damian.21
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Almost all of the previous examples we have given satisfy the Smale condition
with the one exception being the torus.

Nonexample 2.6. The gradient vector field in Example 2.3 does not satisfy
the Smale condition: the intersection of W s(b) and W u(c) is not transverse.
Even more, if the condition were satisfied, there would be no trajectories
connecting b and c , because both have index 1, so dim(W s(b) t W u(c)) = 0.
However, as illustrated in the figure, we have two such paths.

Example 2.7. Instead of considering the embedding as in the previous ex-
ample, we can embed the torus at a slight angle. Then the gradient of
the height function (by using the standard metric on R3) does satisfy the
Smale condition. The intersection of W s(b) and W u(c) is no longer tangent:
indeed, they do not even intersect at all. We have illustrated this below.

Figure 2.6: When embedding the torus in R3 tilted,
the Smale condition is satisfied: all stable and
unstable manifolds intersect transversely. Indeed,
stable and unstable manifolds of c and b don not
intersect at all.

W s(b)

W u(b)

W u(c)

W s(c)

a

b

c

d

Example 2.8. As illustrated in Figure 2.3, the ‘other sphere’ with gradient
of the height function w.r.t the metric of R3 does satisfy Smale condition.

The Smale condition also has another interesting consequence, which we have
not touched upon. If stable and unstable manifolds intersect transversely, we
know that the intersection is again a submanifold. So W s(q) t W u(p) is a
manifold for all critical points p, q ∈ Crit f . This submanifold consists of all
points on the trajectories connecting p to q.

Definition 2.9. Let f : M → R be a Morse function and ψt the flow of
a pseudo-gradient that satisfies the Smale condition. Then we define

M(p, q) = W s(q) t W u(p)

=
{
x ∈ M | lim

t→−∞
ψt(x) = p, lim

t→∞
ψt(x) = q

}
,

which is a submanifold of dimension Ind p − Ind q.

Example 2.10. Consider the ‘other sphere’. We have illustrated M(p, q)

below for some of the critical points of the height function. Here we see
that these type of submanifolds do not need to be connected. For example,
M(b, a) is diffeomorphic to the disjoint union of two open intervals.

Figure 2.7: Illustration of M(p, q) for critical
points of the ‘other sphere’.

M(c, b)

c

b

M(d, b)

b

d

b

a
M(b, a) M(c, a) M(d, a)

a

d
c

a
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Instead of considering a manifold consisting of of points lying on all trajectories
from p to q,M(p, q), it is often more interesting to construct a manifold
each point corresponds to exactly one trajectory, that is a so-called moduli
space of trajectories. We can do this by modding outM(p, q) by R-action
of translations in time. We denote the resulting space with L(p, q). More
explicitly, we have the following:

Proposition 2.11. Let f : M → R be a Morse function and ψt the flow
of a pseudo-gradient field satisfying the Smale condition. Then the
group (R,+) of time translations acts onM(p, q) by t · x = ψt(x). If
p 6= q then the action is free and we can define L(p, q) =M(p, q)/R.
The dimension of L(p, q) is Ind p − Ind q − 1.

Proof. It is clear that R acts on M(p, q) by time translations. If p 6= q,
M(p, q) does not contain any critical point, so flowing along a pseudo-
gradient field, the value of f is strictly decreasing. This proves freeness.

Remark 2.12. If the index of two points only differs by one, say Ind p =

Ind q + 1, then the dimension of L(p, q) is 0, so it is a discrete set. This
proves that the number of trajectories from p to q is always countable. We
will later prove that it is in fact finite.

Remark 2.13. Another way to look at L(p, q) is to consider a regular value
a ∈ R such that f (p) < a < f (q). Then every flow line from p to q intersects
f −1(a) exactly once (this is because the value of f is decreasing along the
way), so we can identify L(p, q) withM(p, q) ∩ f −1(a).

Example 2.14. Below, we have illustrated the moduli space of trajectories
for the ‘other sphere’. When there is a single trajectory for example between
c and b, L(c, b) consist of a single point. If the indices of critical points differ
by two, as is the case for d and a, L(d, a) is a one-dimensional manifold
describing a one-parameter family of flow lines between d and a.

Figure 2.8: Illustration ofM(p, q) and L(p, q) for
critical points of the ‘other sphere’.

M(c, b)

c

b

M(d, b)

b

d

b

a
M(b, a) M(c, a) M(d, a)

a

d
c

a

L(c, b) L(d, b) L(b, a) L(c, a) L(d, a)
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22 John Milnor. Lectures on the h-cobordism theo-
rem. Vol. 2258. Princeton university press, 2015

W u(p)

W s(p)

p

p′

W s(p′)

W u(p′)

µ : M0 → [0, 1]

µ̄ : M → [0, 1]

x

π(x)

M0

M1

Figure 2.9: Construction of µ and π in the proof
on reordening critical points.

f (p) f (p′) 10

a′

a

1

G0

G1

0

Gs(x)

x

Figure 2.10: Necessary properties of G in the proof
on reordering critical points are indicated in yellow.

2.3 Reordering critical points

Now that we have introduced the (un)stable manifolds, we are ready to prove
a first reordering theorem. The statement and proof can be found in notes
of ‘Lectures on the h-Cobordism Theorem’ by Milnor.22

Theorem 2.15. Let f : M → R be a Morse function on a cobordism M

from M0 to M1 with two critical points p and p′. Suppose that for some
choice of pseudo-gradient field X, the stable and unstable manifolds do
not intersect. Let a, a′ ∈ (0, 1) be arbitrary. Then there exists a new
Morse function g such that

(a) X is a gradient-like vector field for g

(b) The critical points of g are still p, p′ and g(p) = a, g(p′) = a′.

(c) g agrees with f near M0 tM1 and equals f plus a constant in
some neighbourhood of p and some neighbourhood of p′.

Proof. We want to mask out the area around the stable and unstable
manifolds of one of the critical points. Let µ : M0 → [0, 1] be a smooth map
that vanishes around M0 ∩W u(p) and 1 around M0 ∩W u(p′), as illustrated
in Figure 2.9. Then we can smoothly extend this to a function on the
whole manifold M as follows. Define π : M → M0 by flowing along the
pseudo-gradient field until we reach M0. Then we can extend µ uniquely to
a smooth function that is constant on each trajectory by defining

µ : M −→ [0, 1]

x 7−→


0 if x in stable or unstable manifold of p

1 if x in stable or unstable manifold of p′

µ(π(x)) else

.

We have illustrated this in the figure by indicating the value of µ in red.

Define a new Morse function g : M → [0, 1] by g(q) = Gµ(q)(f (q)), where
Gs(x) is a smooth family of smooth functions Gs : [0, 1] → [0, 1] with
s ∈ [0, 1] that has the following properties, also indicated in Figure 2.10.

(1) For all s, G′s > 0 and Gs(0) = 0, Gs(1) = 1

(2) G0(f (p)) = a

G1(f (p′)) = a′

(3) Gs(x) = x for x near 0 or 1 and for all s

(4) G′0(x) = 1 for x in a neighbourhood of f (p)

G′1(x) = 1 for x in a neighbourhood of f (p′)

Claim (b) and (c) in the statement of the theorem are clear: they follow
immediately from (2), (3) and (4). For (a), consider

dG =
∂G

∂µ
dµ+

∂G

∂f
df .
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2.4. HEEGAARD SPLITTINGS

0

1

2
f

Figure 2.11: When tilting the torus to the right
angle, the height function becomes self-indexing.

0

1

2

3

3
2

f

M

S

Figure 2.12: Schematic visualization of a self-
indexing Morse function on a 3-manifold M. The
manifold S = f −1( 3

2
) is called the splitting surface

of M.

Plugging in X, we have

dg(X) =
∂G

∂µ
dµ(X) +

∂G

∂f
df (X)

=
∂G

∂f
df (X) < 0, except at critical points of f ,

where we used that dµ(X) = 0 by construction of µ, ∂G
∂f > 0 by (1) and

df (X) < 0 everywhere except at critical points of f by definition of pseudo-
gradient field. Because of (4), this implies that g and f share the same
behaviour around their critical points, proving that g is also Morse.

Remark 2.16. This theorem can be extended to a more general setting.
Suppose we have a set of points p = {p1, . . . , pk} and p′ = {p′1, . . . , p′`},
with all pi at the same level and all p′i at a single level. Then the theorem
remains valid, with exactly the same proof.

Applying the previous theorem repeatedly and using the fact that if Ind p ≤
Ind q, the intersection of W u(p) and W s(q) is empty, we find the following
result:

Theorem 2.17. Any closed manifold admits a Morse function such that
for all critical points, Ind p < Ind q ⇒ f (p) < f (q). In particular, it
admits a Morse function which satisfies Ind p = f (p) for all critical
points p ∈ Crit f .

In other words, this asserts that lower index handles can always be attached
before higher index ones. Morse functions as described in the second part of
the theorem have a name:

Definition 2.18 (Self-indexing Morse function). A Morse function f :

M → R is self-indexing if Ind p = f (p) for all critical points p of f .

Example 2.19. Consider T 2 ⊂ R3 embedded at an angle. We have illustrated
the side view in Figure 2.11. Then the height function is a self-indexing
Morse function.

2.4 Heegaard splittings

In the three-dimensional setting, the existence of self-indexing Morse functions
give rise so-called Heegaard splittings. Heegaard splittings form an essential
tool for a low-dimensional topologist (studying manifolds of dimension ≤ 4)
and give a way to understand 3-manifolds. As Heegaard splittings will not
play an important role in the upcoming chapters, we will only discuss them
briefly.

A self-indexing Morse function gives rise to a handle decomposition schemat-
ically shown in Figure 2.12. When splitting the manifold along f −1( 3

2 ), we
decompose M in two parts: a part that consists of 0- and 1-handles and a
part consisting only of 2- and 3-handles. To build M we glue these two parts
along their boundary. The part consisting of 2- and 3-handles can also be
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Figure 2.13: A genus four Heegaard splitting of S3,
seen as the one point compactification of R3. This
way, we can obtain a Heegaard splitting of S3 of
any genus.

Figure 2.14: The act of stabilization is replacing a
ball near the boundary as illustrated, increasing the
genus of the splitting surface by one.

seen as being constructed of 0- and 1-handles, simply by building M from
top to bottom by considering the Morse function −f instead of f . This
then interchanges k- and n − k-handles, which in the three-dimensional case
results in 2↔ 1 and 3↔ 0. All things considered, we have a decomposition
of M in two so-called handlebodies:

Definition 2.20 (Genus k handlebody23). A genus k handlebody is a
compact connected orientable 3-manifold with boundary that possesses
a handle decomposition consisting of 0-handles and 1-handles such that
its boundary is a surface of genus k .

A Heegaard splitting is then defined as follows.

Definition 2.21 (Heegaard splitting23). A Heegaard splitting of a closed
3-manifold M is a decomposition M = V ∪S W such that V and W are
genus k handlebodies and S = ∂V = ∂W . Here S is called the splitting
surface of M. Two Heegaard splittings are considered equivalent if their
splitting surfaces are isotopic. The genus of a Heegaard splitting is the
genus of S.

23 Jennifer Schultens. Introduction to 3-manifolds.
Vol. 151. American Mathematical Soc., 2014

With these definitions, we can summarize our findings as follows:

Theorem 2.22. Every closed orientable 3-manifold admits a Heegaard
splitting.

Proof. Let f be a self-indexing Morse function onM. ThenM = f −1
[
0, 3

2

]
∪

f −1
[

3
2 , 3
]
is a Heegaard splitting ofM by duality of k- and n−k-handles.

Let us give some examples.

Example 2.23. As seen earlier, the ‘height’ function on S3 gives rise to a
handle decomposition S3 = B2 ∪B2. This is a Heegaard splitting of genus 0

with splitting surface S2.

Example 2.24. The previous example is not the only way to decompose S3.
Indeed, we can arbitrarily add cancelable 1- and 2-handles (as in Example 1.23)
to increase the genus. For example a genus four Heegaard splitting of
S3 is illustrated in Figure 2.13. Here, we visualized S3 as the one point
compactification of R3.

Example 2.25. If we split the handle decomposition of T 3 given in Exam-
ple 1.22 between index 1 and 2 critical points, then we find a splitting surface
that has genus three, as illustrated in Figure 1.17.

Remark 2.26. The act of increasing the genus, as done in Example 2.24
is called stabilization. It can be done in as in Figure 2.14. The reverse
procedure, called destabilization cannot be done in general.
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c

d

b

a

Figure 2.16: The ‘other sphere’ with trajectories
between critical points whose index differ by exactly
one. We can only cancel b and c or d and b.
Cancelling b and a is impossible.

2.5 Cancellation of critical points

Let us now answer the second question that came up when discussing
examples in the previous chapter: ‘When can we cancel a pair of critical
points p, q?’ It turns out that the existence of a unique trajectory connecting
p to q is a sufficient condition, as the following theorem states.

Theorem 2.27 (Cancellation theorem24). Let M be a cobordism from
M0 to M1. Let f : M → [0, 1] be a Morse function with exactly two
critical points p, q of index k + 1 and k and let X be a pseudo-gradient
adapted to M.

If #L(p, q) = 1, that is if there is a single trajectory ` = M(p, q)

connecting p and q, then we can cancel p and q. More specifically,
we can alter X around ` and f away from M0,M1 such that f has no
critical points.

24 John Milnor. Lectures on the h-cobordism
theorem. Vol. 2258. Princeton university press,
2015

Below, we have illustrated the alteration of the pseudo-gradient X:

Figure 2.15: The pseudo-gradient before and after
the alteration. Initially, X vanishes twice (once at
p and once at q). After the alteration, X ′ does
vanishes nowhere.

M0

M1

q

p `

X X ′

Before proving this theorem, let us give an example showing the importance
of the conditions in the theorem.

Example 2.28. Consider the ‘other sphere’ as in Figure 2.16, where we have
also drawn trajectories between critical points of consecutive index.

For the pair (d, b), let N = f −1([f (b)−ε, f (d)+ε]) be a cobordism containing
only b and d as critical points. There is a unique flow line connected d to b,
and the theorem allows us to cancel these two critical points.

At first glance, the theorem does not allow us to cancel c and b: while there
is a unique trajectory connecting c to b, we cannot cut out a part of M only
containing c and b as critical points. This however turns out not be a problem,
because we can lower c and raise d using methods discussed before such that
f (d) > f (c). Once that is done, we can consider N = f −1([f (b)−ε, f (c)+ε])

and apply the theorem.

The last pair of critical points of adjacent index is (b, a). In this case, there
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25 Stewart Scott Cairns. Differential and Com-
binatorial Topology: A Symposium in Honor of
Marston Morse (PMS-27). Princeton University
Press, 2015; William Huebsch and Marston Morse.
“The bowl theorem and a model nondegenerate func-
tion”. In: Proceedings of the National Academy
of Sciences of the United States of America 51.1
(1964), p. 49
26 Antoni A Kosinski. Differential manifolds.
Courier Corporation, 1993
27 François Laudenbach. “A proof of Morse’s theo-
rem about the cancellation of critical points”. In:
Comptes Rendus Mathematique 351.11-12 (2013),
pp. 483–488

p q
x1

v(x1)

x1

x2, . . . xn

Figure 2.17: Model of the pseudo-gradient vector
field X. In local coordinates it is given by X =

(v(x1), x2, . . . , xk ,−xk+1, . . . ,−xn), where v is as
illustrated above.

p q
x1

v(x1)

x1

x2, . . . xn

w(x1, 0)

Figure 2.18: Alteration of the pseudo-gradient.
In particular, notice that the alteration vanishes
nowhere.

are two flow lines connecting b to a and we cannot cancel the critical points.

Proof. We will follow the proof given by Milnor which is based on the original
proof by Morse.25 For a proof focussing more on handles than on critical
points, we refer the reader to ‘Differential Geometry’ by Kosinski.26 There is
also a nice proof by Laudenbach27 reducing the general case to dimension
one, where the problem is easy to solve, as we have seen in Example 1.6.

We prove the statement in a local model. Let U` be an open neighbourhood
of `. We may assume that there are coordinates such that:

• The critical points are given by p = (0, . . . , 0) and q = (1, 0, . . . , 0)

• The pseudo-gradient is given by X = (v(x1), x2, . . . , xk ,−xk+1, . . . ,−xn)

where v(x1) is a smooth function of x1, such that v is positive on (0, 1),
vanishes at 0 and 1 and is negative elsewhere. Moreover, we assume that
v ′(x1) = 1 near 0 and 1.

We have illustrated these properties in Figure 2.17 and formal proof of this
fact can be found in the notes by Milnor.

Assertion 1. Given an open neighbourhood U of `, we can find a smaller
neighbourhood U ′ such that no trajectory exiting U ′ enters U ′ again.

Note that this can be false when there are multiple trajectories connecting p
to q, as is the case with p = b, q = a in Figure 2.16.

Proof. Suppose this was not the case. Then there would exists a sequence
of trajectories `k that pass through points rk , sk , tk with sk 6∈ U and rk and
tk approaching `. We may assume that sk → s because M \ U is compact.
The trajectory through s, call it `∞ comes from M0 or reaches M1 (or both),
as it would otherwise be a trajectory connecting p and q not equal to `.
Suppose without loss of generality that it comes from M1. Then the tail
of the sequence of trajectories `k passing through points sk near s also
originate in M1. This means that the minimal distance between points on
`k and points on ` is bounded from below by a positive number for k big
enough. Now, because rk ∈ `k , the points rk cannot approach `. This is a
contradiction. �

Let U and U ′ be neighbourhoods of ` such that ` ⊂ U ′ ⊂ U ⊂ U ⊂ U` such
that U ′ satisfies the conditions of the previous assertion.

Assertion 2. We can alter X on a compact subset of U ′ in such a way that
any point in U will exit U when flowing both backwards and forwards in time.
In other words, any trajectory that contains a point in U has entered U and
will exit U. Note that the altered vector field is not longer adapted to f .

Proof. Replace X by (w(x1, ρ), x2, . . . ,−xn). Here, ρ =
√
x2

2 + · · ·+ x2
n is

the norm of the coordinates normal to ` and w(x1, ρ) satisfies the following
properties, also illustrated in Figure 2.18.
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q
−X ′

π0(q)

π1(q)

M0

M1 t = τ1(q)

t = 0

t = −τ0(q)

Figure 2.19: The nowhere vanishing vector field X ′

determines a diffeomorphism between [0, 1]×M0

and the manifold M.

• The vector field w(x1, ρ(x)) is equal to v(x1) outside a compact neigh-
bourhood of ` in U ′.

• For ρ = 0, the vector field w(x1, 0) is everywhere negative.

To prove the claim, let x0 = (x0
1 , . . . , x

0
n ) ∈ U and let x(t) the unique

trajectory such that x(0) = x0.

(a) If one of x0
k+2, . . . , x

0
n is non-zero, say xm. Then |xm(t)| increases

exponentially, so the trajectory leaves U.

(b) If all of x0
k+2, . . . , x

0
n are zero, then ρ decreases exponentially, so it

gets closer to the x1-axis. Since w(x1, ρ(x)) is strictly negative on the
x1-axis, it is also negative on a compact set K = {x ∈ U | ρ(x) ≤ δ}
for some small δ. Therefore, w(x1, ρ(x)) has a negative upper bound
−α < 0 on K. As ρ decreases exponentially, eventually x ∈ K and
x ′1(t) < −α from then onwards. As U is bounded, we conclude that x
leaves U. �

Assertion 3. Every trajectory of X ′ goes from M0 to M1.

Proof. Integral curves that do not enter U follow X and hence always go
from M1 to M0. Any integral curve through a point in U eventually exits U
by Assertion 2. Moreover, it cannot re-enter U by Assertion 1, and hence
once exited, it follows X. �

Assertion 4. The vector field X ′ determines a diffeomorphism φ : [0, 1]×
M0 → M that maps 0×M0 to M0 and 1×M0 to M1.

Proof. We will reverse X ′ and normalize it such that flowing along it for
time 1, it it sends a point in M0 to a point in M1. Let τ0(q) be the
time needed to flow q back to M0 along −X ′ and similarly define τ1(q).
The maps τ0 and τ1 depend smoothly on q. Let π0 be the projection
M → M0 by flowing along −X ′ and similarly define π1. Then the vector field
Y (q) = −τ1(π0(q))X ′(q) has flow lines that go from M0 to M1 in unit time.
This defines a diffeomorphism in the following way:

φ : [0, 1]×M0 −→ M

(t, q) 7−→ ψtY (q),

where ψtY is the flow of Y . The inverse of φ is q 7→ (τ0(q), π0(q)). �

Assertion 5. The vector field X ′ is a pseudo-gradient vector field for some
Morse function g on M that agrees with f near M0 and M1. Moreover, g
has no critical points.

Proof. By using the previous assertion, it suffices to define a Morse function
g on [0, 1]×M0 such that ∂g

∂t > 0 and g corresponds to f1 = f ◦ φ around
0 × M1 and 1 × M. To make sure that ∂g

∂t > 0, we will define g as the
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integral of a positive function, and to make sure it corresponds to f1 around
the boundary of [0, 1]×M0, we will define g in the following way:

g(u, q) =

∫ u

0

λ(t)
∂f1
∂t

+ (1− λ(t)) k(q) dt.

Here, λ : [0, 1] → [0, 1] is a bump function supported in the interior of
[0, δ) ∪ (1− δ, 1], with δ small enough such that ∂f1

∂t < 0 in [0, δ) ∪ (1− δ, 1]

and k : M0 → [0, 1] is some yet unknown function that only depends on q.
We have illustrated the situation below.

Figure 2.20: Construction of a Morse function that
is adapted to X ′ and equals f in a neighbourhood
of the boundary of [0, 1] × M0. Here φ is the
diffeomorphism obtained in Assertion 4. fφ

f1

0

t

λ
1

δ

1

1− δ

M0

M1

M[0, 1]×M0

The idea is to integrate the derivative of the original Morse function near
the bottom and the top, and in the middle we will integrate an appropriately
large function k(q) such that g(1, q) = 1 for all q, i.e. the speed is adjusted
so that at t = 1, we reach the top of [0, 1]×M0. Expanding this condition
and solving for k(q), we get

g(1, q) =

∫ 1

0

λ(t)
∂f1
∂t

+

∫ 1

0

(1− λ(t))k(q)dt = 1∫ 1

0

(1− λ(t))dt k(q) = 1−
∫ 1

0

λ(t)
∂f1
∂t

k(q) =
1−

∫ 1

0 λ(t) ∂f1∂t∫ 1

0 (1− λ(t))dt
.

Taking δ small enough ensures that k(q) > 0, hence ∂g
∂t > 0, concluding the

proof of the last assertion. �

This finishes the proof of the first cancellation theorem. �
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CHAPTER THREE

Morse homology

Morse homology is a way of associating global invariants to a manifold
equipped with a Morse function f and an adapted pseudo-gradient X. In this
long chapter, we will define Morse homology and prove three fundamental
theorems. Let us give an outline.

As with any homology theory, Morse homology is based on a chain complex,
called the Morse complex, which we introduce in Section 1. This complex
consists of spaces Ck(f ) generated by the critical points of f , and the
differential ∂X : Ck → Ck−1 counts trajectories between critical points.
After introducing these concepts, we compute the Morse homology of some
examples.

In Section 2, we prove that the Morse complex is actually a complex which
comes down to proving that ∂2

X = 0. The proof, while rather long and
technical, is based on illuminating geometrical ideas that have inspired many
other homology theories, including Floer homology.

In Section 3, we show that Morse homology does not depend on the chosen
Morse function and pseudo-gradient. This result is two-sided. On the
one hand, it is disappointing that Morse homology does not capture any
information about the dynamics of the Morse function and pseudo-gradient.
On the other hand, it can be very useful to have a lot of freedom choosing
input parameters without changing the resulting homology. For example,
changing f  −f does not change the homology and this will lead to a proof
of Poincaré duality.

Section 4 concerns Morse homology over Z. We will see that homology
over Z captures more information than homology over Z2. For example
Z-homology can distinguish a Klein bottle from a torus while (the easier to
define) Z2-homology does not.

In the last section of this chapter, we show that Morse homology is actually
isomorphic to singular homology. We will do this by showing that it is
isomorphic to de Rham homology which is based on currents. This last
fundamental theorem concludes this chapter.
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a

b

c

d
C2

C1

C0

Figure 3.1: The critical points of the height func-
tion can be split up depending on their index and
form the generators of the modules in the Morse
complex.

3.1 Morse complex

In order to define the Morse complex, we need a sequence of modules over a
certain ring and maps between these modules. Most of the time, we will be
working over Z/2Z, which we will denote by Z2, but sometimes the ring Z
will be used instead. As will turn out, working over Z2 will allow us not to
worry about orientation and it being a field also has some advantages.

The modules we will be considering depend on a Morse function f and consist
of formal sums of critical points of a certain index:

Ck(f ) =
{ ∑
p∈Critk f

npp | np ∈ Z2

}
=

⊕
p∈Critk f

Z2p.

Note that this implies that C−1 = C−2 = · · · = 0 and Cn+1 = Cn+2 = · · · = 0,
where n is the dimension of the manifold.

Example 3.1. Consider the ‘other sphere’ in Figure 3.1. We have

C0 = {0, a} C1 = {0, b} C2 = {0, c, d, c + d}.

The definition of the differential is based on a pseudo-gradient X: it counts
trajectories connecting critical points of lower index. Because critical points
of index k generate Ck , it suffices to define ∂X,k on these critical points and
extend linearly:

∂X,k : Ck −→ Ck−1

p 7−→
∑

q∈Critk−1 f

nX(p, q)q,

where nX(p, q) is the number of trajectories of X connecting p and q, modulo
2. If we require that X satisfies the Smale condition, we will later show that
this is well defined, by which we mean that nX(p, q) is an integer (see also
Remark 2.12). If it is clear from the context, we will often drop X, k or both
from the notation.

Example 3.2. Consider again the ‘other sphere’ with its height function. Let
X be the gradient induced from the standard gradient in R3. Then ∂X is
defined as follows, keeping in mind that we are working over Z2 and that
C−1 = 0:

Figure 3.2: The Morse differential ∂X counts the
number of trajectories connecting critical points.

c

d

b

a

∂c = b

c

d

b

a

∂d = b

c

d

b

a

∂b = 2a = 0

c

d

b

a

∂a = 0

This allows us to define the Morse complex and Morse homology.
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c

d

b

a

f

C2

C1

C0

a

bC2

C0

g

Figure 3.3: Two embeddings of the sphere in R3.
The corresponding height functions are Morse func-
tions and give rise to a different Morse complex.
However, the resulting Morse homology is the same.

Definition 3.3 (Morse complex). Let f : M → R be a Morse function
and X a pseudo-gradient with the Smale property. Then the Morse
complex is given by

· · · ∂−→ C2(f )
∂−→ C1(f )

∂−→ C0(f )
∂−→ 0

∂−→ 0
∂−→ · · ·

The Morse homology HM(C•(f ), ∂X) is the homology of this chain
complex.

The attentive reader will have noticed that for this to be a chain complex, we
need ∂2 = 0, which is not obvious at all. Apart from this, we also would to
like to prove that this homology does not depend on the choice of the Morse
function f and the pseudo-gradient field X. We will address these topics in
the two following sections, but let us first compute the Morse homology of
some examples.

Example 3.4 (Homology of the (other) sphere). We have already computed
the differential in the previous example, so computing the homology is just a
matter of applying the definition.

• HM0(C•(f ), ∂X) =
Ker ∂ : C0 → C−1

Im ∂ : C1 → C0
=
{0, a}
{0}

∼= Z2

• HM1(C•(f ), ∂X) =
Ker ∂ : C1 → C0

Im ∂ : C2 → C1
=
{0, b}
{0, b}

∼= 0

• HM2(C•(f ), ∂X) =
Ker ∂ : C2 → C1

Im ∂ : C3 → C2
=
{0, c + d}
{0}

∼= Z2

In summary, we have

H0 = Z2 H1 = 0 H2 = Z2.

Instead of embedding S2 in this strange way, we can also repeat the same
calculation with its standard embedding, illustrated in Figure 3.3. We have
C2 = {0, b}, C1 = {0} and C0 = {0, a}, and ∂(b) = 0, ∂(a) = 0. This way,
we obtain

• HM0(C•(g), ∂Y ) =
Ker ∂ : C0 → C−1

Im ∂ : C1 → C0
=
{0, a}
{0}

∼= Z2

• HM1(C•(g), ∂Y ) =
Ker ∂ : C1 → C0

Im ∂ : C2 → C1
=
{0}
{0}
∼= 0

• HM2(C•(g), ∂Y ) =
Ker ∂ : C2 → C1

Im ∂ : C3 → C2
=
{0, b}
{0}

∼= Z2

In summary, we have

H0 = Z2 H1 = 0 H2 = Z2,

exactly the same homology as with the other Morse function and other
gradient. As mentioned earlier, we will prove that this is in general the case.

Example 3.5 (Homology of the three-torus). Let us recall Example 1.22,
which discusses the three-torus T 3 = S1×S1×S1 = R3/Z3 and the following
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Figure 3.4: Trajectories connecting critical points
whose index differ by exactly 1. Here T 3 = R3/Z3

and we have drawn
(
− 1

2
, 1

2

]3 as representative
cube.

Figure 3.5: Graph of the critical points of f on T 3.
Each edge represents a flow line between points
whose indices differ by one.

28 Compact one-dimensional manifolds consist of
disjoint unions of copies of S1 and closed intervals,
as proven in John Milnor and David W Weaver.
Topology from the differentiable viewpoint. Prince-
ton university press, 1997, p.55.

Morse function

f : T 3 −→ R
(x, y , z) 7−→ 2 cos(2πx) + 3 cos(2πy) + 4 cos(2πz),

with critical values repeated here for convenience:

x y z f (x, y , z) Index
0 0 0 9 3
1
2 0 0 5 2

0 1
2 0 3 2

0 0 1
2 1 2

1
2

1
2 0 −1 1

1
2 0 1

2 −3 1

0 1
2

1
2 −5 1

1
2

1
2

1
2 −9 0

The differential equation for trajectories along grad f is

ẋ = −4π sin(2πx)

ẏ = −6π sin(2πy)

ż = −8π sin(2πz).

Note that ẋ only depends on x , ẏ on y and ż on z , so this is a decoupled
system that is easy to solve. Requiring that for t → ±∞ we end up in
critical points, we find the trajectories in Figure 3.4. To have a better
overview, we can also make a graph of critical points and trajectories between
them, as is done in Figure 3.5. This graph provides all the information we
need to compute the Morse homology of T 3. Note that all critical points
are connected with two gradient lines, which means that each differential
∂3, ∂2, ∂1, ∂0 is the zero map, making it very easy to compute the homology.
In the end, we get

H0 = Z2 H1 = Z3
2 H2 = Z3

2 H3 = Z2,

which corresponds to the usual homology.

3.2 The Morse complex is a complex: ∂2 = 0

In this section, we will prove that the Morse complex is actually a complex, by
which we mean that ∂2 = 0. The core idea of the proof is very geometrical and
depends on the fact that compact one-dimensional manifolds with boundary
have an even number of boundary points.28 We will first clarify this core idea,
and then make this argument precise.

Let us first state clearly what we have to prove. Let a ∈ Critk f be a critical
point of a Morse function f : M → R. We need to prove that ∂2(a) = 0, so

∂2(a) = ∂
( ∑
c∈Critk−1 f

nX(a, c)c
)

=
∑

b∈Critk−2 f

∑
c∈Critk−1 f

nX(a, c)nX(c, b)b.
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a

b

c1 c2

a

c1 = c2

b

Figure 3.6: Core idea of the proof stating ∂2 = 0.
There are two unbroken trajectories from a to b,
one passing through c1 and one through c2. There
is a one parameter family of unbroken trajectories in-
terpolating between the two broken ones. Together,
they form a compact 1-dimensional manifold with
boundary, which has an even number of boundary
points.

We see that ∂2(a) counts trajectories from a to points of index k − 2 that
are once broken in a critical point of index k − 1. We are working over Z2,
so if we can prove that these once broken trajectories always occur in pairs,
we are done.

The core idea of the proof is to notice that there is a one parameter family
L(a, b) of unbroken trajectories connecting the broken trajectories, as illus-
trated in Figure 3.6. More specifically the space of unbroken trajectories
L(a, b) is a one-dimensional manifold, and by adding in the once broken
trajectories between a and b, we can compactify this manifold, resulting in
the space which we will denote with L(a, b):

L(a, b) = L(a, b) ∪
⋃

c∈Critk−1 f

L(a, c)× L(c, b).

This turns out to be a compact 1-manifold, and its boundary consists exactly
of the broken trajectories. Because a 1-manifold always has an even number
of boundary points, this shows that once-broken trajectories come in pairs,
proving that ∂2 = 0.

Before we proceed with this idea, let us give an overview of the steps that
need to be taken.

1. Define L(a, b), the space of all (broken and unbroken) trajectories.

2. Define a topology on L(a, b).

3. Prove that L(a, b) is the compactification of L(a, b).

4. Prove that if Ind a− Ind b = 2, then L(a, b) is a 1-dimensional manifold
with boundary the once broken trajectories between a and b.

3.2.1 The space of broken trajectories

Definition 3.6. The space of broken trajectories between a and b is

L(a, b) =
⋃

{c1,...,c`}⊂Crit f
ci distinct

L(a, c1)× L(c1, c2)× · · · × L(c`, b).

Remark 3.7. Notice that L(p, q) = ∅ if Ind p ≤ Ind q, so the only broken
trajectories that contribute to the union satisfy Ind a > Ind c1 > · · · >
Ind c` > Ind b. Moreover, note that this set also contains the ‘zero-times’
broken trajectories, i.e. L(a, b) itself.

The number ` describes how many times the trajectory is broken. In other
words, each broken trajectory in L(a, c1) × L(c1, c2) × · · · × L(c`, b) has
`+ 1 segments, and we will denote such a trajectory by (λ1, λ2, · · · , λ`+1).
As discussed above, in the case of Ind a = k, Ind b = k − 2, this definition
results in

L(a, b) = L(a, b) ∪
⋃

c∈Critk−1 f

L(a, c)× L(c, b),

which makes it clear it is the union of unbroken and once broken trajectories.
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b

a

c

λ1

λ2

Figure 3.7: The topology on L(a, b) is defined by
looking at the entrance and exit points in the Morse
charts. Here we have shown in black paths that lie
in a neighborhood of the broken path (λ1, λ2) ∈
L(a, b).

xn

x

yyn f (y)

Figure 3.8: A convergent sequence xn → x defines
a sequence of trajectories. If yn is a sequence of
points that lie on these trajectories, then it also
converges to a point y lying on the trajectory that
passes through x .

3.2.2 Topology of L(a, b)

To define a topology on L(a, b), we will describe a basis around a (possibly
broken) trajectory. Let λ = (λ1, λ2, . . . , λq) be a trajectory in L(a, b).
Consider Morse charts around each critical point a, c1, c2, . . . , cq−1, b. Take
opens around entry and exit points of the trajectories, lying in level sets of
f , indicated in the figure with thick black lines. We declare all trajectories
passing through these opens to be in a open neighborhood of (λ1, λ2, . . . , λq).
Doing this for all possible ‘entrance and exit opens’ defines a basis of the
topology.

Remark 3.8. If λ is unbroken, we have L(a, b) ∼= M(a, b) ∩ f −1(α) for
some regular value α, and topology on L(a, b) corresponds to the subspace
topology onM(a, b) ∩ f −1(α) ⊂ M.

In conclusion, the essence of this topology on L(a, b) is: ‘trajectories are
nearby if entrance and exit points in Morse charts are nearby’.

3.2.3 L(a, b) is the compactification of L(a, b)

Now we are ready to prove that L(a, b) is compact, and in fact a com-
pactification of L(a, b). By this last statement, we mean that there are
points in L(a, b) arbitrary close to ones in L(a, b). In topological terms, any
open around a broken trajectory in L(a, b) contains unbroken trajectories,
i.e. elements of L(a, b).

Theorem 3.9. L(a, b) is compact.

In the proof of this theorem, we will need the following lemma, stating that
points yn on trajectories that pass through a convergent sequence of points
xn → x also converge, at least if yn all lie on the same level:

Lemma 3.10. Let x be a regular point of f and xn → x . Let yn and y
be points lying on the same trajectory of X as xn and x . Suppose all yn
lie on the same level as y , i.e. f (yn) = f (y). Then yn → y .

Proof. The idea of the proof is to flow yn to xn and y to x so that convergence
of xn implies convergence of yn. Let ψt be the flow of − 1

df (X)X on a subset
ofM that contains xn, yn, x, y for large enough n and does not contain critical
points. Then f (ψt(z)) = f (z)− t, so

yn = ψ−f (yn)+f (xn)(xn)

= ψ−f (y)+f (xn)(xn)

n →∞

ψ−f (y)+f (x)(x) = y .
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29 By this, we simply mean an accumulation point
of the sequence `n, but this terminology can be con-
fusing because it is not a point in the geometrical
sense of the word.

30 By definition of our topology, a sequence of
unbroken trajectories connecting a to b (`n) con-
verges to an unbroken trajectory (γ1) if entry and
exit points converge.

31 Suppose that it does not. Then we could flow
back c− to a point c? with f (c?) = f (c+). Note
that c? is not in the stable manifold of c. (Other-
wise, flowing forward again we would end up in c)
Applying the lemma again, c+

n → c? meaning that
c? = c+. This cannot be right since c? is not in
the stable manifold of c, but c+ is, by definition.

Let us now prove that L(a, b) is compact. We will do this by proving that
this space is sequentially compact. This is enough, because the topology on
L(a, b) is second countable (coming from the topology on M), which implies
that compactness, countable compactness, sequentially compactness, etc.
are equivalent properties.

Figure 3.9: To show that L(a, b) is compact, we
consider a sequence of paths `n in L(a, b) and
find an accumulation trajectory, i.e. a limit of a
subsequence. In case 1, the accumulation trajectory
lies in L(a, b). Case 2 shows the situation when the
accumulation trajectory is broken in c (and possibly
in multiple other critical points).

b

a
`n

γ1
b+

a−

Case 1

c−n
c−

a
`n

γ1
c+

γ2

a−

c+
n

Case 2

c

a−n

b+
n

Proof. Let us first consider a sequence of unbroken trajectories, i.e. a
sequence `n in L(a, b). Let Ω(a) be a Morse chart around a. Consider the
points where `n exits the Morse chart a, call them a−n . Using compactness of
the sphere, extract a subsequence of `n such that a−n converges and call the
point of convergence a−. We will denote the extracted subsequence again by
`n and will do so continuously in the proof. Similarly, extract a subsequence
such that b+

n , defined as the entry point in the Morse chart of b converges
to a point b+. In conclusion, we have a subsequence whose exit point in
Ω(a) converges to a− and whose entrance in Ω(b) converges to b+.

Let us now try to construct a trajectory that is the ‘accumulation trajectory’29

of `n. An obvious starting point would be to consider the unique trajectory
γ1 passing through a− going from a to another critical point. Suppose for a
moment that this other critical points is in fact b, so γ1 connects a and b,
as in case 1 in Figure 3.9. Lemma 3.10 implies that the entry points of `n in
Ω(b) converge to the entry point of γ1. This then proves that `n → γ1

30.

In the other case , when γ1 connects a and another critical point c 6= b, the
accumulation trajectory of `n will be a trajectory that is at least broken in c .
We have again that the entry points of `n in Ω(c) (call them c+

n ) converge to
the entry point of γ1, so the first segment of the accumulation trajectory will
be γ1. To find the second segment of the accumulation trajectory, we would
again want a starting point (like we had a− before) in the unstable manifold
of c to flow from in order to find γ2. For this, extract a subsequence of `n
such that their exit points c−n in Ω(c) converge to a point c−. We claim that
c− lies in the unstable manifold of c .31 This means that when we flow back,
we indeed get to c like we wanted, and when we flow forward, we get to
another critical point, which may be b, or d , yet another critical point. This
way we go on and find a subsequence of `n that converges to (γ1, γ2, . . . , γk).
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Figure 3.10: We can embed a half open interval
[a, b) in R, but that does not mean that a is a
boundary point of R. Clearly, there exists xn → a

that is not eventually contained in [a, b). Requiring
that this last condition always holds ensures that a
is actually a boundary point.

b

a

c c−

λ1

λ2

0

δ
χ

Figure 3.11: The map χ is an embedding of a half-
open interval [0, δ) in the level set α− ε. Consid-
ering the trajectories passing through these points,
we get an embdding ψ : [0, δ)→ L(a, b).

In order to complete the proof for a sequence `n in L(a, b) (instead of
L(a, b)), note that for sufficiently large n and after extracting a subsequence,
the critical points where `n is broken do not change. Then apply the proof
above to the first segment, then to the second, . . .

Note that this proof also encapsulates the fact that L(a, b) is actually the
compactification of L(a, b), in the sense that there are elements of L(a, b)

that are arbitrarily close to a fixed element of L(a, b).

3.2.4 L(a, b) is a 1-dimensional manifold with boundary

The last step we need to take is showing that that the topological space
L(a, b) actually has the structure of a manifold. More specifically if Ind a −
Ind = 2, then it is a one-manifold with boundary.

Theorem 3.11. Let a, b be critical points of M such that Ind a− Ind b =

2. Then L(a, b) is a compact 1-dimensional manifold with boundary.

Remark 3.12. In general, the space L(a, b) when Ind a − Ind b > 2 is a
compact manifold with corners. Its interior consists of unbroken trajectories,
its codimension 1-stratum of the once-broken trajectories, its codimension
2-stratum of the twice-broken trajectories, etc.

We already know that L(a, b) is a 1-manifold, so the following proposition
immediately implies the theorem.

Proposition 3.13. Let M be a compact manifold and f : M → R a
Morse function with adapted pseudo-gradient X satisfying the Smale
condition. Let a, c, b be three critical points of index k + 1, k and
k − 1. Let λ1 ∈ L(a, c) and λ2 ∈ L(c, b). There exists a continuous
embedding ψ from [0, δ) to a neighborhood of (λ1, λ2) in L(a, b) such
that {

ψ(0) = (λ1, λ2) ∈ L(a, b)

ψ(s) ∈ L(a, b) for s 6= 0.

Moreover if (`n) is a sequence in L(a, b) that tends to (λ1, λ2), then
`n is eventually contained in the image of ψ.

The last part is important in order to show that broken trajectories actually
form the boundary, as illustrated in Figure 3.10.

Proof. Let a, b, c be critical points of index (Ind a, Ind c, Ind b) = (k +

1, k, k − 1). Consider a Morse chart around c that lies between level
sets α± ε where α = f (c). Let c+ be the entry point of λ1 in the Morse
chart of c .

The idea is to embed an interval [0, δ) as in Figure 3.11 in the level set
α − ε. Call this embedding χ. We will then define ψ(t) as the trajectory
passing through χ(t) (for t > 0) and ψ(0) = (λ1, λ2). The difficulty lies in
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c
Q
S−

Dk

Q

S−

Q

Q t W s(b)

c+

c−

Figure 3.12: An overview of the different submani-
folds considered in the proof.

S−
Q

c−
Q ∩W s(b)

Dk

Figure 3.13: The situation in three dimensions.

determining how to embed [0, δ) inside the level set α − ε such that ψ is
continuous at 0.

Parametrizing trajectories near λ111 Let Dk be a small k-dimensional disk
around c+ in f −1(α + ε), parametrizing trajectories starting in a near λ1.
Now consider Dk \ c+ and flow this punctured disk along X until it reaches
the level set α − ε. Points in the resulting manifold Q ⊂ f −1(α − ε)
parametrize trajectories near λ1 but not λ1 itself. By adding the points lying
on S− := W u(c) t f −1(α− ε), we get the manifold Q = Q ∪ S− which is a
manifold with boundary S−. This submanifold Q of f −1(α− ε) parametrizes
trajectories near λ1 (but notice that λ1 itself is represented multiple times).

Parametrizing trajectories ending in b Let P = f −1(α − ε) t W s(b).
This is again a subspace of f −1(α− ε) that parametrizes trajectories going
to b.

Parametrizing trajectories near (((λ111, λ222))) The intersection of P and Q
is transverse (because of the Smale conditions) and parametrizes (broken
and unbroken) trajectories near (λ1, λ2). Because of transversality, this
intersection is in fact a manifold (with boundary c−) and counting dimensions,
we find that it has dimension 1. Now it is easy to define the required
embedding χ : [0, δ)→ f −1(α− ε), which in turn gives rise to ψ : [0, δ)→
L(a, b).

3.2.5 Conclusion

Let us conclude this section by finally proving that ∂2 = 0.

Theorem 3.14. Let X be a pseudo-gradient adapted to a Morse function
f : M → R that satisfies the Smale condition. Then the Morse
differential ∂X squares to zero.

Proof. Let a be a critical point of f . Then by definition of ∂,

∂2(a) =
∑

b∈Critk−2 f

∑
c∈Critk−1 f

nX(a, c)nX(c, b) b.

By definition of nX ,

=
∑

b∈Critk−2 f

∑
c∈Critk−1 f

#(L(a, c)× L(c, b)) b

=
∑

b∈Critk−2 f

#

( ⋃
c∈Critk−1 f

L(a, c)× L(c, b)

)
b.

By definition of L(a, b)

=
∑

b∈Critk−2 f

#(∂L(a, b)) b.

Now, L(a, b) is a compact 1-manifold and hence has an even number of
boundary points. Working over Z2, this implies that ∂2(a) = 0.
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s

0

1

Figure 3.14: An interpolation between f0 and f1
can result in degenerate critical points, as shown in
the figure in orange: a homotopy between Morse
functions is not necessarily Morse for all times s.

s

0

1

Figure 3.15: Adding a function (illustrated below)
in the s-direction creates a slide overcoming the
problem of degenerate critical points.

1

g

− 1
3

1
3

2
3

4
30

Figure 3.16: The function g used to transform the
tube into a slide.

32 We extend the function to the interval
[
− 1

3
, 4

3

]
to make sure that the critical values of F̃ do not
lie on the boundary.
33 More explicitly, we want ∂F

∂s
(p, s) + g′(s) < 0

for all p ∈ M, s ∈ (0, 1).

3.3 Morse homology is independent of the Morse
function and gradient

Theorem 3.15. Let M be a compact manifold and f0, f1 : M → R two
Morse functions. Let X0, X1 be pseudo-gradients adapted to f0 and f1
respectively with the Smale property. Then there exists a morphism of
complexes

Φ• : (C•(f0), ∂X0 )→ (C•(f1), ∂X1 ),

that induces an isomorphism on the level of homology.

Proof. The proof of this theorem features an intricate interplay between
homological algebra and differential geometry and is truly something to
behold. It is perhaps the most beautiful proof in this thesis.

Construction of a morphism of complexes In order to find a relation
between the two complexes, we geometrically connect f0 and f1 via a particular
type of homotopy, namely a ‘stable interpolation’ by which we mean a smooth
map

F : [0, 1]×M → R : (s,m) 7→ Fs(m),

such that Fs = f0 for s ∈
[
0, 1

3

]
and Fs = f1 for s ∈

[
2
3 , 1
]
. On of the reasons

of looking specifically at stable interpolations is that we can concatenate
them and again get a C∞ map that is a stable interpolation.

We can visualize an interpolation between two Morse functions by embedding
[0, 1]×M in R` in such a way that the height function in each slice corresponds
to Fs . For example, doing this for the circle and the other circle, we get
Figure 3.14.

Seen from a Morse perspective, the result is less than desirable: the function
F is not a Morse function: critical points in the stationary parts of F are
degenerate as ∂F

∂s = 0. Furthermore, an interpolation of two Morse functions
need not be Morse at each point in time which gives even more degenerate
critical points. We have highlighted an example of this in the figure.

We can fix this problem by replacing the horizontal tube by a ‘slide’, as seen in
Figure 3.15. We do this by extending F to

[
− 1

3 ,
4
3

]
and adding a function g

(illustrated in Figure 3.16) along the s-direction, i.e. F̃s(p) = Fs(p) + g(s).32

Whatever kind of tube we start with, if we make the slide steep enough,
we will always slide down and never have flat spots, except at the top and
bottom of the slide. This means if we choose g appropriately33, the only
critical points lie in the slices s = 0 and s = 1 and correspond to critical
points of f0 and f1 respectively. Because g is Morse, these critical points
remain nondegenerate. We conclude that F̃ is in fact Morse with critical
points Crit(F̃ ) = {0} × Crit(f0) ∪ {1} × Crit(f1).

We can also determine the index of these critical points. Because we have
created an extra downward direction at the top of the slide, the indices of
these critical points have increased by 1. At the bottom, the indices stay the
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34 Here, grad g is the Euclidian gradient.

p

∂0p
ΦF p

∂2
0p

ΦF ∂0p ∂1ΦF p

ΦF

ΦF

Figure 3.17: A visual depiction of the calculation
∂2(p).

same, giving us

Ck+1(F̃ ) = Ck(f0)⊕ Ck+1(f1).

Apart from the critical points, we are also interested in constructing a pseudo-
gradient on [0, 1]×M, as this will give rise to a differential. On [− 1

3 ,
1
3 ]×M,

we set X = X0 − grad g, and on
[

2
3 ,

4
3

]
×M we set X = X1 − grad g.34 A

partition of unity argument then fills in the gaps. Note that this pseudo-
gradient is transverse to the boundary of

[
− 1

3 ,
4
3

]
×M. We can slightly perturb

X to make it satisfy the Smale condition and we can furthermore assume that
the resulting vector field, X̃ is transversal to {s} ×M for s ∈

{
− 1

3 ,
1
3 ,

2
3 ,

4
3

}
.

We can also make this perturbation small enough such that ∂X = ∂X̃ , that is
to say, the number of X-trajectories between critical points is the same as
the number of X̃-trajectories.

Having a Morse function F̃ and a pseudo-gadient X̃ that is adapted to F̃ ,
we can consider the associated Morse complex (C•(F̃ ), ∂X̃). There are two
types of trajectories connecting critical points of F̃ : ones that stay in the
same section (s = 0 or s = 1) and ones that connect critical points of f0 to
critical points of f1, i.e. ones that ‘slide down the slide’. This means we can
decompose ∂X̃ as follows:

∂X̃ : Ck(f0)⊕ Ck+1(f1) −→ Ck−1(f0)⊕ Ck(f1)

(p0, p1) 7−→ (∂X0 (p0), ∂X1 (p1) + ΦF (p0)),

where ΦF counts the trajectories connecting critical points of f0 to ones of
f1. We can also write this as a matrix:

∂X̃ =

(
∂X0 0

ΦF ∂X1

)
.

Readers familiar with homological algebra will recognize this construction as
the mapping cone of the map ΦF : C•(f0)→ C•(f1).

Let us now look at what the identity ∂2
X̃

= 0 means in this context. Let
p ∈ Ck(f0). Then

∂2
X̃

(p, 0) = ∂X̃(∂0(p),ΦF (p))

= (∂2
0 (p),ΦF ∂0(p) + ∂1ΦF (p))

= (0,ΦF ∂0(p) + ∂1ΦF (p)).

Because we are working over Z2, this means that ΦF ◦ ∂0 = ∂1 ◦ΦF , i.e. the
following diagram commutes for all k :

Ck(f0) Ck−1(f0)

Ck(f1) Ck−1(f1)

ΦF

∂0

ΦF

∂1

This proves that ΦF is a morphism of complexes.
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H
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f2I

Figure 3.18: The map Ks,t is a two-dimensional
homotopy between f0, f1, f2, f2.

f0
f1

f2
f2

F

G
H

I

Figure 3.19: By adding the slide function g in
s- and t-directions, we create a two-dimensional
slide, eliminating the possibility of degenerate criti-
cal points.

ΦΦΦF induces an isomorphism on the level on homology We will now prove
that this map induces an isomorphism on the level of homology. Let f0, f1, f2
be Morse functions M → R. Suppose F interpolates between f0 and f1,
G between f1 and f2 and H between f0 and f2, i.e. we are in the following
situation:

f0 f1 f2.

H

F G

We claim that the maps induced by ΦG ◦ΦF and ΦH on the level of homology
coincide, or equivalently, they are chain homotopic, meaning that there exists
an operator S such that

ΦG ◦ΦF −ΦH = ∂S + S∂.

This is sufficient to prove that ΦF induces an isomorphism. Indeed, it is easy
to check that if I is a constant interpolation between (f0, X0) and itself,

I : [0, 1]×M → R : (s, p) 7→ f0(p),

then ΦI = Id. So consider F a stationary interpolation between f0 and f1
and G, the reverse interpolation from f1 to f0 and H = I. Then the induced
homological maps ΦF and ΦG are inverses of each other.

Let us prove that ΦG ◦ΦF and ΦH are chain homotopic. The idea of this
part of the proof is very similar to the first part. Instead of creating one slide
from f0 to f1 by adding an extra dimension, we create a two-dimensional slide
with as sides four slides: f0

F−→ f1, f1
G−→ f2, f0

H−→ f2 and f2
I−→ f2.

More concretely, we create a map

K :
[
− 1

3 ,
4
3

]
×
[
− 1

3 ,
4
3

]
×M → R : (s, t, p) 7→ Ks,t(p),

with the following properties, as illustrated in Figure 3.18:

• Ks,t = Ht for s ∈
[
− 1

3 ,
1
3

]
• Ks,t = Gt for s ∈

[
2
3 ,

4
3

]
• Ks,t = Fs for t ∈

[
− 1

3 ,
1
3

]
• Ks,t = f2 for t ∈

[
2
3 ,

4
3

]
Note that these properties are not contradictory because we are working with
stationary interpolations.

Now, to make a slide, we modify K as follows:

K̃s,t(p) = Ks,t(p) + g(s) + g(t),

with g defined similarly as before, making K̃ a Morse function with critical
points in the yellow regions in the figure. The points correspond to critical
points of f0, f1, f2 and f2 with indices raised by 2, 1, 1, 0 respectively. Also
similarly as before, we can construct a pseudo-gradient vector field X adapted
to K̃, by adding − grad g(s), − grad g(t) at the appropriate regions and
perturbing it in order to have the Smale property, again making sure that the
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perturbation is small enough such that ∂X = ∂X̃ , where X̃ is the perturbed
vector field.

While the resulting manifold [− 1
3 ,

4
3 ]2 ×M does not have a smooth boundary

we can still define the Morse complex. In summary, we have

Ck+1(K̃) = Ck−1(f0)⊕ Ck(f1)⊕ Ck(f2)⊕ Ck+1(f2),

and the differential can be written as

∂X̃ =


∂0 0 0 0

ΦF ∂1 0 0

ΦH 0 ∂2 0

S ΦG Id ∂2

 .
Now, computing ∂2

X̃
(p, 0, 0, 0) is like water trickling down four spillway bowls,

as illustrated in Figure 3.20. We get that

ΦG ◦ΦF + ΦH + S∂0 + ∂1S = 0,

or as we are working over Z2,

ΦG ◦ΦF −ΦH = S∂0 + ∂1S,

proving that ΦG ◦ΦF and ΦH induce the same map on the level of homology.
This concludes the proof.

Figure 3.20: Calculating ∂2(p). On the left ∂(p)

is illustrated, and on the right ∂2(p). Because
∂2 = 0, we find that ΦG ◦ΦF +ΦH+S∂0 +∂1S = 0.
Considering this over Z2 implies that ΦG ◦ΦF and
ΦH are chain homotopic.

f0

f1 f2

f2

ΦF

∂0

ΦH

S
ΦF (p) ΦH(p)

S(p)

∂0(p)

f0

f1 f2

f2

S

ΦH(p)

S(p)

∂0(p)

∂1ΦF (p)

ΦGΦF (p) ΦH(p)

∂1S(p)S∂0(p)

∂2ΦH(p)

p

ΦF (p)

ΦF ∂0(p) ΦH∂0(p)
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35 Michael Hutchings. Lecture notes on Morse
homology (with an eye towards Floer theory and
pseudoholomorphic curves). 2002, p. 10

3.4 Morse homology over Z

In this section, we will define Morse homology over Z. As is to be expected,
this homology theory will be less coarse than the one over Z2. For example,
Morse homology over Z2 cannot distinguish a torus from a Klein bottle, while
homology over Z can. The main difficulty in defining homology over Z is
keeping track of signs and orientations.

Definition 3.16 (Integral Morse homology). Let f : M → R be a
Morse function and X an adapted pseudo-gradient satisfying the Smale
condition. Define

Ck(f ,Z) =
{ ∑
p∈Critk f

npp | np ∈ Z
}

=
⊕

p∈Critk f

Zp,

with differentials

∂X,k : Ck −→ Ck−1

p 7−→
∑

q∈Critk−1 f

NX(p, q)q,

where NX(p, q) is the signed number of trajectories between p and q.
The homology of the complex C• is called the integral Morse homology.

The count NX(p, q) is defined by orienting L(p, q). Because L(p, q) is
discrete if the indices of p and q differ by one, this orientation comes
down to assigning a sign to each trajectory in L(p, q). We can then define
NX(p, q) = σ(L(p, q)) where σ adds up the signs of the points in L(p, q).

The orientation of L(p, q) is defined in the following way. First choose
an (arbitrary) orientation for each of the stable manifolds. This is possi-
ble since stable manifolds are diffeomorphic to open disks. Orientations
of stable manifolds induce co-orientations of unstable manifolds, because
W u(p) t W s(q) and unstable manifolds are contractible. Now, the transverse
intersection of an oriented and a co-oriented submanifold is also oriented,
henceM(p, q) = W u(p) t W s(q) is oriented. Finally fix an orientation on
R. Because L(p, q) = M(p, q)/R, the orientation ofM(p, q) induces an
orientation on L(p, q).

Moreover, we have the following:35

Proposition 3.17. The space of broken trajectories L(a, b) is orientable.
If Ind a = Ind b+ 2, the space L(a, b) is one-dimensional and as oriented
manifolds we have

∂L(a, b) =
⋃

c∈Critk−1 f

L(a, c)× L(c, b).

This allows us to prove that ∂2 = 0, using the fact that the signed number
of boundary points of a compact oriented 1-manifold is always zero.
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Theorem 3.18. Let X be a pseudo-gradient adapted to a Morse function
f : M → R that satisfies the Smale condition. Then the differential ∂X
of the integral Morse complex squares to zero.

Proof. Let a be a critical point of f . Then by definition of ∂,

∂2(a) =
∑

b∈Critk−2 f

∑
c∈Critk−1 f

NX(a, c)NX(c, b) b.

By definition of NX ,

=
∑

b∈Critk−2 f

∑
c∈Critk−1 f

σ(L(a, c)× L(c, b)) b

=
∑

b∈Critk−2 f

σ
( ⋃
c∈Critk−1 f

L(a, c)× L(c, b)
)
b.

By definition of L(a, b)

=
∑

b∈Critk−2 f

σ(∂L(a, b)) b.

Now, L(a, b) is an oriented compact 1-manifold and hence σ(L(a, b)) = 0.
This implies that ∂2(a) = 0.

Remark 3.19. While we are free to choose the orientations of W s(p), re-
versing it only changes the sign of NX(p, q) and NX(q, p) for any q, implying
that the Morse homology is independent of the choice of orientation.

Let us end this section with some examples. We will illustrate the calculation
for the signs of trajectories, and discuss Morse homology of the torus and
the Klein bottle both over Z2 and Z to show that working over Z can have
its advantages.

Example 3.20. Consider the ‘other sphere’ and more specifically L(p, q)

with p and q as in Figure 3.21 below. We start off with an orientation of
W s(q) and W s(p). To orient M(p, q), we use the orientation of W s(p),
which co-orients W u(p), indicated in the figure with the thick black horizontal
arrows. The orientation of M(p, q) is indicated with the vertical arrows
tangent toM(p, q) and is defined by requiring that the horizontal and vertical
vectors form a positive basis w.r.t. the orientation of W s(q). Finally, the
orientation on L(p, q) is defined as follows: if the arrows are going up (i.e.
in the negative time direction), the sign is negative, else it is positive.

Figure 3.21: Orienting L(p, q) on the ‘other
sphere’.

Orient W s(p)Orient W s(q)

− +

q

p

OrientM(p, q) Orient L(p, q)
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Figure 3.22: The height function on a tilted torus
is a Morse function giving rise to the illustrated flow
lines. On the right, an abstract depiction of the
critical points and the signed flow lines connecting
them.
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Figure 3.23: The height function of a tilted Klein
bottle immersed in R3 is a Morse function. We
have illustrated the flow lines connecting critical
points. Not considering signs, we get the same
complex as for the torus. If we do consider signs,
we can distinguish one from another.

Example 3.21 (Homology of T 2 over Z2). We use the Morse function of
Example 2.7, where the torus is slightly tilted, as illustrated in Figure 3.22,
where we also added the graph of the critical points. Recall that each edge
represents a trajectory connecting two critical points of consecutive index.
The complex is given by Z2 → Z2

2 → Z2, and because each critical point is
connected twice to any other critical point of consecutive index, ∂k = 0 for
all k . This means that we have

HM0(T 2;Z2) = Z2 HM1(T 2;Z2) = Z2
2 HM2(T 2;Z2) = Z2.

Example 3.22 (Homology of the Klein bottle over Z2). The Klein bottle
K is a non-orientable surface. We cannot embed it in R3, but the strong
version Withney’s theorem shows that we are able to immerse it, which is
what we have done in Figure 3.23. If we tilt the bottle, the height function h
is Morse, and the gradient induced by the standard metric on R3 is adapted
to h and satisfies the Smale condition. We have also included the graph of
the critical points. Disregarding sign differences (which will only be important
when discussing the complex over Z), this graph is identical to the one we
obtained for T 2. We conclude that the Morse homology of K and T 2 over
Z2 are identical:

HM0(K;Z2) = Z2 HM1(K;Z2) = Z2
2 HM2(K;Z2) = Z2.

Example 3.23 (Homology of T 2 over Z). We use the Morse function of
Example 2.7, where the torus is slightly tilted, as illustrated in Figure 3.22.
We have indicated the chosen orientations as before and have assigned a
positive orientation to the single point W s(d) = {d}. For each trajectory,
the sign has been added, both on the figure and on the graph.

The complex is given by Z ∂−→ Z2 ∂−→ Z, and because the signs of the
trajectories cancel, NX(p, q) = 0 for all p and q, so each differential is zero.
In the end, we have

HM0(T 2;Z) = Z HM1(T 2;Z) = Z2 HM2(T 2;Z) = Z.

Example 3.24. We have done the same for the Klein bottle, but notice that
this time, the signs do not cancel. It is easy to check that ∂1 = 0 and that
∂2 is defined by ∂2(d) = −2b, where a, b, c, d are the critical points of h
with increasing height. This means that Im ∂2 = 2Z. Summarizing, we have

HM0(K;Z) = Z HM1(K;Z) = Z⊕ Z2 HM2(K;Z) = 0.

The conclusion of this series of examples is that integral homology is less
coarse than homology over Z2.
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37 Augustin Banyaga and David Hurtubise. Lec-
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ence & Business Media, 2013, p. 195

Michael Hutchings. Lecture notes on Morse homol-
ogy (with an eye towards Floer theory and pseudo-
holomorphic curves). 2002, p. 13

Alberto Abbondandolo and Pietro Majer. “Lectures
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ifolds”. In: Morse theoretic methods in nonlinear
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38 Georges De Rham. Differentiable manifolds:
forms, currents, harmonic forms. Vol. 266.
Springer Science & Business Media, 2012

39 See Georges De Rham. Differentiable mani-
folds: forms, currents, harmonic forms. Vol. 266.
Springer Science & Business Media, 2012, p. 89,
Theorem 16, or Mariano Giaquinta, Guiseppe Mod-
ica, Jiri Soucek, et al. Cartesian Currents in the Cal-
culus of Variations II: Variational Integrals. Vol. 2.
Springer Science & Business Media, 1998, p. 582,
Theorem 2

3.5 Morse homology is singular homology

In the final section of this chapter, we prove that Morse homology is isomor-
phic to singular homology. There are many ways to go about this. Some
authors36 36 Michèle Audin and Mihai Damian. Morse theory

and Floer homology. Springer, 2014, p.110
do it by proving that Morse homology is isomorphic to cellular

homology, which is in itself isomorphic to singular homology. This approach
consists of two steps: first proving that (suitable compactifications of) un-
stable manifolds form a cellular decomposition of M, and second: proving
that the corresponding map is a chain isomorphism. While the first step is
intuitive, a rigorous proof is actually very technical. The second step on the
other hand, is quite straightforward.

To mitigate these technical difficulties, many other authors37 follow a different
approach, based on cellular filtrations, currents and other techniques. Here
we opt for the proof by Hutchings based on currents, also called de Rham
homology. For a thorough introduction on currents, see ‘Differentiable
manifolds’ by de Rham.38

Definition 3.25 (Current). A current is a continuous linear functional
on the space of compactly supported k-forms on a manifold M.

Remark 3.26. One should think of currents as distributions on manifolds.
For example, the Dirac delta distribution is a current acting on 0-forms on R
as follows: f 7→ f (0), where f is a 0-form, i.e. a function.

Example 3.27. Any compact manifold (with boundary) M of dimension n
defines a current [M] on n-forms in the following way:

[M](ω) :=

∫
M

ω.

For two disjoint submanifolds M,N we have

[M t N] = [M] + [N].

Notice that by Stokes’ theorem,

[∂M](ω) =

∫
∂M

ω =

∫
M

dω = [M](dω).

This motivates the following definition:

Definition 3.28. We can define a differential on the space of currents
by defining

(∂T )(ω) := T (dω).

When T = [M], this can be written as ∂[M] = [∂M].

This differential clearly squares to zero, and hence defines a complex. It
turns out that its homology is actually isomorphic to singular homology.39

With this set up, we are ready to prove the following theorem:
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D

A

Figure 3.24: The map D is defined by mapping a
critical point to the current of a compactification
of W u(c). The map A maps a generic simplex to
the critical points it ‘hangs on’.

compactify

c

d

e L(c, e)×W u(e)

L(c, d)×W u(d)
`

`1 `2

(`, `1, e) (`, `2, e)

c

W u(c)

compactify

Figure 3.25: Two examples of compactifications of
unstable manifolds in the ‘other sphere’. On top
we consider the index 1 critical point and on the
bottom the index 2 critical point. Note that the
compactifications are subtle and in particular are
not diffeomorphic to S1 and B2 resp.
41 The codimension k stratum of a manifold with
corners M is the set of points p in M such that
there exists a chart f : U(p) → Rn−k × [0,∞)k

such that at least one of the last k coordinates of p
is zero. The codimension 0 stratum is the interior
of M, the codimension 1 stratum is its boundary,
without the ‘higher order’ corners, etc.

Theorem 3.29. Let M be a closed manifold. Then

HM•(M;Z) = H•(M;Z),

where H•(M;Z) denotes the singular homology of M.

Proof. As stated before, we follow Hutchings.40

Idea of the proof We define two chain maps:

D : C• −→ Cc
•(M)

critical point 7−→ [compactification of W u(c)]

and

A : Cc
•(M) −→ C•

generic simplex 7−→ sum of critical points on which the
simplex hangs by flowing via X.

Here we define Cc
i (M) as the subspace of all i-dimensional currents on M

generated by generic i-simplices, by which we mean simplices that are smooth
and whose faces are transverse to the stable manifolds of all critical points.

Then A ◦D is the identity, and while D ◦ A is not, it is chain homotopic to
the identity. The chain homotopy sends a singular chain to its entire forward
orbit under the flow of X. This proves the theorem.

In summary, we will prove the theorem in 7 steps:

1. Compactification of W u(c)

2. Definition of D

3. D is a chain map

4. Definition of A

5. A is a chain map

6. A ◦D = Id

7. D ◦ A ∼= Id

1. Compactification of W u(((c))) We can compactify W u(c) into a manifold
with corners as follows:

W
u

(c) = W u(c) ∪
⋃
d 6=c
L(c, d)×W u(d).

We have given some examples in Figure 3.25 which make it clear that this
compactification possibly differs from the reader’s expectations. For example,
on top the compactification becomes a closed interval, and not a circle, even
though the two end points map to the same point in M.

As an oriented manifold, its codimension-1 stratum41 is given by

∂W
u

(c) =
⋃
d 6=c

(−1)Ind d+Ind c+1L(c, d)×W u(d).
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42 Note that by previous remarks, this extension is
not necessarily injective

D

∂Morse ∂

D

Figure 3.26: An example illustrating that D is a
chain map.

Figure 3.27: Examples illustrating the definition of
A. From left to right, a 2, 1 and 0 simplex σ and
the resulting critical point A(σ) indicated in orange.

2. Defining D Let e : W
u

(c)→ M be the inclusion extending the inclusion

of W u(c) → M.42 Then we define the current D(c) := e∗

[
W
u

(c)
]
, i.e.

integration over W
u

(c):

D(c)(ω) =

∫
W

u
(c)

e∗ω.

This current is an element of C•(M) because of the Smale condition.

3. The map D is a chain map: ∂D === D∂Morse We have

∂W
u

(c) =
⋃
d 6=c

(−1)Ind d+Ind c+1L(c, d)×W u(d),

which using the fact that [M t N] = [M] + [N] implies that

∂D(c) =
∑
d 6=c

(−1)Ind d+Ind c+1e∗
[
L(c, d)×W u(d)

]
.

We have three cases to consider based on the index of d :

Ind d > Ind c − 1 : Then L(c, d) = ∅ by the Smale condition, so these terms
vanish.

Ind d = Ind c − 1 : We get a term of the form

e∗

[
L(c, d)×W u

(d)
]

= #L(c, d) · e∗[W u(d)],

because L(c, d) = L(c, d) is 0-dimensional.

Ind d < Ind c − 1 : In this case, the term corresponds to a current of dimen-
sion less than Ind c − 2, hence zero in CcInd c−1(M).

Summarizing, we have

∂D(c) =
∑

d∈CritInd c−1 f

#L(c, d) · e∗
[
W
u

(c)
]

= D(∂Morse(c)).

4. Defining A The map A is defined by mapping a generic simplex σ
to the sum of critical points on which the simplex hangs by flowing via
X. Some examples of this vague definition are illustrated in Figure 3.27.
More rigorously, we denote with L(σ, d) the moduli space of gradient flow
lines starting in the i-simplex σ and ending in d . This space has a natural
orientation and furthermore a compactification L(σ, d), such that

∂L(σ, d) = L(∂σ, d) ∪
⋃
c 6=d

(−1)i+Ind dL(σ, c)× L(c, d).

The dimension of this manifold is i − Ind d , which means that if Ind d = i ,
L(σ, p) = L(σ, p) consists of a finite number of points (with signs if we are
considering orientation). The map A is then defined as

A(σ) =
∑

p∈Criti f

#L(σ, p)p,

which corresponds to the intuitive definition given earlier.
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A

∂ ∂Morse

A

Figure 3.28: An example where σ is a 1-simplex
illustrating that A is a chain map.

D A

Figure 3.29: The map A forms a left inverse to D.

A D

A D

Figure 3.30: D ◦ A 6= Id.

0 ∞

σ

σ

(D ◦ A)(σ)

e

F (∂σ)

⋃
d L(σ, d)×W u(d)

Figure 3.31: A compactification of the forward
orbit of a chain σ forms a chain homotopy between
σ and (D ◦ A)(σ).

5. The map A is a chain map: A∂ === ∂MorseA We will show that A∂ =

∂MorseA component by component. To this purpose, we introduce the inner
product on the space of critical points, defined on a basis as follows:

〈c, d〉 =

{
1 if c = d

0 else.

Let σ be a i-simplex and d ∈ Criti−1 f . Then dimL(σ, d) = 1, so #∂L(σ, d) =

0, with signs taken into account. This implies that

〈A(∂σ), d〉 −
〈
∂MorseA(σ), d

〉
= #L(∂σ, d)−#

⋃
c∈Criti f

L(σ, c)× L(c, d)

= #∂L(σ, d) = 0,

showing that A∂ = ∂MorseA.

6. The map A is left inverse to D: A ◦◦◦ D === Id This immediately
follows from the definitions of A and D. Indeed, L(D(c), c) = {c} and
L(D(c), d) = ∅ for any other critical point d .

7. The composition D◦◦◦A is chain homotopic to Id While clearly D◦A 6=
Id, these two maps are chain map homotopic, meaning that there exists a
map F : Ci(M)→ Ci+1(X) such that ∂F + F∂ = D ◦A− Id. Intuitively, a
chain homotopy is a chain of one dimension higher that connects (D ◦A)(σ)

and Id(σ) = σ. The intuitive choice in this case would be the so-called
forward orbit of σ:

G(σ) := [0,∞)× σ,

with the map e : G(σ)→ M : (s, x) 7→ ψs(σ(x)). This set can be compacti-
fied to a smooth manifold with boundary

∂G(σ) = −σ ∪ −G(∂σ) ∪
⋃
d

L(σ, d)×W u(d).

We can extend e to a smooth map and define

F : Cci (M) −→ Cci+1(X)

σ 7−→ e∗

[
G(σ)

]
.

While intuitively, this is a chain map between σ and (D ◦ A)(σ), we should
check that ∂F + F∂ = D ◦ A− Id. Calculating ∂F and F∂, we have

(∂F )(σ) = −e∗[σ]− e∗[G(∂σ)] +
∑
d

e∗ [L(σ, d)×W u(d)]

(F∂)(σ) = e∗

[
G(∂σ)

]
.

When we add this up, [G(∂σ)] and
[
G(∂σ)

]
cancel as currents, leaving us

with

(∂F + F∂)(σ) = −e∗[σ] +
∑
d

e∗ [L(σ, d)×W u(d)] .
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Now, calculating (D ◦ A− Id)(σ), we get

(D ◦ A− Id)(σ) = D

(∑
d

#L(σ, d)d

)
− e∗[σ]

=
∑
d

#L(σ, d) ·D(d)− e∗[σ]

=
∑
d

#L(σ, d) · e∗[W
u

(d)]− e∗[σ].

Keeping in mind that as currents [W
u

(p)] = [W u(p)], we find thatD◦A−Id =

∂F + F∂.
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CHAPTER FOUR

Applications of Morse homology

This chapter discusses some applications of Morse homology. While we
already know that it isomorphic to singular homology and hence it enjoys all
the same properties, it can still be fruitful to derive these things directly from
the definitions of Morse homology. We will do this for the Poincaré duality
and the Künneth formula in the first two sections of this chapter. The third
and last section discusses the Morse inequalities, giving a lower bound for
the number of critical points of a Morse function f : M → R based on the
homology of M. This relation can also been seen in reverse: the number
of critical points of a Morse function give bounds on the homology of M.
These inequalities will play a major role in the next chapter.

4.1 Poincaré duality

The Poincaré duality was first stated by Henri Poincaré in his paper ‘Analysis
Situs’.43 In this seminal paper, Poincaré introduces furthermore the concepts
of fundamental group, simplicial complex, generalized Euler characteristic,
founding the field of algebraic topology. Let us state and prove a modern
version of Poincaré duality.

Theorem 4.1 (Poincaré duality). Let M be a compact manifold, and
f : M → R a Morse function with adapted pseudo-gradient X. Then

Hk(M;Z2) ∼= Hn−k(M;Z2).

Moreover, if M is oriented, then

Hk(M;Z) ∼= Hn−k(M;Z).

Proof. The idea of this proof is to turn the manifold upside down, i.e. f  −f .
Then critical points of index k of f become critical points of index n−k of −f .
Moreover −X is an adapted pseudo-gradient for −f , unstable manifolds of
critical points of f become stable manifolds of corresponding critical points of
−f and vice versa. This immediately gives that Hk(M;Z2) ∼= Hn−k(M;Z2).
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44 Michèle Audin and Mihai Damian. Morse theory
and Floer homology. Springer, 2014, p 84.

45 Shintaro Fushida-Hardy. Morse theory

Working over Z, things are more subtle. In general Hk(M;Z) 6∼= Hn−k(M;Z).
The best we can do is saying that if M is orientable, then the ranks of
Hk(M;Z) and Hn−k(M;Z) agree, as is proven in ‘Morse theory and Floer
homology’ by Audin and Damian.44.

In order to get a more natural form of Poincaré duality, it is beneficial to
consider Morse cohomology, as done in notes by Fushida-Hardy.45 Recall
from Chapter 0 that singular cohomology is defined as the homology of the
dual of the singular chain complex, i.e. the homology of Ck = Hom(Ck ,Z),
with as differential the adjoint of ∂. The resulting homology is denoted with
Hk(M).

In Morse homology, it is more natural to define cohomology as follows:

Ck = Hom(Cn−k(−f ),Z),

with differential ∂k+1 : Ck → Ck+1 the adjoint of ∂k+1. With these conven-
tions, it is clear that there exists an isomorphism tk : Ck → Cn−k . Let us
show that this is a chain map, from which the desired result follows. In other
words we need to show that

tk−1 ◦ ∂k = ∂n−k+1 ◦ tk .

Let b ∈ Ck(f ) and a ∈ Cn−k+1(f ). Then the left hand side becomes

(tk−1 ◦ ∂k)(b)(a) = tk−1

( ∑
c∈Critk−1 f

NX(b, c)c
)
a

=
∑

c∈Critk−1 f

NX(b, c)c∗a

= NX(b, a),

where c∗ is the dual of c defined by c∗(d) = δcd . The right hand side
becomes

(∂n−k+1 ◦ tk)(b)(a) = (∂n−k+1b∗)(a)

= b∗
∑

c∈Critk f

N−X(a, c)c

= N−X(a, b).

Hence, the last step of the proof is to show that NX(p, q) = N−X(q, p). If we
did not count signs, this would be immediately clear. However, when working
over Z we need to check that the orientations work out. If M is oriented,
this forms no problem. Indeed, in that case, the orientations of the stable
manifolds not only induce a co-orientation of the unstable manifolds, but also
an orientation. Now it is just a matter of carefully checking the definition of
the orientation we put on L(p, q) to conclude that NX(p, q) = N−X(q, p).
This finishes the proof.

If M is a cobordism we find the following theorem:

Theorem 4.2. Let M be an oriented cobordism from M0 to M1. Let
f : M → [0, 1] be a Morse function with adapted pseudo-gradient X.
Then

Hk(M,M0;Z) ∼= Hn−k(M,M1;Z).
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46 Antoni A Kosinski. Differential manifolds.
Courier Corporation, 1993

47 If a 6= c and b 6= d , then Ind c ≥ Ind a + 1 and
Ind d ≥ Ind b + 1, so Ind(c, d) ≥ Ind(a, b) + 2.

C(f ), ∂X C(g), ∂Y

C(f + g), ∂X ⊗ 1 + 1⊗ ∂y

C 5
(f

+
g)

C 4
(f

+
g)

C 3
(f

+
g)

C 2
(f

+
g)

C 1
(f

+
g)

C 0
(f

+
g)

Figure 4.1: On top: the Morse complexes of (f , X)

and (g, Y ). On the bottom: the Morse complex of
(f + g, (X + Y )).

A proof of this fact can be found in ‘Differential Geometry’ by Kosinski.46

4.2 The Künneth Formula

In homotopy theory, the homotopy groups of two spaces relate nicely to the
homotopy group of their product: πn(X×Y ) = πn(X)×πn(Y ). In homology
the Künneth formula plays a similar role in homology theory.

Theorem 4.3 (Künneth formula). Let M,N be two manifolds. Then

Hk(M × N;Z2) ∼=
⊕
i+j=k

Hi(M;Z2)⊗Hj(N;Z2).

In other words,

H•(M × N;Z2) ∼= H•(M;Z2)⊗H•(N;Z2),

with the tensor product of chain complexes as defined in Chapter 0.

Remark 4.4. The Künneth formula as written above is not true when con-
sidering homology over Z.
Remark 4.5. We can also express this in a different way using the Poincaré
polynomial. For this, define βk(M) = dimZ2 Hk(M;Z2) and let PM(t) =∑

k βk(M)tk . Then the Künneth formula states that PM×N(t) = PM(t)PN(t).

For example, we have PS1 (t) = 1 + t, so PS1×S1×S1 = (1 + t)3 = 1 + 3t +

3t2 + 1t3, exactly the result we found in Example 3.5. More general, we
have that βk(T n) is the kth coefficient of (1 + t)n, i.e.

(
n
k

)
.

Proof. Let f , g be two Morse functions and X, Y two pseudo-gradient fields
on M and N. Then f + g is a Morse function on M × N and (X, Y ) is
an adapted pseudo-gradient field. If we assume that X and Y satisfy the
Smale condition, then so does (X, Y ). Critical points of f + g are pairs of
critical points of f and g and their indices are sums of the original indices.
Furthermore, trajectories of (X, Y ) correspond exactly to pairs of trajectories
of X and Y . Now, in order to understand the differential ∂(X,Y ) on M × N,
we are interested in gradient flow lines that connect critical points (a, b) and
(c, d) whose index differ by exactly one. It’s clear that the only way this can
happen is when a = c or b = d .47

When we think about this in terms of directed graphs of critical points, like
we did in the example of T 3, we find that the graph of M×N is the Cartesian
product of the graph of M and the graph of N. With these things in mind,
it is easy to check that

Φ :
⊕
i+j=k

Ci(f )⊗ Cj(g) −→ Ck(f + g)

a ⊗ b 7−→ (a, b)

is an isomorphism of complexes with the following differentials:

(C•(f )⊗ C•(g), ∂X ⊗ 1 + 1⊗ ∂Y )
Φ−→ (C•(f + g), ∂(X,Y )),
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where (C•(f )⊗C•(g))k :=
⊕

i+j=k Ci(f )⊗Cj(g). Now, taking the homology
of both sides, we find

⊕
i+j=k

Hi(M;Z2)⊗Hj(N;Z2) ∼= Hk(M × N;Z2),

where we have used that the homology of a tensor product complex is the
tensor product of the homologies by Proposition 0.24.

Example 4.6. Let us illustrate the proof with a concrete example. Consider
the height function f of S1. The graph of critical points is illustrated below.
There are two trajectories from the index 1 critical point the index 0 critical
point, so ∂ = 0. This means that H0(S1;Z2) = H1(S1;Z2) = Z2.

To find the homology of T 2 = S1 × S1, we consider the Morse function
(θ1, θ2) 7→ f (θ1) + f (θ2). We have illustrated the resulting graph of critical
points below, which is just the Cartesian product of the graph associated
to S1. We have also done this for T 3 = S1 × S1 × S1. Because all the
trajectories occur in pairs, the differential ∂ vanishes. We conclude that

Hk(T n;Z2) = Z(nk)
2 .

Figure 4.2: Graph of critical points of the Morse
functions on S1, T 2 and T 3.

S1 T 2 T 3

4.3 Morse inequalities

The Morse inequalities give a lower bound for the number of critical points
of a Morse function f : M → R in terms of the homology of M. Put
differently, the number of critical points of a Morse function give bounds on
the dimension of the homology of M. In this section, we will discuss many
different versions of the Morse inequalities, some stronger than others.

4.3.1 Morse inequalities over Z2

Let us start with the simplest version of the Morse inequalities.
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W
V

Ker T

ImT

00

T

T
dim Ker T

dim ImT

T

dim V

Figure 4.3: Visual depiction of the rank-nullity the-
orem stating that dim ImT + dim Ker T = dim V .

C2

C1

C0

C−1 = 0

C3

C4 = 0

C2

C1

C0

C−1 = 0

C3

C4 = 0

Figure 4.4: Top: same illustration as above, this
time for the Morse complex with its differential.
Each orange line corresponds to a homology group.
Bottom: The alternating sum of the dimensions of
Ck equals the alternating sum of the dimensions of
Hk .

C2

C1

C0

C−1 = 0

Figure 4.5: Truncating the above picture, we find
that the alternating sum of the dimensions of Ck is
greater than the alternating sum of the dimensions
of Hk . All the thick black lines cancel, except the
one circled, giving rise to the inequality.

Theorem 4.7 (Weak Morse inequalities). Let f : M → R be a Morse
function. Then

# Crit f ≥
∑

dimHk(M;Z2),

and more specifically,

# Critk f ≥ dimHk(M;Z2).

Proof. With everything we have set up so far, this is actually a very straight-
forward result, following from the fact that

Hk(M;Z2) =
Ker ∂k

Im ∂k−1
,

so dimHk(M;Z2) = dim Ker ∂k
Im ∂k−1

≤ dimCk = # Critk f .

A result in similar vein is the following:

Theorem 4.8. Let f : M → R be a Morse function. Then∑
(−1)k# Critk f =

∑
(−1)k dimHk(M;Z2) =: χ(M).

Considering this equality modulo 2, we get

# Crit f ≡
∑

dimHk(M;Z2) mod 2.

Proof. Use the fact that

Hk(M;Z2) =
Ker ∂k

Im ∂k−1
and # Critk f = dimCk ,

together with the rank-nullity theorem for vector spaces. A simple computa-
tion completes the proof.

To visualize this proof, have a look at Figure 4.3, expressing the rank-nullity
theorem, which in this context says that the two slanted lines are parallel,
implying that dim V − dim Ker T = dim ImT . Repeating this diagram
for ∂k , remembering that ∂2

k = 0, gives Figure 4.4 (top), where we have
highlighted the dimension of the homology spaces in orange. The bottom
part of Figure 4.4 shows that when we consider the alternating sum of the
dimensions of Ck , the thick black lines cancel, leaving us with the alternating
sum of the dimensions of the homology Hk .

We can also truncate this argument, considering only a partial alternating
sum, illustrated in Figure 4.5. In this case, we do not have equality (the
reason has been indicated in the figure), but we do have the following result:
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Theorem 4.9 (Strong Morse inequalities). For any Morse function f :

M → R and for any m = 0, . . . , n, the following inequality holds:

m∑
k=0

(−1)k+m# Critk f ≥
m∑
k=0

(−1)k+m dimHk(M;Z2).

It is easy to check that the strong Morse inequalities are in fact stronger:
the weak version can be obtained by by subtracting the strong inequalities
for m and m + 1.

4.3.2 Morse inequalities over Z and Zp

In this section, we will generalize the Morse inequalities by working over other
rings than Z2. More specifically we will consider the Morse inequalities over
Z and Zp, where p is any prime.

Let us first consider the case of Zp (or any other field for that matter). First
of all, we should mention that defining Morse homology over Zp gives no
problems if we choose orientations of the stable manifolds, similarly as we
have done for Z. Moreover, because Zp is a field, the proof given above can
be simply repeated. In conclusion, we have the following:

Theorem 4.10. The (weak and strong) Morse inequalities hold over Zp
for any prime p.

When working over Z, it not immediately clear how we can generalize the
Morse inequalities: Z is not a field so the dimension of a Z-module is not
defined. Therefore, let us introduce some different notions of rank of a
Z-module, generalizing the concept of dimension.

Definition 4.11 (Rank48). Let A be a Z-module, and p be a prime.
Then the following notions of rank are invariants of A:

r0(A) := cardinality of a maximal set of independent
elements of infinite order

= dimQ(A⊗Z Q) (free rank)

rp(A) := cardinality of a maximal set of independent
elements of order pk for any k

rt(A) :=
∑
p

rp(A) (torsion rank)

r(A) := r0(A) +
∑
p

rp(A). (total rank)

48 László Fuchs. Infinite abelian groups. Academic
press, 1970

Example 4.12. Let A = Z2 ⊕ Z4 ⊕ Z3 ⊕ Z2. Then

r0(A) = 2 r2(A) = 2 r3(A) = 1.
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The torsion rank is rt(A) = 3 and the total rank is r(A) = 5.

We have the following relations between ranks of submodules:

Lemma 4.13. Let A and B be Z-modules and suppose B is a submodule
of A. Then

(i) r(B) ≤ r(A)

(ii) r(A) ≤ r(B) + r(A/B)

(iii) r0(A) = r0(B) + r0(A/B)

Note in particular identity (iii), which is a rank-nullity theorem in the context
of the r0 rank. Also note that the modules Ck(f ,Z) over Z with as generators
the critical points of f , are free, so # Critk f = r0(Ck(f ,Z)). These two
facts combined give the following result:

Theorem 4.14. The (weak and strong) Morse inequalities hold over Z,
in the following sense:

# Critk f ≥ r0(Hk(M;Z)),

and for any m = 0, . . . , n we have

m∑
k=0

(−1)k+m# Critk f ≥
m∑
k=0

(−1)k+mr0(Hk(M;Z)).

Proof. Similar as before, replacing Z2 by Z and dim by r0.

4.3.3 Morse inequalities with torsion rank

Let us lastly give a stronger version of the Morse inequalities by using the
torsion rank.

Theorem 4.15 (Pitcher inequalities49). Let f : M → R be a Morse
function. Then

# Critk f ≥ r(Hk(M;Z)) + rt(Hk−1(M;Z)).

49 E. Pitcher. “Inequalities of critical point theory”.
In: Bulletin of the American Mathematical Society
64 (1958), pp. 1–30

Proof. We use Hk = Hk(M;Z) for brevity.

r(Hk) + rt(Hk−1) = r

(
Ker ∂k

Im ∂k+1

)
+ rt

(
Ker ∂k−1

Im ∂k

)
.

Now, note that Ker ∂k and Im ∂k are free. Hence rt
(

Ker ∂k−1

Im ∂k

)
≤ r(Im ∂k).
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Moreover, r
(

Ker ∂k
Im ∂k+1

)
≤ r(Ker ∂k). This gives

r(Hk) + rt(Hk−1) ≤ r(Im ∂k) + r(Ker ∂k)

= r0(Im ∂k) + r0(Ker ∂k),

again because Im ∂k and Ker ∂k are free. Now notice that r0(Ck) = r0(Im ∂k)+

r0(Ker ∂k). This proves that

r(Hk) + rt(Hk−1) ≤ r0(Ck),

from which the desired result follows.
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CHAPTER F IVE

Generalized higher dimensional Poincaré conjecture

5.1 Introduction

In this chapter, we will prove three important theorems that are all closely
related. The first one states that the Morse inequalities are in fact attainable
under certain conditions. In other words, the bound on # Critk f given by
the (weak) Morse inequalities is in fact the best bound possible. This was
first proven by Smale in 1960.

Theorem 5.1 (Smale’s theorem50). If M is a simply connected closed
manifold of dimension m ≥ 6 and H•(M) is free, then there exists
a Morse function on M such that # Critk f = r0(Hk(M;Z)) for all
k = 0, . . . , n.

50 Stephen Smale et al. “The generalized Poincaré
conjecture in higher dimensions”. In: Bulletin of
the American Mathematical Society 66.5 (1960),
pp. 373–375

Recall that we use r0(A) to denote the free rank of a Z-module A. A closely
related theorem is the h-cobordism theorem, stating

Theorem 5.2 (h-cobordism theorem51). If M is a cobordism from M0

to M1 that is simply connected, dimM ≥ 6 and H•(M,M0) = 0, then
M is a trivial cobordism, i.e. diffeomorphic to M0 × I.

51 John Milnor. Lectures on the h-cobordism
theorem. Vol. 2258. Princeton university press,
2015

The last—and perhaps most famous—theorem we will prove is the generalized
Poincaré conjecture for dimensions n ≥ 5. This conjecture (now a theorem)
states that any homotopy sphere is a topological sphere.

Theorem 5.3 (Higher dimensional Poincaré conjecture). If M is a ho-
motopy sphere of dimension n ≥ 5, then M is homeomorphic to Sn.

This was proven by Smale and in fact almost immediately follows from the
minimality of the Morse inequalities. We will discuss the historical significance
in Section 5.6. The proof of these theorems follows a handle cancellation
approach, which roughly goes as follows:

(1) Let f : M → R be an arbitrary Morse function.

(2) Under certain assumptions, we can cancel pairs of critical points.
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52 John Milnor. Lectures on the h-cobordism theo-
rem. Vol. 2258. Princeton university press, 2015
53 Antoni A Kosinski. Differential manifolds.
Courier Corporation, 1993

(3) Repeatedly cancelling critical points allows us to conclude that the
Morse inequalities are attained.

• On a cobordism with H•(M,M0) = 0, this implies the existence of a
Morse function without critical points, hence M ∼= [0, 1]×M0

• On a homotopy sphere, this implies the existence of a Morse function
with exactly two critical points: a minimum and a maximum, hence
M ∼= Sn as we will show.

To this purpose, this chapter mostly contains cancellation results. The
proof we give resembles the original proof of Smale but uses concepts and
notation introduced earlier in this thesis. Most of this chapter is based on
the somewhat more modern treatments by Milnor52 and Kosinski.53 The
book of Kosinski is very thorough and proves things from the viewpoint of
handles, isotopies of attachment regions, etc. Milnor on the other hand,
does not even mention handle decompositions at all, and only works directly
with the Morse function and its critical points.

5.2 Stronger cancellation result

Let us recall the first cancellation result we have proved in Chapter 2.

Theorem 2.27. Let f : M → [0, 1] be a Morse function on a cobor-
dism with two critical points p, q of index k and k − 1. Let X be an
adapted pseudo-gradient satisfying the Smale condition. If #L(p, q) =

nX(p, q) = 1, then p and q can be cancelled.

In the chapter on Morse homology, we have seen that by orienting L(p, q),
we can define a signed count NX(p, q) of trajectories between p and q. A
natural generalization of this theorem then would be to consider cases where
NX(p, q) = ±1, which is weaker than requiring nX(p, q) = 1. Together with
some additional assumptions, this turns out to be sufficient for cancelling p
and q, giving the first strengthening of our cancellation result.

Theorem 5.4 (Second cancellation theorem). Let f : M → [0, 1] be a
Morse function on a cobordism M (from M0 to M1) with two critical
points p, q. Suppose furthermore that M,M0,M1 are simply connected
and that

2 ≤ Ind q = k Ind p = k + 1 ≤ n − 3.

If NX(p, q) = ±1, then p and q are cancelable.

Remark 5.5. By changing f to −f , the theorem is also true if we replace
the conditions with k ≥ 3 and k + 1 ≤ n − 2. This means that the theorem
is true for

2 ≤ Ind q = k Ind p = k + 1 ≤ n − 2.

Let us give some examples illustrating the idea of the theorem.
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54 For an introduction to the intersection number
of two manifolds, we refer the reader to Chapter 0.

Example 5.6. Consider a 3-dimensional manifold M with a Morse function
f and let α be a regular value such that f −1(−∞, α] consists of a 0, 1 and
2 handle as in the figures below.

Figure 5.1: Examples illustrating the second can-
cellation theorem.

Su(p)

Ss(q)

Su(p)

Ss(q)

Su(p)

Ss(q)q

p

(i) (ii) (iii) (iv)

Let us consider the four situations from left to right.

(i) The first figure shows the 2- and 1- handle and their corresponding
critical points p and q. The configuration is the same as in Figure 1.18,
but from a different perspective. The 1-handle is a solid tube and
the 2-handle is a dome (a thickened up disk) that rests on top of the
1-handle. It should be visually clear that these two critical points are
cancelable as already discussed in Example 1.23.

(ii) The second figure shows the same situation, but we have hidden
the 2-handle and indicated the so-called belt sphere Ss(q) and the
attaching sphere Su(p). Their intersection consists of a single point,
corresponding to a single flow line from p to q. By the first cancellation
theorem, we can confirm that p and q are indeed cancelable.

(iii) Next, we have drawn a situation where the number of intersection
points is 3, but the intersection number (which corresponds to NX(p, q),
as we will expand upon later) is 1. It is clear that we can isotope the
attaching sphere such that it only intersects once with the belt sphere.
This reduces the situation to (ii), so p and q are cancelable, as is also
clear from the figure.

(iv) The last figure shows a situation where the number of intersections
points is 2 and the intersection number is 0. In this situation, we cannot
cancel the two critical points. In fact, we can isotope the attaching
sphere off the 1-handle, showing that the two handles are completely
independent.

As hinted at in the example, the proof of this stronger cancellation result
will reduce the given situation where NX(p, q) = ±1 to one that satisfies the
condition of the first cancellation theorem, i.e. nX(p, q) = 1. In order to do
this we want to ‘cancel’ flow lines of opposite signs. We will do this by using
a theorem of Whitney which allows to cancel intersection points of opposite
intersection numbers.54
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p

q f

f (p)

f (q)

αV

Ss(q)

Su(p)

Su(p)

Ss(q)

V

Figure 5.3: Setup of the second cancellation theo-
rem in dimension two and three. Note the figure
is somewhat misleading because of dimensionality
reasons.
55 This follows from applying the Seifert–Van Kam-
pen theorem: π1(V ) ∼= π1(W s(p) ∪ V ∪W u(q))

(here we use that k > 2, n − k ≥ 3). Then no-
tice that W s(p) ∪ V ∪W u(q) is homotopic to M
showing that π1(V ) ∼= π1(M) = 1.

Theorem 5.7 (Whitney). Let N and N ′ be smooth, closed, tranversely
intersecting submanifolds of dimensions r and s in a smooth (r + s)-
dimensional manifold V . Suppose N is oriented and N ′ is co-oriented.
Suppose r+s ≥ 5, s ≥ 3 and if r < 3 suppose that π1(V −N ′) ↪→ π1(N)

is an isomorphism.

Let p, q ∈ M t N ′ points with opposite intersection number as in
Figure 5.2 such that there exists a loop L contractible in V connecting
p smoothly to q in N and then q smoothly to p in N ′ where both arcs
miss other intersection points.

Then there exists an isotopy ht of the identity V → V such that

(i) The isotopy is locally the identity around other intersection points;

(ii) At time t = 1, N ′ and N no longer intersect in p and q. In other
words, h1(N) ∩ N ′ = N ∩ N ′ \ {p, q}.

Proof. Postponed to page 75.

p qL N ′

N

N ′

h1(N)

V

Figure 5.2: Under certain conditions, we can ‘can-
cel’ intersection points of opposite intersection num-
ber by deforming the manifold M by an isotopy.

In order to use this theorem, we will interpret NX(p, q) as the intersection
number of two submanifolds. Let α be a regular value between f (p) and f (q)

and let V = f −1(α). Let Su(p) = W u(p) ∩ V and Ss(q) = W s(q) ∩ V be
spheres inside V . Then we have noted before that L(p, q) ∼= Su(p) ∩ Ss(q)

so that
nX(p, q) = #(Su(p) ∩ Ss(q)).

Moreover, we have that

NX(p, q) = Su(p) · Ss(q),

where we denoted by N ·N ′ the intersection number of two manifolds. Recall
that for defining NX(p, q), we chose arbitrary orientations of the stable
manifolds, inducing co-orientations of the unstable manifolds. These chosen
orientations allow us to talk about the intersection number of Su(p) and
Ss(q). With this insight, we are ready to prove the second cancellation
theorem.

Proof of the second cancellation theorem. Let X be an adopted pseudo-
gradient vector field adopted to f and satisfying the Smale condition. Let
N = Su(q) = W u(q) ∩ V and N ′ = Ss(p) = W s(p) ∩ V .

We know that Su(q) · Ss(p) = ±1, which means that either there is only
one flow line connecting p and q, in which case the proof reduces to the first
cancellation theorem, or there are multiple flow lines with opposite signs. If
we can show that the conditions of the theorem of Whitney are satisfied, we
can cancel these intersection points pair by pair (by altering X) until we have
reached the situation of the first cancellation theorem.

Let V = f −1(α). IfM is simply connected, then V is also simply connected.55

If k, the index of the critical point q is greater than or equal to 3, then all
the conditions of the theorem are satisfied and we are done. If k = 2, we
need to show that π1(V − Ss(p)) ∼= π1(V ) = 1. Let S = W u(q) ∩ f −1(0).
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p q
N ′

N

V
C

C′

C0

C′0

a b
D

U

φ1
φ

U × Rr−1 × Rs−1

Figure 5.4: On the left: the plane model, on the
right: the higher dimensional model.

56 John Milnor. Lectures on the h-cobordism theo-
rem. Vol. 2258. Princeton university press, 2015,
p. 75

C0

C′0

a b

U

G1(U ∩ C0)

Figure 5.5: The isotopy Gt in the plane model
moves C0 below C′0, i.e. G1(U ∩ C0) ∩ C′0 = ∅.

Flowing M0 \ S via X gives V − Ss(p), so we need to show that M0 \ S has
trivial fundamental group. For this we use the Seifert–Van Kampen theorem.
Let N be a product neighbourhood of S in M0. Note that k = 2, so S is
diffeomorphic to S1 and dimM0 = n − 1, so the product neighbourhood is
diffeomorphic to S1 × Rn−2. As k = 2, n − 2 ≥ 4, so Rn−2 \ {0} has trivial
fundamental group. Therefore N \ S ∼= S1 × (Rn−2 \ {0}) has the same
fundamental group as S1, which is Z. This allows us to use the Seifert–Van
Kampen theorem in the following way: (M0 \ S) ∪ N = M0, π1(M0) = 1,
π1(N) = Z, π1(N \ S) = Z. This implies that π1(M0 \ S) = 1, completing
the proof.

Let us for completeness also give a proof of Whitney’s theorem.

Proof of Whitney’s theorem. We will construct two local models of the
situation, where it will be easy to perform the isotopy of N. We will end the
proof by extending this isotopy to the whole of V .

Plane model Let C,C′ be the arcs in N and N ′ connecting p and q and
extend them a little bit either way, as in Figure 5.4. For the plane model,
let C0 and C1 be open curves in the plane intersecting transversely in two
points, call them a and b. Let D be the disk with two corners enclosed by
C0 and C′0. Then there exists an embedding φ1 of these curves into N ∪ N ′
such that the following holds:

• φ1(C0) = C, φ1(C′0) = C′,

• φ1(a) = p, φ1(b) = q.

Model Now we claim that we can extend this embedding by adding extra
dimensions such that the following conditions are satisfied:

• The new embedding φ : U × Rr−1 × Rs−1 is an extension of φ1|U∩(C0∪C′0),

• φ−1(N) = (U ∩ C0)× Rr−1 × 0,

• φ−1(N ′) = (U ∩ C0)× 0× Rs−1.

This is actually quite subtle, and for a detailed proof of this claim, we refer
the reader to the notes of Milnor.56 With this model, the proof of the
theorem follows quickly.

Isotopy in the plane model Let Gt : U → U be an isotopy in the plane
model that when applied to C0, moves it under C′0 as in Figure 5.4. More
specifically, we require the following:

• G0 is the identity map,

• Gt is the identity near the boundary of U for all t,

• G1(U ∩ C0) ∩ C′0 = ∅.
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Isotopy in the model To extend this isotopy to one on U × Rr−1 × Rs−1,
define a bump function ρ : Rr−1 × Rs−1 → [0, 1] supported in {(x, y) |
|x |2 + |y |2 ≤ 1} and set

Ht : U × Rr−1 × Rs−1 −→ U × Rr−1 × Rs−1

(u, x, y) 7−→ (Gtρ(x,y), x, y).

Isotopy of V To finally find an isotopy of V , define Ft : V → V such that
F0 is the identity, Ft is the identity everywhere except away from Imφ, and
on Imφ, define Ft = φ ◦Ht ◦ φ−1. This finishes the proof.

5.3 Sliding handles and diagonalizing [∂k ]

If M is a cobordism with exactly two critical points, the second cancellation
theorem allows us to cancel them if there is among other conditions, a single
connecting flow line (counting with signs). When M has multiple critical
points, we must also require that this pair does not interact with the other
critical points. With this we mean the following. Let [∂k ] be the matrix
associated to ∂k with entries

[∂k ]p,q = NX(p, q) (p, q) ∈ Ck(f ,Z)× Ck−1(f ,Z).

Suppose [∂k ] has a row and a column of zeros, except for their intersection,
which we require to be NX(p, q) = ±1. Then it is easy to see that the
conclusion of the second cancellation theorem still holds, i.e. we can cancel
p and q, which comes down to removing the corresponding row and column
in the matrix [∂k ]. For example, in the case of |Ck | = 4, |Ck−1| = 5, the
reduction could look as follows:

∗ ∗ 0 ∗
∗ ∗ 0 ∗
0 0 ±1 0

∗ ∗ 0 ∗
∗ ∗ 0 ∗

 

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 .

This generalization of the second cancellation theorem leads us to our next
goal: creating as many zeros in [∂k ] as possible. In other words, diagonalizing
[∂k ] and showing that under certain conditions, [∂k ] is a diagonal matrix
with only ±1 on the diagonal. Then we can apply the second cancellation
theorem multiple times, cancelling all the critical points (that lie in the middle
dimensions, per assumption of the theorem).

Let us make very clear what we mean by diagonalizing. Starting off with a
matrix [∂k ] based on f and X, we want to change it step by step such that
the resulting [∂′k ] is diagonal (note that it does not need to be square). To
accomplish these algebraic manipulations, we alter f and X.
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We can diagonalize a matrix over Z by using three types of elementary
row and column operations, as explained in Advanced modern algebra by
Rotman.57

E1 Interchange two rows or columns

E2 Multiplication of a row or column by −1

E3 Addition of a row (resp. column) to another row (resp. column)

57 Joseph J Rotman. Advanced modern algebra.
Vol. 114. American Mathematical Soc., 2010,
p. 688

It is clear that E1 and E2 can be done geometrically: we can just relabel
the critical points for E1 and change the (arbitrary) orientation of the stable
manifolds for E2. For the third operation, consider the following figure.

Figure 5.6: By altering the attachment region of
p2, we can geometrically perform the addition of
two columns in [∂].

Su(p1)

Ss(q1)

Su(p2)

Ss(q2)

Su(p1)

Ss(q1)

Su(p2)′

Ss(q2)

[∂2] =

(
1 0

0 1

)
[∂′2] =

(
1 1

0 1

)

E3

By isotoping the attachment sphere of the second 2-handle, i.e. Su(p2) over
the first 2-handle to the sphere that is ‘Su(p1) connected to Su(p2) via a
tube’, we can add the first column of [∂2] to the second one. Indeed, counting
the intersections in the figure, we have that ∂′(p2) = q1 +q2 = ∂(p1)+∂(p2).

To show that this works in general, we will use the following lemma:

Lemma 5.8. Let N be a connected closed manifold of dimension n − 1

containing two embedded (k − 1)-spheres S1, S2 (1 < k < n). Assume
that S1 bounds a k-disk D disjoint from S2. Then there is an isotopy in
N of S2 to a sphere S that is ‘S1 connected to S2’ with a tube. More
explicitly, S consists of S1 and S2 with small discs removed and of a
tube connecting these openings.

If V is a submanifold of dimension n − k that does not disconnect N,
then we can assume that the tube does not intersect V such that

V ∩ S = (V ∩ S1) ∪ (V ∩ S2).

Figure 5.7: The lemma allows us to connect S2 to
S1 while missing the submanifold V .

S1 S2

D
V

S′2

V
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S1 S2

D
V

D1 D2

s2s1

L

Figure 5.8: First we isotope S2 by flowing along
an extension of a vector field that is tangent to
L. Then we use the fact that S1 bounds a disk to
move the end of the tube inside the disk until it
reaches S1.

VW W

M3/2 \ V ∼= M1/2 \ (Su(q1) ∪ Su(q2))

Figure 5.9: In the case k = 2, the union of the
belt spheres V does disconnect M3/2. However,
it is diffeomorphic to M1/2 with a finite set of
points removed, and since M1/2 is connected, so is
M1/2 \ V .

Proof. Let L be an arc in N that is disjoint from the interior of K connecting
s1 to s2 points in S1 and S2. Let D1, D2 be disks around s1 and s2 in S1 and
S2. First move s2 along L to s1 and extend this to an isotopy that moves
a smaller disk D ⊂ D2 to D1, and keeps S2 −D2 fixed. Then move D1 ‘in’
D keeping its boundary fixed. Again extend to an isotopy of N. Composing
these isotopies, we get the result.

Remark 5.9. It is also clear that S · V = S1 · V ± S2 · V , because the tube
misses the submanifold V . If k < n − 1 we can actually choose this sign
freely by changing the first isotopy in the proof: we can either move D to
D2 with the same or the opposite orientation. If k = n − 1, we do not have
this freedom.

This lemma allows us to prove the following:

Theorem 5.10. Let 1 < k < n. Then we can perform E1, E2, E3
geometrically on [∂k ], only affecting critical points of index k and k + 1.

Proof. Operations E1 and E2 are clear. Assume the Morse function f is
self-indexing. Let Mt = f −1(−∞, t] and let V be the union of all belt spheres
of critical points of index k − 1,i.e.

V =
⋃

p∈Critk−1 f

Ss(p)

Suppose f is self-indexing and let N = f −1(k − 1
2 ). For dimensional reasons,

V can only disconnect N if k = 2. However, N \ V is diffeomorphic to
f −1(k − 3

2 ) with a finite set of points removed, namely the attaching spheres
of the one-handles, as illustrated in Figure 5.9. Therefore, as f −1(k − 3

2 ) is
connected, so is N \ V . This means we can apply the previous lemma and we
conclude that we can add/subtract one column to the other one. If k < n−1,
we have control over the sign (determining addition or subtraction), and if
k = n − 1, we may need to change the orientation of the attaching sphere
of k-handle first. Notice that this does only affect [∂k ] and [∂k+1].

In order to also diagonalize [∂1] and [∂n], we will use the following:

Theorem 5.11. Let M be a connected cobordism from M0 to M1. If
M0 = ∅, there exists a handlebody decomposition with exactly one
0-handle. In the other case, there exists one without 0-handles. In both
cases, [∂1] is trivial.

Proof. SupposeM0 6= ∅, i.e. the cobordism has a bottom border and suppose
# Crit0 f = 1, i.e. there is a single 0-handle. Then because M is connected,
there must exist an 1-handle connecting the 0-handle to another connected
component of f −1(−∞, 1

2 ]. The first cancellation theorem allows us to cancel
the 0-and 1-handle. It is clear how to extend this to multiple 0-handles.

Next, suppose M0 = ∅ and # Crit0 f = 2. Then because M is connected,
there must be a 1-handle connecting the two components in f −1(−∞, 1

2 ].
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Figure 5.10: Assuming the manifold is connected, it
cannot contain two zero handles without a one han-
dle connecting them. We can then cancel the zero
and one handle lowering the number of 0-handles
by 1. Repeating this, we can find a handlebody
decomposition with a minimal number of 0-handles,
that is, zero 0-handles ifM0 6= ∅, and one 0-handles
if M0 = ∅.

58 Joseph J Rotman. Advanced modern algebra.
Vol. 114. American Mathematical Soc., 2010

1 1

3

2

3

1

2

Figure 5.11: To change a 1-handle into a 3-handle,
we first introduce a pair of cancelling auxiliary han-
dles of index 2 and 3. Then we cancel the 1- and
2-handle, leaving us with a 3-handle.

Again using the first cancellation theorem , we can cancel the 0- and 1-handle.
Repeatedly applying this reasoning handles the case where # Crit0 f > 2.

For the last part of the theorem, stating that [∂1] is trivial, consider the
following. If there are no 0-handles, ∂1 : C1 → C0 is clearly trivial. If there is
a single 0-handle, all 1-handles have both ends attached to the same sphere,
so the intersection number is 0, so [∂1] = (0 · · · 0).

Remark 5.12. By turning the cobordism upside down, we can conclude the
same for n-handles and [∂n].

The two previous theorems allow us diagonalize all [∂k ] simultaneously.

Theorem 5.13. Let M be a cobordism from M0 to M1. Assume
M,M0,M1 are connected and oriented. Then there exists a Morse
function such that [∂k ] is diagonal for all k .

Proof by induction. Note that [∂1] is diagonal by the previous theorem.
Suppose [∂i ] is diagonal for 1 ≤ i < k < n. We have shown that we can
do operations E1–E3 on columns geometrically. By turning the cobordism
upside down, we can also do this for rows. These six operations are all
that is needed for the diagonalizing [∂k ] by using the algorithm of Smith58.
Diagonalizing [∂k ] does not change the already diagonalized matrices, because
[∂k−1][∂k ] = 0. Each column of [∂k ] with a non-zero element corresponds
to a row of zeros in [∂k−1]. Lastly [∂n] is already diagonal by the previous
theorem.

5.4 Trading 1-handles for 3-handles

The previous theorems allow us to diagonalize [∂k ] for all k . Moreover, the
second cancellation theorem allows us to remove columns and rows of [∂k ]

under certain conditions. These conditions do not cover the case [∂2] and
[∂n−1]. In this section, we will show that we can eliminate 1-handles by
replacing them with 3-handles, solving these issues.

Theorem 5.14. Let f be a Morse function on M, a cobordism from M0

to M1. Assume that M,M0,M1 are connected and simply connected,
and dimM ≥ 5. Then we can alter f such that 1-handles become
3-handles without changing the number of handles of index greater than
three.

Proof. The idea of the proof goes as follows and is illustrated in Figure 5.11.
In order to change a 1-handle into a 3-handle, we introduce an auxiliary
cancelling pair of 2- and 3-handles. Then we cancel the 1- and 2-handle,
leaving us with a 3-handle.
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59 The attachment spheres of the 1-handles are
a finite number of disjoint points, so it is easy to
avoid them. For the second claim, we can assume
that the loop is smooth and transversal to the
attachment region of the 2-handles. Now note that
transversal under these conditions means disjoint
because of dimensional reasons.
60 Hassler Whitney. “Differentiable manifolds”. In:
Annals of Mathematics (1936), pp. 645–680

61 Stephen Smale et al. “The generalized Poincaré
conjecture in higher dimensions”. In: Bulletin of
the American Mathematical Society 66.5 (1960),
pp. 373–375

Adding a cancelling pair of 2- and 3-handles Assume that f is self-
indexing. By the first cancellation theorem, we can decompose an m-
dimensional disk Dm as a 2- and 3-handle. (The attachment sphere of
the 3-handle intersects the belt sphere of the 2-handle once transversely.)
Therefore, we can remove a small disk from M and fill it up with a 2- and
3-handle. The attachment sphere L of the 2-handle bounds a 2-dimensional
disk in f −1( 3

2 ) and we can make sure that it does not intersect belt spheres
of 1-handles or attachment regions of other 2-handles.

Our next goal is to isotope this 2- and 3-handle such that the attachment
region L of the 2-handle crosses a 1-handle exactly once. Then we will be
able to cancel the 2-handle against the 1-handle.

Constructing the desired attachment region Let L′ a path on top of a
1-handle that intersects the belt sphere once transversely. By Theorem 5.11,
we can assume that there are a minimal number of 0-handles, implying that
f −1( 1

2 ) is connected. Hence we can connect the endpoints of L′ with a curve
that lies in f −1( 1

2 ), moreover missing the other attachment spheres of 1-
and 2-handles.59 Because M is simply connected, f −1( 3

2 ) is as well, so this
loop is null-homotopic.

Isotoping L to L′′′ Both L and L′ are null-homotopic in f −1( 3
2 ). Because

dim f −1( 3
2 ) ≥ 4, they are in fact isotopic, by a theorem of Withney.60 It states

that if f , g : M → N be two homotopic embeddings of a compact manifold.
If dimN ≥ 2 dimM+2, then f and g are isotopic. Both embeddings of L and
L′ are null homotopic, and dim f −1( 3

2 ) ≥ 4 ≥ 2 dimS1 + 2, so the conditions
are satisfied. Hence, we can isotope L to L′, and assume that the 2- and
3-handle combination is actually attached along L′, i.e. the attachment region
of the 2-handle is L′.

Because L′ crosses the 1-handle exactly one time, we can cancel the 1- and
2-handle as claimed before, ending the proof.

Remark 5.15. This idea can be extended to higher index critical points.

Remark 5.16. By reversing the cobordism (f  −f ), we can do the same
for n − 1-handles.

5.5 Minimality of the Morse inequalities

Having discussed a multitude of cancellation theorems, we are ready to prove
the minimality of the (weak) Morse inequalities over Z, as first proven by
Smale.61
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62 Vladimir Vasilevich Sharko. Functions on Mani-
folds: Algebraic and Topological Aspects: Algebraic
and Topological Aspects. 131. American Mathe-
matical Soc., 1993

Theorem 5.17 (Smale). LetM be a cobordism fromM0 toM1. Assume
M,M0,M1 are connected and simply connected and dimM ≥ 6. Assume
moreover that the homology ofM is free, i.e. H•(M,M0) and H•(M,M1)

are free. Then there exists a Morse function such that

# Critk f = r0(Hk(M,M0;Z)).

In other words, under these conditions, the Morse inequalities are at-
tainable.

Proof. Let f be an arbitrary Morse function on M. We show inductively
that [∂k ] is trivial. This will then imply that Hk = Ker ∂k

Im ∂k+1
= Ck

0 = Ck , hence
# Critk f = r0Hk . Using Theorem 5.11, we alter f such that the number of
0-handles is minimized. Theorem 5.14 allows us to change 1-handles into
3-handles.

H0 There are no −1-handles, so ∂0 is trivial, hence H0 = C0.

H1 There are no 1-handles, so ∂1 is trivial, hence H1 = C1.

H2 By definition, H2 = Ker ∂2

Im ∂3
. However, there are no 1-handles, so

Ker ∂2 = C2. By altering the Morse function and gradient, we can
assume that [∂3] is diagonal. This combined with the fact that the
homology is free allows us to conclude that Im ∂3 is a matrix with as
entries ±1. (If it contained e.g. a 2, then the resulting quotient could
be Z/2Z, which has torsion.) This allows us to cancel pairs of critical
points, removing rows and columns until [∂3] is trivial. We can do so
without altering the triviality for k = 1, 2. We conclude that H2 = C2.

Hk Suppose [∂k ] is trivial. By definition Hk = Ker ∂k
Im ∂k+1

= Ck
Im ∂k+1

. Because
Hk does not have torsion, this does mean that [∂k+1] only contains
±1’s, so we can cancel critical points until [∂k+1] is trivial. We can do
this without changing the triviality of [∂`] for ` < k . We conclude that
Hk = Ck .

While the proof now seems finished, we should be careful when k gets close
to n, because then the second cancellation no longer applies. We can solve
this by first doing the previous process for k = 1, . . . , n − 2. Then we turn
the cobordism upside down (f  −f ), and repeat the procedure, eventually
making all matrices trivial resulting in Hk(M,M0) ∼= Ck .

Remark 5.18. If we do not assume that the homology is free, the weak
Morse inequalities are not attainable. However, we can prove that the Morse
inequalities including torsion rank in fact are.62

If we take M0 = M1 = ∅, we immediately have the following corollary,

Corollary 5.19. If M is a simply connected closed manifold of dimension
n ≥ 6 with free homology, then the Morse inequalities are attainable,
i.e. there exists a Morse function such that

# Critk f = r0(Hk(M;Z)).
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63 John Milnor. “On manifolds homeomorphic to
the 7-sphere”. In: Annals of Mathematics (1956),
pp. 399–405

64 Edwin H Spanier. Algebraic topology. Springer
Science & Business Media, 1989, Chapter 5, Sec-
tion 5, Corollary 4

If we assume that the homology vanishes completely, Theorem 5.17 becomes

Corollary 5.20 (h-cobordism theorem). Let M be a cobordism from M0

to M1. If M,M0,M1 are connected and simply connected, dimM ≥ 6

andH•(M,M0) = 0, thenM is a trivial cobordism, i.e.M is diffeomorphic
to M0 × [0, 1].

Another direct corollary is the generalized Poincaré conjecture for dimension
greater than 5.

Corollary 5.21 (Generalized Poincaré conjecture). If M is a homotopy
sphere of dimension n > 5, then M is homeomorphic to Sn.

Proof. A homotopy sphere is a homology sphere. Hence, by the previous
theorem, there exists a Morse function with exactly one 0-handle and one
n-handle, i.e. M consists of two disks glued along their boundary. This is
homeomorphic to a sphere, as the following explicit homeomorphism shows:

h : Sn = Dn1 ∪Id Dn2 −→ Dn1 ∪φ Dn2

x 7−→


x if x ∈ Dn1
‖x‖φ

(
x
‖x‖

)
if x ∈ Dn2 \ {0}

0 if x = 0 ∈ Dn2 .

Remark 5.22. We cannot conclude that M is diffeomorphic to Sn. Indeed,
there are so-called exotic spheres, which are topological spheres with a differ-
ential structure that is not equivalent to the standard differential structure
on Sn. The first instances of an exotic spheres were constructed by Milnor
in 1956.63

The next result shows that—contrary to spheres—there is only a unique
differential structure on disks:

Theorem 5.23. If M is contractible with a simply connected boundary
and of dimension n > 5, then M is diffeomorphic to Bn

Proof. Consider M as a cobordism from ∅ to ∂M. We have that H•(M) ∼=
H•(M, ∅). By Poincaré duality, this is also isomorphic to H•(M, ∂M). Be-
cause H•(M, ∂M) is finitely generated, it is isomorphic to H•(M, ∂M).64 In
conclusion, H•(M) ∼= H•(M, ∅) ∼= H•(M, ∂M). This means that H•(M, ∅)
and H•(M, ∂M) are free. Applying Theorem 5.17 gives, together with the
fact that M is contractible, a handlebody decomposition with exactly one
0-handle. Hence M is diffeomorphic to a disk.
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65 Barry Mazur. “On embeddings of spheres”. In:
Bulletin of the American Mathematical Society
65.2 (1959), pp. 59–65

This allows us to strengthen the generalized Poincaré theorem:

Theorem 5.24 (Generalized Poincaré conjecture for n > 4). Let M be
a homotopy sphere of dimension > 4. Then M is homeomorphic to a
sphere Sn.

Proof. We claim that M#(−M) bounds a contractible manifold W of
dimension greater than or equal to 6. Indeed, consider the following figure.

Figure 5.12: The connected sum of a manifold
with itself bounds a manifold W which deformation
retracts on M \Dn.R2#(−R2)

R1#(−R1) R1 \D1

'

M#(−M) M \Dn

R2 \D2

'

'

W

W

W

The two top rows show a local model of a connected sum, considering the
connected sum of two copies of Rn with reversed orientation on one of the
copies. The resulting manifold bounds a manifold W and scaling in the
vertical direction gives a deformation retract from W to Rn \Dn. On the
bottom, we use this local model for M#(−M). This shows that M#(−M)

bounds a manifold that is homotopy equivalent with M \Dn. Because M is
a homotopy sphere, we can easily use Mayer–Vietoris to compute that the
homology of M \Dn is that of a contractible manifold.

By the previous theorem, this implies that W is diffeomorphic to Dn+1.
Hence, M#(−M) is homeomorphic to Sn. Now, Sn is irreducible, meaning
that if M#N is homeomorphic to Sn then both M and N are homeomorphic
to Sn.65 This proves that M is homeomorphic to Sn.

5.6 State of art of the Poincaré conjecture and
h-cobordism theorem

Let us end this thesis by giving an overview of the history of the (general-
ized) Poincaré conjecture and h-cobordism theorem. We will consider the
developments of these conjectures/theorems for three categories, namely
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66 Piecewise linear manifolds are manifolds whose
transition maps are piecewise linear. By this we
mean a continuous map φ such that its domain
can be split up in polytopes such that φ restricted
to a single polytope is affine. A manifold having
a PL structure is slightly stronger than admitting
a triangulation. For an introduction on piecewise
linear manifolds, see Colin P Rourke and Brian
Joseph Sanderson. Introduction to piecewise-linear
topology. Springer Science & Business Media, 2012
67 Edwin E Moise. Geometric topology in dimen-
sions 2 and 3. Vol. 47. Springer Science & Business
Media, 2013

68 John Morgan, Gang Tian, and Ricci Flow. “The
poincaré conjecture”. In: Clay Mathematics Mono-
graphs 3 (2007)
69 Richard S Hamilton et al. “Three-manifolds with
positive Ricci curvature”. In: J. Differential geom
17.2 (1982), pp. 255–306

t

Figure 5.13: An illustration of the the Ricci flow
equations.
70 Edwin E Moise. Geometric topology in dimen-
sions 2 and 3. Vol. 47. Springer Science & Business
Media, 2013

• Mantop, the category of topological manifolds,

• Man∞, the category of smooth manifolds,

• ManPL, the category of piecewise linear manifolds.66

For brevity, we will use PnC (resp. Hn
C) for the Poincaré conjecture (resp.

h-cobordism theorem) of dimension n in category C.

Dimensions 1, 2 In low dimensions, the categories Man∞, Mantop, ManPL
are equivalent, meaning for example that a topological 2-manifold has a
unique differential structure.67 The classification of one- and two-dimensional
manifolds then immediately gives the Poincaré conjecture and h-cobordism
theorem in all categories.

P1,2
top P1,2

PL P1,2
∞ H1,2

top H1,2
PL H1,2

∞
True True True True True True

Dimension 3 The original statement of the Poincaré conjecture concerned
manifolds of dimension three. More precisely, Henri Poincaré conjectured the
following in 1904:

Theorem 5.25 (Poincaré conjecture). Every simply connected, closed
3-manifold M is homeomorphic to the 3-sphere.

One can prove that these conditions imply that M is a three-dimensional
homotopy sphere. This rephrasing allows for an easy generalization to
higher dimensions and other categories: ‘a homotopy sphere is homeomor-
phic/diffeomorphic/PL homeomorphic to a sphere’.

The Poincaré conjecture in three dimensions was one of the most important
open problems in topology, until it was proved to be true by Perelman in
2006 in Mantop.68 For his work, Perelman was offered a Fields Medal and
the Millennium prize worth $1 million, but he declined both.

His proof uses the concept of Ricci flow, introduced by Hamilton in 1982.69

The idea is to put an arbitrary metric on a homotopy sphere. Then the
Ricci flow equations tend to ‘smoothen out’ this metric, as illustrated in
Figure 5.13. If the metric can get improved enough such that it has constant
positive curvature, then the manifold is diffeomorphic to a sphere. However,
problems can arise in the form of certain singularities. Perelman studied
these singularities and found a way to deal with them with manifold surgery,
proving the Poincaré conjecture in Mantop. The categories Mantop, Man∞
and ManPL are equivalent in dimension three, hence his proof implies P3

∞
and P3

PL.
70 Moreover, it has been shown that H3

C ⇔ P3
C , giving the following

summary:

P3
top P3

PL P3
∞ H3

top H3
PL H3

∞
True True True True True True
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71 Michael H Freedman and Frank Quinn. Topology
of 4-Manifolds (PMS-39), Volume 39. Vol. 1085.
Princeton University Press, 2014

72 Guozhen Wang and Zhouli Xu. “The trivial-
ity of the 61-stem in the stable homotopy groups
of spheres”. In: Annals of Mathematics (2017),
pp. 501–580
73 John Henry C Whitehead. “On C1-complexes”.
In: Annals of Mathematics (1940), pp. 809–824
74 Michael H Freedman and Frank Quinn. Topology
of 4-Manifolds (PMS-39), Volume 39. Vol. 1085.
Princeton University Press, 2014
75 Simon K Donaldson and P Kronheimer. “The
geometry of 4-manifolds”. In: Proceedings of the
International Congress of Mathematicians (Berke-
ley 1986)(AM Gleason, ed.) Vol. 1. Citeseer. 1986,
pp. 43–54

76 Robion C Kirby and Laurence C Siebenmann.
Foundational Essays on Topological Manifolds,
Smoothings, and Triangulations. (AM-88), Vol-
ume 88. Princeton University Press, 2016
77 Colin P Rourke and Brian Joseph Sanderson.
Introduction to piecewise-linear topology. Springer
Science & Business Media, 2012

78 Guozhen Wang and Zhouli Xu. “The trivial-
ity of the 61-stem in the stable homotopy groups
of spheres”. In: Annals of Mathematics (2017),
pp. 501–580

Dimension 4 The h-cobordism theorem and Poincaré conjecture in dimen-
sion four are partly still an open problem. The Poincaré conjecture was
proven by Freedman in 1982 in the category Mantop, for which he received a
Fields Medal.71 It was also proven that P4

C ⇔ H4
C for all categories C, hence

the four-dimensional h-cobordism theorem is also true. As of today, P4
∞ and

P4
PL (and hence H4

∞ and H4
PL) are still open and are tightly coupled to the

unknown existence of exotic 4-spheres.

P4
top P4

PL P4
∞ H4

top H4
PL H4

∞
True Open Open True Open Open

Dimension 5 In dimension 5, the Poincaré conjecture holds in Mantop, as
we have proven in this thesis. Moreover, it can be proven that a topological
5-sphere has a unique smooth structure, implying P5

∞.
72 A theorem of

Whitehead73 states that a smooth manifold has a canonical PL structure,
hence P5

PL follows as well. On the other hand, the h-cobordism theorem
only holds in Mantop (see Freedman74) and not in Man∞ or ManPL (see
Donaldson75).

P5
top P5

PL P5
∞ H5

top H5
PL H5

∞
True True True True False False

Dimension 6 As we have shown in this thesis, the h-cobordism theorem
in dimension six or greater is true in Man∞ and this was first proven by
Smale in 1960. It is also true in Mantop, proven in the book by Kirby and
Siebenmann.76 and also holds in ManPL, as discussed in ‘Introduction to
piecewise-linear topology’ by Rourke and Sanderson.77

The Poincaré conjecture in Mantop is true in dimension 5 and higher as we
have shown. It has been shown that the h-cobordism theorem H>5

PL implies
the Poincaré conjecture P>5

PL , hence P>5
PL is true as well. The smooth Poincaré

conjecture P>5
∞ is in general not true, because of the existence of exotic

spheres. In particular, it is conjectured that spheres of a sufficiently high
dimension always admit exotic structures, hence P>5

∞ would be usually false.78

P6+
top P6+

PL P6+
∞ H6+

top H6+
PL H6+

∞
True True Usually

false
True True True

Summary Summarizing the current state of affairs, we find the following:

n Ptop PPL P∞ Htop HPL H∞

1,2,3 True True True True True True
4 True Open Open True Open Open
5 True True True True False False

6+ True True Usually false True True True
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Conclusion

We have started this thesis with an introduction to Morse functions. While
simple, they provide great insight in the structure of differential manifolds, as
we have seen. Morse functions give rise to handlebody decompositions, the
Morse complex and eventually Morse homology. We have shown that Morse
homology does not depend on the Morse function nor on the pseudo-gradient
vector field and that it is in fact isomorphic to singular homology. Morse
homology gives rise to the Morse inequalities, providing a lower bound for
the number of critical points of a Morse function.

In the last part of the thesis, we have witnessed the power of ideas of Morse.
We have proven multiple cancellation theorems eventually leading to the
proof of the minimality of the Morse inequalities, which was originally due
to Smale. This in turn has the h-cobordism and the generalized higher
dimensional Poincaré conjecture as an immediate corollary, forming the
pinnacle of this thesis.

As of today, Morse theory remains an important subject in differential ge-
ometry. For example, handlebody decompositions and Heegaard splittings
are used extensively for studying 3- and 4-manifolds. Moreover, the ideas of
Morse homology have been extended to infinite dimensions by Andreas Floer,
resulting in proofs of various versions of the Arnold conjecture.
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