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Abstract

This thesis concerns specific classes of submanifolds in Poisson geometry. The
emphasis lies on normal form statements, and we present an application in
deformation theory. The results are divided into three themes.

We first study coisotropic submanifolds in log-symplectic manifolds. We provide
a normal form around coisotropic submanifolds transverse to the degeneracy
locus, and we prove a reduction statement for coisotropic submanifolds transverse
to the symplectic leaves.

Next, we address Lagrangian submanifolds contained in the singular locus of a
log-symplectic manifold. We establish a normal form around such Lagrangians,
which we use to study their deformations. On the algebraic side, we show that
the deformations correspond with Maurer-Cartan elements of a suitable DGLA.
On the geometric side, we discuss when small deformations of the Lagrangian
are constrained to the singular locus, and we find criteria for unobstructedness
of first order deformations. We also address equivalences of deformations and
we prove a rigidity result.

At last, we consider a class of submanifolds in arbitrary Poisson manifolds,
which are defined by imposing a suitable constant rank condition. We show
that their local Poisson saturation is smooth, and we give a normal form for
the induced Poisson structure. This result extends some normal form theorems
around distinguished types of submanifolds in symplectic and Poisson geometry.
As an application, we prove a uniqueness statement concerning coisotropic
embeddings of Dirac manifolds into Poisson manifolds.






Beknopte samenvatting

Deze thesis behandelt bepaalde klassen van deelvariéteiten in Poissonmeetkunde.
De nadruk ligt op normaalvormstellingen, en we geven een toepassing ervan in
deformatietheorie. De resultaten zijn onderverdeeld in drie thema’s.

Eerst bestuderen we coisotrope deelvariéteiten in log-symplectische variéteiten.
We vinden een normaalvorm rond coisotrope deelvariéteiten die de singuliere
locus transversaal snijden, en we bewijzen een reductiestelling voor coisotrope
deelvariéteiten die de symplectische bladeren transversaal snijden.

Vervolgens beschouwen we Lagrangiaanse deelvariéteiten die bevat zijn in de
singuliere locus van een log-symplectische variéteit. We maken gebruik van
een normaalvorm rond zulke Lagrangianen om hun deformaties te bestuderen.
Op algebraisch vlak tonen we aan dat deformaties overeenkomen met Maurer-
Cartan elementen van een bepaalde DGLA. Op meetkundig vlak onderzoeken
we wanneer deformaties niet uit de singuliere locus kunnen ontsnappen, en we
vinden voorwaarden onder dewelke eerste-orde deformaties rakend zijn aan een
pad van deformaties. Tevens behandelen we equivalentierelaties op de ruimte
van deformaties en bewijzen we een rigiditeitsstelling.

Het laatste deel van de thesis gaat over bepaalde deelvariéteiten van
willekeurige Poissonvariéteiten, die gedefinieerd zijn in termen van een
regulariteitsvoorwaarde. =~ We tonen aan dat de lokale Poissonsaturatie
van zulke deelvariéteiten glad is, en we geven een normaalvorm voor de
geinduceerde Poissonstructuur. Dit resultaat is een uitbreiding van enkele
normaalvormstellingen in symplectische en Poissonmeetkunde. Als toepassing
bewijzen we een uniciteitsresultaat aangaande coisotrope inbeddingen van
Diracvariéteiten in Poissonvariéteiten.
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Introduction

This thesis contains some results concerning submanifolds in Poisson geometry,
with emphasis on normal forms and deformations. The upcoming chapters
contain copies of the following three preprints, up to minor stylistic/linguistic
modifications, some small corrections and extensions of the appendices.

1. “Coisotropic submanifolds in b-symplectic geometry”.
Joint with Marco Zambon. Available on arXiv:1907.09251, and will appear
in the Canadian Journal of Mathematics.

2. “Deformations of Lagrangian submanifolds in log-symplectic manifolds”.
Joint with Marco Zambon. Available on arXiv:2009.01146.

3. “The Poisson saturation of regular submanifolds”.
Available on arXiv:2011.12650.

The parts of this thesis that are not contained in the papers listed above are
§2.6.3 in the Appendix of Chapter 2 and §3.8.2 in the Appendix of Chapter 3.

In this introduction, we give some background information about Poisson and
Dirac geometry, and we outline the main results that are obtained in this thesis.

Poisson geometry

Poisson geometry has its origins in the Hamiltonian formulation of classical
mechanics. Say we want to describe the movement of a particle in R™. Its
state at time t is given by a point (q(t), p(t)) in the phase space R?", where
qg = (q1,...,qn) are the position coordinates and p = (p1,...,p,) are the
momentum coordinates. The way in which the state of the particle evolves with
time depends on the Hamiltonian function H = H(p, ¢,t), which is usually the
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total energy of the system. The time evolution of the system is determined by
Hamilton’s equations:
j; = o1
= Op;
o - (1)

pi:iafh

Let us introduce a new product for functions f,g € C°°(R?"), which was
discovered by Poisson [P] in 1809, by the rule

N~ (0f 99 _0f 0y
{f.o}=>_ (31%8% da; 31%) ' ?

i=1

We refer to this product as the standard Poisson bracket. The equations
(1) can now be conveniently rewritten as follows:

x'i = {H7 l’i},

where z; denotes any of the coordinates (qi,...,qn,p1,-..,Pn). Moreover,
we notice that the operator {H,-} is a derivation of the product, so that it
corresponds with a vector field, called the Hamiltonian vector field

~(OH 0 O0H 0

Xy = — .

" ; (api 0gi  Dgi ap)

Rewriting Hamilton’s equations (1) in terms of this vector field gives
() = Xp(x(t)).

In other words, the evolution of the system is determined by the integral curves
of the vector field Xg. This way, the earliest instances of Poisson geometry
provide a geometric theory for classical mechanics.

It was Jacobi who identified the main properties of the standard Poisson bracket
(2). The theory was formalized further by Lichnerowicz [L] in the late 1970s, but
it was only after the foundational paper [W2] of Alan Weinstein that Poisson
geometry took off as an independent field of study. We now introduce the basics
of Poisson geometry; most of what follows can be found, for instance, in [DZ].

Poisson manifolds

Definition. A Poisson structure on a manifold M is a Lie bracket {-,-} on
the algebra of smooth functions C°°(M) that is a derivation in each entry:

{f,gh} ={f,g}h + g{f, h} Vf,g,h € C>(M).
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Equivalently, a Poisson structure is given by a bivector field IT € I'(A2T M)
satisfying [IT,II] = 0, where [-, -] is the Schouten bracket of multivector fields.
The Schouten bracket [-, -] is a natural extension of the usual Lie bracket of
vector fields. The Poisson bracket {-,-} and the Poisson bivector IT are related
by the formula

{f, 9} =11(df, dg).

Geometrically, a Poisson manifold can be thought of as a manifold partitioned
into symplectic submanifolds. More precisely, the Poisson bivector gives rise to

a bundle map
I T*M — TM : a1, (3)

whose image is an integrable (singular) distribution. So M inherits a partition
into connected, immersed submanifolds, called leaves, such that the leaf O
through a point p € M satisfies

T,0 =N (T M).

Moreover, each leaf has an induced symplectic structure: the Poisson manifold
(M,II) carries a symplectic foliation. It is important to stress that this
foliation is singular in general, i.e. the leaves may have varying dimension.

Figure 1: The symplectic foliation for Il = 29, A 0, + y0, A Oy — 20, N\ Oy.

Examples

o Symplectic structures w € Q?(M) are exactly the non-degenerate Poisson
structures I € T'(A2T'M), i.e. those Poisson structures IT for which the
bundle map (3) is invertible. Indeed, there is a correspondence between
non-degenerate two-forms w € Q?(M) and non-degenerate bivector fields
I € T(A’T'M), given by

W’ = +(IH) 7L,
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where the plus or minus sign depends merely on convention!. Under this
correspondence, the closedness condition dw = 0 is equivalent with the
Poisson condition [II, 1] = 0.

For instance, the Poisson bracket (2) corresponds with the standard
symplectic structure on R?".

o Every manifold M is trivially Poisson for the zero Poisson structure.

o If (g,[-,-]) is a Lie algebra, then g* has a canonical Poisson bracket {-,-}4
defined by

{f:h}o(&) = (ldef, dehl, &)
Here we identify (g*)* = g. The associated Poisson bivector Il satisfies
My(§) =&o ] € A%g" = A*(Teg").

The symplectic foliation of this Poisson structure is given by the orbits of
the coadjoint action. Figure 1 above displays the case g = sl(2,R).

Maps and vector fields

A map between Poisson manifolds ¢ : (M,II5;) — (N,IIy) is a Poisson map
if the pullback

is a Lie algebra morphism. It is equivalent to require that the bivector fields
IIp; and Il are ¢-related, i.e.

(/\2dp<P>(HM)p = (IIN) o(p) Vp e M.

A symplectic realization of (M,II) is a surjective Poisson submersion from
a symplectic manifold (3, w™1) onto (M, II).

A vector field X on a Poisson manifold (M, II) is a Poisson vector field if
its flow ¢’ consists of Poisson diffeomorphisms, or equivalently, if £xII = 0.
Every function f € C°°(M) gives rise to a Poisson vector field X via

Xy =1TF(df),

called the Hamiltonian vector field associated with f. The foliation of a
Poisson manifold is generated by its Hamiltonian vector fields. Two points

1We make clear in each chapter which convention we use. In Chapters 1 and 2, we use the
minus sign. In Chapter 3 however, we chose to use the plus sign for convenience, since that
chapter relies on results proved in papers that adopt the latter convention.



INTRODUCTION 5

p,q € M lie in the same leaf if ¢ can be obtained by applying finitely many
Hamiltonian flows to p:

= ok, ook, (n).

Equivalently, ¢ lies in the same leaf as p if there exists a time-dependent
Hamiltonian whose flow takes p to ¢:

q = (b‘let (p>

There is a specific kind of Poisson vector field that is of special importance in
this thesis. Upon choosing a volume form p € Q°P(M), there is a vector field
v, that is uniquely determined by

Lx,p=Vha(Hp Vfe o= (M).

This vector field is a Poisson vector field, called the modular vector field
associated with p [W3]. Choosing a different volume form changes the modular
vector field by a Hamiltonian vector field, since

Vn%d = Vrt:od — Xin lgl- (4)

Poisson cohomology

Any Poisson manifold (M, II) carries a differential
dip : T(AFTM) — D(AMTITM) < € 5 [I1, €],

whose cohomology is called the Poisson cohomology. In low degrees, these
cohomology groups Hpj (M) have geometric interpretations. For our purposes,
it suffices to know that H (M) is the quotient of the space of Poisson vector
fields by the space of Hamiltonian vector fields:

Lo {X eT(TM): £xT1 =0}
L) = Sy fe e

The equation (4) shows that the Poisson cohomology class [V 1€ H (M) is
intrinsically defined, i.e. it is independent of the chosen volume form. This is
the modular class of (M, II). The modular class vanishes exactly when there
is a volume form on M that is invariant under all Hamiltonian vector fields.
In that case (M, 1I) is called unimodular. For instance, a symplectic manifold

(M?" w) is unimodular; an invariant volume form is given by A"w.

In case the Poisson structure II is symplectic, then the Poisson cohomology
of (M,1I) is canonically isomorphic with the de Rham cohomology of M. We
should note however that in general, the computation of Poisson cohomology is
by no means standard at this point due to lack of general methods.
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Cotangent Lie algebroid

For a Poisson manifold (M, II), it is in some respects possible to work with its
cotangent bundle 7" M as if it were the tangent bundle T M. Both are related
by the bundle map II* (see (3)). The reason why this works is that also T'(T™* M)
carries a Lie bracket [-, -]rr, defined by

[ Bl i= £z B = £ gy — A, B)).
The map II* and the bracket [, 3]11 are related through the Leibniz rule

[, fBIn = flev, Bl + £11r(a) (f)B-

In the spirit of using 7*M as a tangent bundle, the symplectic leaves of (M, II)
can be described in terms of paths with “contravariant speed”. Namely, two
points p,q € M lie in the same leaf when they are joined by a cotangent
path (a(t),~(t)), meaning that + : [0,1] — M is a path joining p and ¢, and
a:[0,1] — T*M is a path lying over ~ such that

¥ (a(t)) = 7' (t).

All of this fits in the more general notion of Lie algebroid. A Lie algebroid is
a vector bundle A — M, together with a Lie bracket [, -] on its space of sections
I'(A) and a bundle map p: A — TM, satisfying the compatibility condition

(X, fY] = fIX, Y]+ £,x) (/)Y VXY eT(A), feC>®(M). (5)

The map p: A — TM is called the anchor map. The identity (5) implies in
particular that p : I'(A) — X(M) is a Lie algebra morphism.

Standard examples of Lie algebroids are tangent bundles, Lie algebras, and
involutive distributions. Also the cotangent bundle of a Poisson manifold (M, II)
inherits a Lie algebroid structure: what we described above is nothing else but
the cotangent Lie algebroid (T*M,II*, |-, i) of (M, II).

Any Lie algebroid A — M comes with an integrable (singular) distribution p(A),
which gives rise to a singular foliation on the base M. Two points p,q € M lie
in the same leaf exactly when they are joined by an A-path (a(t),~(t)) [CrFe].
This means that v : [0,1] — M is a path joining p and ¢, and a : [0,1] = A is a
path lying over v such that

We also remark here that a Lie algebroid (A, p, [, -]) has an associated complex
of differential forms (F(/\’A*),d A), where the differential is defined by the
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familiar Koszul formula
k .
daa(Xo, ..., Xp) = > (-1 Lyx, (e Xo, .., Xiy o Xi))

A

0
S (D)X, X] X0, Xy, Xy X).
0<i<j<k

The associated cohomology H®(A) is the Lie algebroid cohomology of A.
For the cotangent Lie algebroid (T*M,TI*,[-,-]i) of a Poisson manifold (M, II),
this is just the Poisson cohomology as introduced above.

One case is of special interest in Chapter 2. As we remarked before, if F is a
(regular) foliation on M then T'F is a Lie algebroid (the anchor is the inclusion
map T'F — T M and the bracket is just the restriction of the Lie bracket of
vector fields). The associated differential complex (I'(A®T*F),dr) consists of
foliated differential forms. Its cohomology is the foliated cohomology,
which we will denote by H®(F).

Submanifolds

Given a Poisson manifold (M, II), there are various interesting ways in which
a submanifold X C (M, II) can interact with the Poisson tensor II. Different
classes of submanifolds X C (M, II) are conveniently described in terms of the
“IT-orthogonal” of X, which is defined as

TX+n .= 1*(TX°).

Geometrically, the IT-orthogonal T, X1 at a point = € X is the symplectic
orthogonal of T,, X NT,O in the symplectic vector space T,,O, where O is the
symplectic leaf through x. In particular, if IT is symplectic then this notion
reduces to the usual symplectic orthogonal of X.

We now list the types of submanifolds that occur in this thesis. For a more
complete overview of submanifolds in Poisson geometry, we refer to [CFM], [Z].

o A Poisson submanifold is a submanifold X C (M,II) for which ITI is
tangent to X, or equivalently, for which 77X+ = 0. The restriction IT|x
defines a Poisson structure on X.

o A Lagrangian submanifold is a submanifold X C (M, II) such that for
all z € X,
T, X" =T,XNT,0,
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where O is the symplectic leaf through x. This means that T, X NT,0O is
a Lagrangian subspace in the symplectic vector space T,,O. Lagrangian
submanifolds are the main objects of study in Chapter 2.

o A coisotropic submanifold is a submanifold X C (M, II) such that for
all z € X,
(TX* ), C T,XNT,0,?

where O is the symplectic leaf through x. This means that T, X N T,0O is
a coisotropic subspace in the symplectic vector space T,0. We discuss
coisotropic submanifolds in Chapter 1.

e We call a submanifold X C (M, 1) regular if 7X*1 has constant rank.
Regular submanifolds are the central concept of Chapter 3.

e A transversal is a submanifold X C (M,II) transverse to the leaves.
Equivalently, TX " has constant rank equal to codim(X).

o A Poisson transversal is a submanifold X C (M,II) that intersects
each leaf transversally and symplectically, that is

TM|x =TX @ TX'n.

The submanifold X inherits a Poisson structure from (M, II). We briefly
encounter Poisson transversals in Chapter 3.

o A pre-Poisson submanifold is a submanifold X C (M,II) for which
TX +TX' 1 has constant rank. These are Poisson analogs of constant
rank submanifolds in symplectic geometry. Pre-Poisson submanifolds will
also be touched upon in Chapter 3.

As for any geometric structure, an important line of research is the construction
of normal forms for Poisson structures. The aim is to find convenient descriptions
for them near certain submanifolds. We recall here that in symplectic geometry,
the Darboux theorem gives a universal local model for symplectic manifolds of
a fixed dimension. In Poisson geometry however there is no such model, hence
even the search for normal forms around points is interesting.

A crucial result in this respect is Weinstein’s splitting theorem [W2], which
states that near a point p € M where rank(II,) = 2k, one can find coordinates

2The standard definition of coisotropic submanifold is a submanifold X C (M, II) for which
TX1n C TX. The second condition in our definition, that TX-11 is also tangent to the
leaves, is automatically satisfied. We wrote the definition this way to make the analogy with
the definition of Lagrangian submanifold.
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(1, Thy Y1y -+ Yk, q15 - - -, q1) centered at p such that

k
I = Z O, N a% + Z (bi;j (q)aq'i A aqj (6)
i=1

1<i<j<l

and ¢; ;(0) = 0. This formula shows that locally around a point p € M, the
Poisson manifold (M,II) is a product of a symplectic manifold with a Poisson
manifold whose Poisson tensor vanishes at p. This has important consequences
for the construction of normal forms around points. First, it shows that around
regular points (i.e. points that have a neighborhood on which the Poisson
structure is of constant rank) there is a local model. Second, since we can “peel
off” coordinates that give a partial local form (the first summand in (6)), we
only need to find normal forms for Poisson structures around points p € M
where II,, vanishes. This leads us to the linearization of Poisson structures, an
interesting but hard problem that was partially solved by Conn [Con| and is
still an active domain of research [MZ].

Log-symplectic structures

While symplectic structures are the nicest instances of Poisson structures, an
arbitrary Poisson manifold is much more complicated than a symplectic one.
When trying to obtain explicit results, it is therefore instructive to look at
classes of Poisson structures that are “not too far from being symplectic”.
Various types of mildly degenerate Poisson structures have been introduced
and studied in recent years. We address in detail one such class, consisting of
so-called log-symplectic structures, which play an important role in this thesis.
Their first appearance is in the work of Nest-Tsygan [NT] (in the context of
manifolds with boundary) and Radko classified these structures on compact
oriented surfaces [R]. Since their systematic study in arbitrary dimension by
Guillemin-Miranda-Pires [GMP], log-symplectic structures have attracted a lot
of attention from the Poisson community.

Definition. An even-dimensional Poisson manifold (M?" 1) is called log-
symplectic if A”II is transverse to the zero section of the line bundle A?"T M.

This notion encompasses symplectic structures, since those are exactly the
Poisson structures II for which A™II is nowhere zero.

A log-symplectic structure is symplectic everywhere, except at points of its
singular locus Z := (A"II)~1(0). When non-empty, Z is a smooth hypersurface
in M because of the transversality requirement A™II M 0.

The singular locus Z is a Poisson submanifold of (M, IT), and its induced Poisson
structure II|z is regular of corank-one. This Poisson structure has a special
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feature: it has a Poisson vector field transverse to the leaves. Such a vector
field is obtained (in the orientable case) by restricting a modular vector field of
(M,II) to Z. Equivalent to the existence of a transverse Poisson vector field is
the existence of a cosymplectic structure (8,n) inducing II|z. This means that
the underlying foliation of II|7 is the kernel of the closed one-form 0 € Q(Z),
and the closed two-form 7 € Q%(Z) extends the symplectic form on each leaf.

Example. On R?" with coordinates (z1,y1,--.,%n,¥n), the following is a
log-symplectic structure:

=0, Ay10y, + Y O, Ay, (7)

=2

The singular locus is Z = {y; = 0}, with Poisson structure II| ; = >, 05, A, .
Its leaves are the level sets of x1, and 0,, is indeed a transverse Poisson vector
field. Interestingly, any log-symplectic structure has a coordinate expression
like (7) around any point of its singular locus.

An important trait of log-symplectic structures is that they can be studied using
symplectic geometry. In fact, they can be seen as symplectic structures on a
certain Lie algebroid that serves as a replacement of the tangent bundle. This
point of view uses the language of b-geometry, which we now explain. Here b
stands for boundary, as this formalism was first used by Melrose in the context
of differential operators on manifolds with boundary [Me].

The objects of study in b-geometry are so-called b-manifolds, which are pairs
(M, Z) consisting of a manifold M and a hypersurface Z C M. Associated
with such a pair (M, Z), there is a vector bundle *T'M called the b-tangent
bundle, whose sections are the vector fields on M that are tangent to Z.
Since the b-tangent bundle is a Lie algebroid, there is an associated complex
(D(A*(*T*M),"d) of differential forms on *T'M, which we call b-forms.

Working in coordinates (z1,...,zy) adapted to Z = {z; = 0}, a local frame for
the b-tangent bundle *T'M is given by

{$16I178$27 AR a$n}'

Looking at the coordinate expression (7), we see that II can be viewed as a non-
degenerate element IT € T'(A2(*T'M)) satisfying [IT,TI] = 0. By taking inverses,
this is the same thing as a non-degenerate closed b-two-form w € I'(A2(*T*M)),
i.e. a b-symplectic form. For instance, the b-symplectic form corresponding
with the log-symplectic structure (7) is

d n
w=dx1 A &h +dei A dy;.
o=
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This is a symplectic form with a logarithmic singularity, which justifies the name
“log-symplectic”. In conclusion, a log-symplectic structure can be viewed as a
symplectic form on the b-tangent bundle, which enables the use of symplectic
techniques in the study of log-symplectic structures.

The names “log-symplectic” and “b-symplectic” are used interchangeably in the
literature, but we stress that they refer to the same objects. To leave no room
for confusion, we emphasize:

log-symplectic = b-symplectic.

We will adopt the terminology “log-symplectic” when using the Poisson point
of view (i.e. when working with the bivector field II € T'(A2T'M)). We adopt
the terminology “b-symplectic” when we use the b-geometry point of view (i.e.
when working with the singular two-form w € T'(A2(*T*M))).

Dirac geometry

We now recall some background information concerning Dirac geometry, which
is an important ingredient in Chapter 3. Dirac structures first appeared in
the work of Ted Courant [Cou|, who was a student of Alan Weinstein at the
time. Dirac geometry is useful because it provides a unifying framework for
several geometric structures: foliations, closed two-forms and Poisson structures.
Another advantage is that passing to Dirac geometry provides us with operations
that are generally not available in the geometries just described. For instance,
there is no sensible notion of pullback in Poisson geometry; however, under
appropriate conditions, a Poisson structure can be pulled back as a Dirac
structure, and in favorable cases the result is again a Poisson structure. For
more information about Dirac manifolds, we recommend [B].

Dirac structures

Given a manifold M, the vector bundle TM & T*M carries the following
operations:

o a symmetric pairing ((-,-)) on each fiber, given by
(V+a,W+B):=aW)+5V).
o the Dorfman bracket [-, -] on its space of sections, defined by

[V+a,W+08]:=[V,W+ £y — twda.
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Definition. A subbundle L C TM & T*M is Lagrangian if it is maximally
isotropic with respect to ((-,-)), i.e. (L, L)) =0 and rank(L) = dim M.

A Dirac structure is a Lagrangian subbundle L C TM@&T™* M that is involutive
with respect to [-,-], i.e. [['(L),T(L)] € T'(L).

The Dorfman bracket [-, -] satisfies the “Jacobi identity in Leibniz form”
Ha’l? [[a23 CL3M = [[Halﬂ a2]]7 a3ﬂ+ﬂa27 [[alﬂ a3M Vay,az,a3 € F(TM@T*M)7 (8)

but it is not skew-symmetric. However, its restriction to a Dirac structure
L C TM @& T*M is skew-symmetric, and therefore (8) reduces to the usual
Jacobi identity on elements of T'(L). Hence, (I'(L), [-,-]) is a Lie algebra. Even
more is true: denoting by prr : L — T'M the projection to the tangent bundle,
we have that (I'(L), prr, [, -]) is a Lie algebroid.

In particular, the distribution prr(L) C TM gives rise to a singular foliation
on M. We call it the presymplectic foliation associated with L, since each
leaf has an induced closed two-form. Two points p, ¢ € M lie in the same leaf
when they are joined by an L-path, i.e. when there exists a path ~ : [0,1] = M
joining p and ¢, and a path a : [0, 1] — L covering ~ such that

prr(a(t)) =7'(1).

Examples

o Foliations: A distribution D C T'M defines a Lagrangian subbundle
Lp:=D®D°

of (TM @ T*M, (-,-)). This subbundle is a Dirac structure exactly when
D is involutive, i.e. when D is the tangent distribution of a foliation.
Foliations are those Dirac structures L for which L = pro(L) @ pro-(L).

o Closed two-forms: A two-form w € Q?(M) defines a Lagrangian subbundle
Gr(w) ={v+w:veTM}

of (TM @ T*M, {-,-)). This subbundle is a Dirac structure exactly when
dw = 0. Closed two-forms are the Dirac structures L that are transverse
to T*M, i.e. those for which pro(L) =TM.

o Poisson structures: A bivector I € X2(M) defines a Lagrangian subbundle
L= {I*(e) + a:a € T*M}

of (TM @ T*M,{-,-))). This subbundle is a Dirac structure exactly when
II is Poisson. Poisson structures are the Dirac structures L that are
transverse to TM, i.e. those for which prr-(L) = T*M.
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Maps in Dirac geometry

A map between Dirac manifolds ¢ : (My, L1) — (Ma, Ls) is called forward
Dirac if for all p € My:

(L2)<p(p) = {dp‘»o(v) +a:r v+ (dp‘P)*a € (Ll)p}~

Similarly, the map ¢ : (M;, L1) — (Ma, Ls) is called backward Dirac if for
all points p € M;:

(L1)p = {v + (dpp) s dpp(v) + @ € (L2)p }- (9)

A Poisson map ¢ : (My,Il;) — (M, II,) is forward Dirac. If w € Q%(My) is a
closed two-form, then ¢ : (M1, Gr(p*w)) = (M2, Gr(w)) is backward Dirac.

There is a notion of pullback of Dirac structures that we will frequently use. If
p: My — (Ms, Ly) is a smooth map into a Dirac manifold (Ms, L) such that
the family of vector spaces

dp‘P(Tle) +prT(L2)<P(P) - TQD(P)M2

has constant dimension for p € M, then the right hand side of (9) defines a
Dirac structure on M;. We denote this pullback Dirac structure by

(¢*"La)p :=={v+ (dpp)"a € T,M & Ty M : dpo(v) +a € (L2)yp }-
This construction is relevant also in Poisson geometry. We give two examples:

o If i : X — (M,II) is a Poisson transversal, then the pullback Dirac
structure ¢* L defines a Poisson structure on X.

e If i : L — (M,II) is a regular Lagrangian, then the pullback Dirac
structure i* Ly is the foliation integrating the distribution 7L+ on L.

Operations in Dirac geometry

We mention two ways of constructing new Dirac structures out of old ones.

First, if (M, L) is a Dirac manifold and w € Q?(M) is a closed two-form, then
we can define a new Dirac structure

LY ={v+a+iw: v+ac€ L},

called the gauge transformation of L by w. The presymplectic foliations of
L and L have the same leaves, but the presymplectic forms of L“ are obtained
by adding the restriction of w to those of L.
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Second, if (M, L) is a Dirac manifold and A # 0 is a real number, then we can
define the rescaled Dirac structure

A :={v+Xa: v+a€ L}

Geometrically, this corresponds with taking the presymplectic foliation of L
and rescaling the presymplectic forms by A. As a particular case, the opposite
Dirac structure of L is —L := (—1)L.

Overview of the results

We motivate the problems that are considered in this thesis, and we briefly
explain our main results. In a nutshell, we prove three normal form theorems
for Poisson structures around certain kinds of submanifolds, and we use one
of them to study the deformation theory of the submanifolds in question. The
following overview is based on the introductory texts of the individual chapters.

Chapter 1

The central objects of study in Chapter 1 are coisotropic submanifolds of log-
symplectic manifolds. Our motivation is the prominent role played by coisotropic
submanifolds in Poisson geometry; for instance, they arise naturally as graphs
of Poisson maps, they support Lie subalgebroids of the cotangent Lie algebroid,
and they admit a natural quotient which inherits a Poisson structure.

We study two classes of coisotropic submanifolds of log-symplectic manifolds,
which we call b-coisotropic and strong b-coisotropic. These submanifolds
inherit a specified hypersurface from the log-symplectic structure, so they can
be studied using the b-geometry point of view. We show that they enjoy some
properties that can be seen as b-geometric versions of well-known statements
about coisotropic submanifolds in symplectic and Poisson geometry.

b-coisotropic submanifolds

We call a submanifold C of a log-symplectic manifold (M, Z,II) b-coisotropic
if it is coisotropic and transverse to the singular locus Z. In particular, such
a submanifold is itself a b-manifold (C,C N Z). Prop. 1.3.4 shows that the
coisotropicity condition can be rephrased as (*TC)* C °TC, where w is the
b-symplectic form corresponding with II, indicating that these submanifolds are
natural coisotropic objects in b-symplectic geometry.
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We show that b-coisotropic submanifolds satisfy some b-geometric enhancements
of classical results concerning coisotropic submanifolds in Poisson geometry.
First, noticing that the b-cotangent bundle *T* M of a b-symplectic manifold
(M, Z,w) is a Lie algebroid, we show that the b-conormal bundle (*T'C)° c *T* M
of a b-coisotropic submanifold C' is a Lie subalgebroid (Prop. 1.3.6).

Second, while the product of log-symplectic manifolds is not log-symplectic in
general, a suitable blow-up of the product is. We show that graphs of suitable
Poisson maps between log-symplectic manifolds are b-coisotropic submanifolds,
once lifted to this blow-up (Prop. 1.3.8).

Our main result concerning b-coisotropic submanifolds is an extension of Gotay’s
theorem [G] from symplectic geometry. As a consequence, we obtain a normal
form around them (Prop. 1.3.15).

Theorem 1A. Given a b-coisotropic submanifold C < (M, Z,w), choose a
complement G so that *TC = TC® & G and denote by j : (*TC¥)* < *T*C
the inclusion. A neighborhood of C in (M, Z,w) is b-symplectomorphic with
a neighborhood of C in ((bTC“’)*,Qg). Here Q¢ is a b-symplectic form on a
neighborhood of the zero section, given by

Q¢ = "p*("i*w) + 5 wean,

where p: (PTC¥)* — C is the bundle projection and wean denotes the canonical
b-symplectic form on *T*C.

In particular, around a b-coisotropic submanifold C, the b-symplectic form w is
determined by its pullback to C', up to b-symplectomorphism.

Strong b-coisotropic submanifolds

We then focus attention on a specific kind of b-coisotropic submanifolds. We call
a submanifold C' of a log-symplectic manifold (M, Z,II) strong b-coisotropic
if it is coisotropic and transverse to the leaves of (M, II).

The main reason for looking at this kind of coisotropic submanifolds is the fact
that their characteristic distribution TC+1 C TC is regular, which opens the
door for reduction. Indeed, a well-known fact in Poisson geometry states that
when the quotient of a coisotropic submanifold by its characteristic distribution
is smooth, it inherits a Poisson structure. We observe that, applying this
procedure to a strong b-coisotropic submanifold of a log-symplectic manifold,
the Poisson structure on the quotient is again log-symplectic (Prop. 1.4.6).



16 INTRODUCTION

Proposition 1B. Let C' be a strong b-coisotropic submanifold of a log-symplectic
manifold. If the quotient of C by its characteristic distribution is smooth, then
the reduced Poisson structure is again log-symplectic.

Group actions G ~ (M, Z,II) admitting a moment map J : M — g* provide a
source of examples for this reduction procedure. Under appropriate assumptions,
the zero level set J~1(0) is strong b-coisotropic, and applying Theorem 1B yields
a log-symplectic structure on the quotient J~1(0)/G (Cor. 1.4.10).

At last, we reverse the procedure by realizing compact log-symplectic manifolds
through moment map reduction for S'-actions (Prop. 1.4.14). We work out
the details in the case of the two-sphere (Cor. 1.4.16).

Chapter 2

In Chapter 2, we again deal with log-symplectic manifolds, but now we are
interested in Lagrangian submanifolds, and more precisely their deformation
theory. Our motivation comes from symplectic geometry, as we now explain.

Recall that, by Weinstein’s Lagrangian neighborhood theorem [W1], a
neighborhood of a Lagrangian submanifold L in a symplectic manifold (M, w)
is symplectomorphic with a neighborhood of L in (T*L,weqn). To study the
deformations of the Lagrangian submanifold L, it is convenient to work in the
local model (T*L,wean). The following is well-known [MS]:

o The graph of a section o € T'(T*L) is Lagrangian in (T*L, weqr) exactly
when da = 0.

o Two Lagrangian sections ag,a; € I'(T*L) are interpolated by a family of
Lagrangian sections (o ).eo,1) generated by a Hamiltonian isotopy exactly
when [ag] = [a] in H(L).

So the moduli space of Lagrangian deformations under Hamiltonian equivalence
can be identified with (a neighborhood in) the first de Rham cohomology H*(L).
In particular, it is smooth and even finite dimensional if L is compact. These
results spark the following question, which we pursue in Chapter 2:

Is the deformation theory of Lagrangian submanifolds in log-symplectic geometry
as well-behaved as in symplectic geometry?

For Lagrangians transverse to the singular locus Z, the answer is easily seen to be
positive [K], since b-geometry applies in that case. Indeed, specializing Theorem
1A to Lagrangian submanifolds gives a b-geometric version of Weinstein’s
Lagrangian neighborhood theorem, which implies that Lagrangian deformations
of L are classified by "H'(L) =< H' (L) ® H(L N Z).
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We focus on Lagrangians at the other extreme, i.e. those contained in the
singular locus. For such a Lagrangian L C Z, there are two possibilities: either
it is (n — 1)-dimensional and its connected components lie inside symplectic
leaves of Z, or it is n-dimensional and it is transverse to the leaves of Z. The
former are less interesting for our purposes; evidently their deformations stay
inside Z, so in effect we would be dealing with a deformation problem inside a
nice corank-one Poisson manifold of cosymplectic type. That is why we only
look at Lagrangian submanifolds L™ contained in the singular locus of
Z of an orientable log-symplectic manifold (M2™ II). Such a Lagrangian
inherits a foliation F7,, which will play an important role in the sequel.

Since the submanifolds considered in this chapter are opposite to those in the
previous chapter, also the techniques involved are different: b-geometry does not
apply due to lack of transversality, so we use the Poisson geometric point of view
instead. Despite being polar opposites, we note that a Lagrangian L™ C Z can
often be deformed into one transverse to Z. The result is then a b-coisotropic
submanifold, which is strong b-coisotropic only when it does not intersect Z.

Normal form

To facilitate the study of Lagrangian deformations, we first construct a normal
form for the log-symplectic structure around Lagrangian submanifolds in the
singular locus. This is done in two steps:

1. The local model for a Poisson manifold around a Lagrangian L transverse

to the leaves is (T*Fr,Icun) (Prop. 2.2.9). Here I, is a canonical
Poisson structure, obtained out of the symplectic structure on 7*L.

2. Tt is well-known [GMP],[O] that the local model for an orientable log-
symplectic manifold (M, Z,1II) around the singular locus Z is

(Z X R, Vmod|Z AtO; + H‘Z)7

where V;,,04 is a modular vector field on (M,II) and ¢ is the R-coordinate.

The local model in 2. only depends on the Poisson cohomology class of Vi,0d|z,
up to Poisson diffeomorphisms in a neighborhood of Z. Combining 1. and 2.,
we obtain a normal form around L which depends on a class in H} (T Fp).
We compute this cohomology group in terms of data attached to L (Cof. 2.3.5):
1 x(L)]:L ~ 1 * . # * oy
H(F) X mompy = Hing,, (T FL) = (DL [X]) = | e (P7y) + X |
(TFL)
This way, the class [Viod|z] € H%HZ(Z) is encoded by ([v], [X]), where v is a
closed foliated one-form on L and X is a vector field on L that preserves F, and
is nowhere tangent to it. The conclusion is the following normal form theorem.
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Theorem 2A. The log-symplectic structure is isomorphic around L with
(U CT*Fr xR, (Hﬁan(p*v) 4 )?) A0, + Hwn>,

where U is a neighborhood of the zero section L. Here p : T*Fr, — L is the
projection and X denotes the cotangent lift of X to T*Fy,.

Algebraic aspects of the deformation problem

We use this normal form to study the Lagrangian deformations of L. We can
characterize them algebraically as follows (Thm. 2.4.3, Cor. 2.4.10).

Theorem 2B. Lagrangian deformations C'-close to L are exactly the graphs
of sections (a, f) of the vector bundle T*F;, x R — L satisfying the quadratic

equation
d]:LOé =0 (10)
dr, f+ f(y— £xa) =0,

where dr, denotes the foliated de Rham differential and v, X are as above.
Further, this equation is the Maurer-Cartan equation of a DGLA.

The DGLA in question is obtained by specializing an L.-algebra introduced in
greater generality by Cattaneo and Felder [CaFe| to our situation. It is supported
on the graded vector space I' (A® (T*Fp, x R)) =T (A®T*F & A*~'T*FL) and
its structure maps (d, [, -]) are defined by
d:T (A" (T*Fr x R)) = T (AFTH(T*Fp, x R))
(O{,ﬂ)*—)(*d]:LOé, 7d.7:Lﬂ77/\/8)7 (11)
[]:T(A*(T*Fr xR)) @ T (AY(T*Fr x R)) — T (A*FH(T*Fp, x R)) :
(a,8)® (0,¢) = (0, £xaNe— (=) £x5 A B).
Notice that in the second component of (11), an exotic differential appears:
dr, @ +y Ne :D(AFT*Fr) = D(AMIT* Fp),

obtained by twisting the foliated de Rham differential with the closed foliated
one-form 7. We denote its cohomology by H3 (FL), and we refer to it as the
foliated Morse-Novikov cohomology.
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Geometric aspects of the deformation problem

We use Theorem 2B above to study some geometric aspects of the deformation
problem. We restrict ourselves to Lagrangians L that are compact and connected,
which has consequences for the foliation Fy: either it is the foliation by fibers
of a fibration L — S, or all leaves are dense (see §2.6.3). By considering both
cases separately, we are able to obtain explicit results.

First, we look for conditions under which small deformations of the Lagrangian
necessarily stay inside the singular locus. We notice that if ~y is foliated exact (i.e.
if there is a modular vector field tangent to L), then one can always smoothly
deform the Lagrangian to one outside the singular locus (Prop. 2.5.2). At the
opposite end of the spectrum, we have (Cor. 2.5.5, Prop. 2.5.10):

Theorem 2C. Assume L is compact and connected.

i) Suppose Fi, is the fiber foliation of a fiber bundle p : L — S*. If for every
leaf B of F1, we have [y|p] # 0 € H*(B), then C'-small deformations of L
necessarily stay inside the singular locus.

ii) Suppose Fr, has dense leaves, and that H*(Fr) is finite dimensional. If
v € QL (FL) is not exact, then C*-small deformations of L necessarily stay
inside the singular locus.

To clarify the statement above, we remark that we identify Lagrangian
deformations with their corresponding sections of T*F; x R, and that the
space of sections I'(T* F, x R) carries natural C¥- and C*-topologies.

The results of Theorem 2C rely on a computation of the zeroth foliated Morse-
Novikov cohomology (Thm. 2.4.16). To see why, note that for a Lagrangian
deformation («, f) € T'(T*FL x R) of L, the function f indicates whether
Graph(a, f) escapes from the singular locus. The equations (10) show that
feH 27 £ya(FL), so we should require that this cohomology group is zero for
small enough o € QL (F1). The case with dense leaves in Theorem 2C is subtle;
we show that the finite dimensionality assumption on H'(F) is necessary,
exhibiting an example in which F, is the Kronecker foliation on the torus for
which the slope is a Liouville number A € R\ Q (Lemma 2.5.8 et seq.).

Second, we study obstructedness of first order deformations. A first order
deformation of L is a solution («, f) of the linearization of the equations (10),

ie.

d;La =0

d]:Lf + f’y =0
We call such (a, f) formally/smoothly unobstructed if it is tangent to a
formal/smooth path of Lagrangian deformations of L. We show that the
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deformation problem is formally (hence smoothly) obstructed in general, by
applying the classical Kuranishi criterium: we exhibit an example for which the
Kuranishi map

Kr: H'(FL) ® HY(FL) — H)(FL)

is not identically zero (Ex. 2.5.11). In general, the Kuranishi criterium is a
necessary — but not sufficient — condition for formal unobstructedness. In our
situation however, we obtain the following striking result (Prop. 2.5.18, Cor.
2.5.20, Rem. 2.5.14).

Theorem 2D. Let L be compact and connected. The following are equivalent:

o A first order deformation («, f) is smoothly unobstructed,

o Kr([(a, f)]) =0,
o £xa is foliated exact on L\ Zy,

o « extends to a closed one-form on L\ Zy.

Here Z; denotes the zero locus of f.

The second condition above is remarkable because K r([(a, f )]) is the obstruction
to constructing the quadratic term in a formal power series solution of (10)
prolonging (a, f). Somehow, its vanishing is enough to ensure the existence of a
smooth path of solutions to (10) that prolongs (c, f). The third condition above
is more useful for practical purposes because, while the Kuranishi map takes
values in the exotic cohomology group H, % (FL), this statement concerns ordinary
foliated cohomology. The last condition above seems interesting because it is
independent of the data (v, X) coming from the modular vector field.

At last, we address moduli spaces of deformations. From a geometric point of
view, it is natural to identify Lagrangian deformations of L if they are related
by a Hamiltonian isotopy. We show that this equivalence relation coincides
with the gauge equivalence of Maurer-Cartan elements of the DGLA mentioned
after Theorem 2B. As a consequence, the resulting moduli space M7 hag
formal tangent space at [L] given by

TyyMPe™ = HY (Fr) @ H(L). (12)

Usually this is an infinite dimensional vector space, whereas the formal tangent
space at classes [L] for L lying in M \ Z is finite dimensional for compact L.
Hence, the moduli space M*%™ is usually not smooth at [L]. Moreover, the
formal tangent space (12) is never zero, indicating that Hamiltonian equivalence
is too restrictive for rigidity purposes. That is why we also consider the more
flexible equivalence relation by Poisson isotopies. We compute the formal



INTRODUCTION 21

tangent space T[L]MPOiSS in Prop. 2.5.30, and we show that rigidity does occur
in this setting. In fact, if the Lagrangian L is compact with dense leaves, then
infinitesimal rigidity (i.e. vanishing of T} M%) implies rigidity with respect
to the C*°-topology (Prop. 2.5.34).

Chapter 3

Unlike Chapters 1 and 2, Chapter 3 is general Poisson geometric. We study
regular submanifolds of arbitrary Poisson manifolds, i.e. those submanifolds
X C (M,1I) for which TX*1 has constant rank. Our motivation again comes
from symplectic geometry. It is a well-known fact that, given a symplectic
manifold (M,w) and a submanifold X C M, the restriction w|x determines w
up to symplectomorphism on a neighborhood of X [W1]. Classical results by
Gotay [G] and Marle [Ma] refine this statement for coisotropic submanifolds
and, more generally, for constant rank submanifolds, respectively:

e A neighborhood of a coisotropic submanifold i : X — (M,w) is
characterized up to symplectomorphism by the pullback ¢*w.

e A neighborhood of a constant rank submanifold i : X — (M,w) is
characterized up to symplectomorphism by the pullback i*w and the
symplectic vector bundle (TX*/(TX* NTX),w).

By contrast, given a Poisson manifold (M,II) and a submanifold X C M,
one cannot expect a neighborhood of X to be determined up to Poisson
diffeomorphism by the restriction IT|x. Since II|x only contains information
“in the leafwise direction along X7, we are led to consider the saturation of
X, i.e. the union of the leaves intersecting X. The main problem is that the
saturation fails to be smooth for arbitrary submanifolds X. To remedy this, we
note that the saturation is traced out by Hamiltonian flows in directions normal
to X, hence it is natural to impose the following regularity condition on X.

Definition. We call an embedded submanifold X C (M,II) regular if the
map proIlf : T*M|x — TM|x/TX has constant rank.

It is equivalent to require that 7X 1 has constant rank, which is the definition
used earlier in this introduction. Extreme examples are transversals and Poisson
submanifolds of (M, II), and we show that any regular submanifold is obtained
by intersecting such submanifolds (Prop. 3.2.10). Note that if IT is symplectic,
then any submanifold of (M,II) is regular. Our main result about regular
submanifolds is the fact that their local saturation is smooth (Thm. 3.2.6).

Theorem 3A. If X C (M,II) is a regular submanifold, then there exists
a neighborhood V' of X such that the saturation of X inside (V,II|y) is an
embedded Poisson submanifold.
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We refer to this Poisson submanifold as the local Poisson saturation of X.
We proceed by constructing a normal form for the local Poisson saturation. The
local model lives on the vector bundle (7X+1)* and it depends on two choices:

1. A choice of complement W to X1 inside TM|x. Such a choice yields
an inclusion j : (TX1m)* < T*M|x.

2. A choice of closed two-form 7 on a neighborhood of X in (TX*1)*, with
prescribed restriction n|x = —o — 7 along the zero section X C (TX+m)*,
Here o € D(A?TX 1) and 7 € T'(T* X ® TX 1) are bilinear forms defined
as follows, for £1,& € (TIXLH)* and vy,vp € T, X:

o(&,&) =1(j(¢1),5(&)).
7((v1,&1), (v2,&2)) = (v1,5(&2)) — (v2,5(&1))-

To such a complement W and closed extension 7, we associate a Dirac structure
on the total space of pr : (T X+1)* — X defined by pulling back IT and gauge
transforming with #:

(pr*(i* L))"

This Dirac structure is in fact Poisson on a neighborhood U of X (Prop. 3.3.1),
we denote it by (U,II(W,n)). This Poisson structure is the local model for the
local Poisson saturation of X (Prop. 3.3.2 and Thm. 3.4.2).

Theorem 3B. Let X C (M,II) be a regular submanifold. A neighborhood of
X in its local Poisson saturation is Poisson diffeomorphic with the local model
(U.II(W, n)).

The proof of Theorem 3B relies on the theory of dual pairs in Dirac geometry,
as developed in [FM2]. We make two observations concerning this theorem.
First, it shows that the local Poisson saturation of a regular submanifold X
is determined around X by the restriction IT| x. In particular, if the Poisson
structure II is symplectic, then Theorem 3B recovers the aforementioned result in
symplectic geometry stating that a neighborhood of any submanifold X C (M, w)
is determined by the restriction w|x [W1]. Second, since X is a transversal
in its local Poisson saturation, the normal form around Dirac transversals
[BLM],[FM2] shows that the local Poisson saturation is determined around
X by the pullback Dirac structure, up to diffeomorphisms and exact gauge
transformations. Our Theorem 3B is consistent with this fact.

For special classes of regular submanifolds X C (M, II), good choices for W,
make the normal form more explicit. This way, we obtain the following.

o We recover the normal form around Poisson transversals [FM1],[BLM].
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¢ We obtain a Poisson version of Gotay’s theorem, showing that the local
Poisson saturation of a regular coisotropic submanifold ¢ : X < (M, 1) is
determined around X by the pullback Dirac structure ¢* Ly (Cor. 3.5.2).

¢ We obtain a Poisson version of Marle’s constant rank theorem, showing
that the local Poisson saturation of a regular pre-Poisson submanifold
i:X < (M,II) is determined around X by the pullback Dirac structure
i* L1 and the restriction of IT to (TX+1)*/(TX11 NTX)* (Cor. 3.5.4).

The Poisson version of Gotay’s theorem stated above relates Chapter 3 with
Chapters 1 and 2. First, recall that Theorem 1A is a b-geometric version of
Gotay’s theorem, which gives a normal form around b-coisotropic submanifolds
of log-symplectic manifolds. Such submanifolds are regular exactly when they
are strong b-coisotropic, in which case also the second bullet point above gives
a normal form around them. We show that these normal forms are consistent
(see §3.8.2). Second, a Lagrangian submanifold L transverse to the leaves of any
Poisson manifold (M, II) is regular, and the normal form around them that we
used in Chapter 2 (Prop. 2.2.9) is a straightforward consequence of the second
bullet point above (see again §3.8.2).

We apply our Poisson version of Gotay’s theorem to the coisotropic embedding
problem of Dirac manifolds (M, L) into Poisson manifolds (N, II). The exact
conditions for the existence of such an embedding are known [CZ]; a uniqueness
result concerning these embeddings was conjectured in [CZ] but only proved
under additional regularity assumptions on (M, L). We show that this conjecture
follows from our Poisson version of Gotay’s theorem (Prop. 3.6.1), which settles
the uniqueness in full generality.

At last, we define a notion of regular submanifold in Dirac geometry. We
prove a Dirac version of Theorem 3A, showing that the saturation of a
regular submanifold inside an open neighborhood is an embedded invariant
submanifold (Thm. 3.7.5). We refer to this invariant submanifold as the local
Dirac saturation of X. We give a normal form for it, which shows that its
induced Dirac structure is determined around X by the pullback *L, up to
diffeomorphisms and exact gauge transformations (Cor. 3.7.7), a result which
also follows from the normal form around Dirac transversals [BLM], [FM2].
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Chapter 1

Coisotropic submanifolds in
b-symplectic geometry

This chapter contains a joint paper with Marco Zambon, titled “Coisotropic sub-
manifolds in b-symplectic geometry”. The paper is available on arXiv:1907.09251,
and will appear in the Canadian Journal of Mathematics.

Abstract - We study coisotropic submanifolds of b-symplectic manifolds. We
prove that b-coisotropic submanifolds (those transverse to the degeneracy locus)
determine the b-symplectic structure in a neighborhood, and provide a normal
form theorem. This extends Gotay’s theorem in symplectic geometry. Further,
we introduce strong b-coisotropic submanifolds and show that their coisotropic
quotient, which locally is always smooth, inherits a reduced b-symplectic
structure.

27
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1.1 Introduction

In symplectic geometry, an important and interesting class of submanifolds
are the coisotropic ones. They are the submanifolds C satisfying TC® ¢ TC,
where T'C** denotes the symplectic orthogonal of the tangent bundle TC. They
arise for instance as zero level sets of moment maps, and in mechanics as those
submanifolds that are given by first class constraints (see Dirac’s theory of
constraints). The notion of coisotropic submanifolds extends to the wider realm
of Poisson geometry, and it plays an important role there too: for instance, a
map is a Poisson morphism if and only if its graph is coisotropic, and coisotropic
submanifolds admit canonical quotients which inherit a Poisson structure.

The Poisson structures which are non-degenerate at every point are exactly the
symplectic ones. Relaxing slightly the non-degeneracy condition, one obtains
Poisson structures (M, II) for which the top power A™I is transverse to the
zero section of the line bundle A2"TM (here dim(M) = 2n): they are called
log-symplectic structures. They are symplectic outside the vanishing set of
A1, a hypersurface which inherits a codimension-one symplectic foliation. Log-
symplectic structures are studied systematically by Guillemin-Miranda-Pires
in [GMP], and turn out to be equivalent to b-symplectic structures. The latter
are defined on manifolds M with a choice of codimension-one submanifold Z,
as follows: they are non-degenerate sections w of A2(°T'M)* which are closed
w.r.t. the de Rham differential, where *T'M is the b-tangent bundle (a Lie
algebroid over M which encodes Z). In other words, they are the analogue of
symplectic forms if one replaces the tangent bundle with the b-tangent bundle.
Because of this, various phenomena in symplectic geometry have counterparts
for log-symplectic manifolds.

This chapter is devoted to coisotropic submanifolds of log-symplectic manifolds.
We single out two classes, which we call b-coisotropic and strong b-coisotropic.
We prove that certain properties of coisotropic submanifolds in symplectic
geometry — properties which certainly do not carry over to arbitrary coisotropic
submanifolds of log-symplectic manifolds — do carry over to the above classes.
Moreover, we show that these classes of submanifolds enjoy some properties
that are b-geometric enhancements of well-known facts about coisotropic
submanifolds in Poisson geometry. We now elaborate on this.

Main results. Let (M, Z,w) be a b-symplectic manifold, and denote by II the
corresponding Poisson tensor on M. We consider two classes of submanifolds
which are coisotropic (in the sense of Poisson geometry) with respect to II.

A submanifold of M is called b-coisotropic if it is coisotropic and a b-submanifold
(i.e. transverse to Z). An equivalent characterization is the following: a b-
submanifold C such that (*7'C)* c *T'C. The latter formulation makes apparent
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that this notion is very natural in b-symplectic geometry. Section 1.3 is devoted
to the class of b-coisotropic submanifolds. We show that the b-conormal bundle of
a b-coisotropic submanifold is a Lie subalgebroid. We also show that for Poisson
maps between log-symplectic manifolds compatible with the corresponding
hypersurfaces, the graphs are b-coisotropic submanifolds, once “lifted” to a
suitable blow-up [GL]. Both of these statements are b-geometric analogs of
well-known facts about coisotropic submanifolds in Poisson geometry. Next,
in Theorem 1.3.13 we show that Gotay’s theorem in symplectic geometry [G]
extends to b-coisotropic submanifolds in b-symplectic geometry. The main
consequence is a normal form theorem for the b-symplectic structure around
such submanifolds:

Theorem 1A. A neighborhood of a b-coisotropic submanifold C <y (M, Z,w)
1s b-symplectomorphic to the following model:

(a neighborhood of the zero section in E*, Q),

where E := ker(Yi*w) denotes the kernel of the pullback of w to C, and € is a
b-symplectic form which is constructed out of the pullback *i*w and is canonical
up to neighborhood equivalence (see equation (1.15) for the precise formula).

Such a normal form can be used to study effectively the deformation theory of C'
as a coisotropic submanifold. We point out that in the special case of Lagrangian
submanifolds, the above result is a version of Weinstein’s tubular neighborhood
theorem, and was already obtained by Kirchhoff-Lukat [Ki, Theorem 5.18].

In Section 1.4 we consider the following subclass of the b-coisotropic submanifolds.
A submanifold C is called strong b-coisotropic if it is coisotropic and transverse
to all the symplectic leaves of (M,II) it meets. We remark that Lagrangian
submanifolds intersecting the degeneracy locus Z never satisfy this definition.
The main feature of strong b-coisotropic submanifolds is that the characteristic
distribution

D :=T1I* (TC"),

is regular, with rank equal to codim(C). Recall the following fact in Poisson
geometry: when the quotient of a coisotropic submanifold by its characteristic
distribution is a smooth manifold, then it inherits a Poisson structure, called
the reduced Poisson structure. We show (see Proposition 1.4.6 for the full
statement):

Proposition 1B. Let C be a strong b-coisotropic submanifold of a b-symplectic
manifold. If the quotient C'/D by the characteristic distribution is smooth, then
the reduced Poisson structure is again b-symplectic.

Instances of the above result arise when a connected Lie group acts on a b-
symplectic manifold with equivariant moment map, in the sense of Poisson



30 COISOTROPIC SUBMANIFOLDS IN B-SYMPLECTIC GEOMETRY

geometry, and C is the zero level set of the latter, see Corollary 1.4.10. At
the end of the chapter we provide examples of b-symplectic quotients, and —
by reversing the procedure — in Corollary 1.4.16 we realize any b-symplectic
structure on the 2-dimensional sphere as such a quotient.

In order to state and prove these results, in Section 1.2 we collect some facts
about b-geometry. A few of them are new, to the best of our knowledge, and are
of independent interest. More specifically, in Lemma 1.2.10 we show that, while
the anchor map of the b-tangent bundle does not admit a canonical splitting,
distributions tangent to Z do have a canonical lift to the b-tangent bundle. In
Proposition 1.2.19 we provide a version of the b-Moser theorem relative to a
b-submanifold, which we could not find elsewhere in the literature.

1.2 Background on b-geometry

In this section, we address the formalism of b-geometry, which originated from
work of Melrose [Me] in the context of manifolds with boundary. We review
some of the main concepts, including b-symplectic structures, and we prove
some preliminary results that will be used in the body of this chapter.

1.2.1 b-manifolds and b-maps

We first introduce the objects and morphisms of the b-category, following [GMP)].

Definition 1.2.1. A b-manifold is a pair (M, Z) consisting of a manifold M
and a codimension-one submanifold Z C M.

Given a b-manifold (M, Z), we denote by *X(M) the set of vector fields on M
that are tangent to Z. Note that ®X(M) is a locally free C°°(M )-module, with

generators
xlam s c’)m, ey a:r"

in a coordinate chart (x1,...,z,) adapted to Z = {x; = 0}. Thanks to the
Serre-Swan theorem, these b-vector fields give rise to a vector bundle *TM.

Definition 1.2.2. Let (M, Z) be a b-manifold. The b-tangent bundle *TM is
the vector bundle over M satisfying I' ("TM) = X(M).

The inclusion *X(M) C X(M) induces a vector bundle map p : *TM — TM,
which is an isomorphism away from Z. Restricting to Z, we get a bundle
epimorphism p|z : *TM|z; — TZ, which gives rise to a trivial line bundle
L :=Ker (p|z). Indeed, L is canonically trivialized by the normal b-vector field
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¢ € T'(L), which is locally given by z0,, where x is any local defining function
for Z. So at any point p € Z, we have a short exact sequence

0—L,="T,M5% 1,720, (1.1)

but this sequence does not split canonically. Since *X(M) is a Lie subalgebra
of X(M), it inherits a natural Lie bracket [-,-]. The data (p,[-,-]) endow *TM
with a Lie algebroid structure. The map p is called the anchor of *T'M.

Definition 1.2.3. Let (M, Z) be a b-manifold. The b-cotangent bundle *T* M
is the dual bundle of *T M.

In coordinates (z1,...,x,) adapted to Z = {x; = 0}, the b-cotangent bundle
bT* M has local frame

%, dJUg, ce ,dxn.

x1
We will denote the set T’ (/\k (bT*M)) of Lie algebroid k-forms by ®Q* (M), and
we refer to them as b-k-forms. The space *Q*(M) is endowed with the Lie
algebroid differential ®d, which is determined by the fact that the restriction
(*QF(M),bd) — (Q(M \ Z),d) is a chain map. Note that the anchor p induces
an injective map p* : QF(M) — *QF(M), which allows us to view honest de
Rham forms as b-forms.

Definition 1.2.4. Given two b-manifolds (M;,Z;) and (Ms, Z3), a b-map
f i (M1,Z1) — (Ms,Z5) is a smooth map f : M; — My such that f is
transverse to Zo and f~1(Zy) = Z;.

Given a b-map f : (M, Z1) — (Ma, Z3), the pullback f* : Q*(Msy) — Q°*(M)
extends to an algebra morphism *f* : *Q® (M) — *Q®(M;), see [KI, Proof of
Proposition 3.5.2]. That is, we have a commutative diagram

b (M) — L Qe (M)

pST pﬁ

(M) —L 5 Qo(hry)

This b-pullback has the expected properties: the assignment f ~— °f* is
functorial, and the b-pullback ® f* commutes with the b-differential ®d.
We can now define the Lie derivative of a b-form w € *QF(M) in the direction

of a b-vector field X € *X(M) by the usual formula

£xw= — bprw,
dt|,_,
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where the b-pullback is well-defined since the flow {p;} of X consists of b-
diffeomorphisms. Cartan’s formula is still valid:

£xw="dixw+ txdw.

Dual to the b-pullback °f*, a b-map f : (My,Z1) — (My, Z5) induces a b-
derivative bf* s YT My — YT Ms, which is the unique bundle map *TM; — T M,
that makes the following diagram commute [Kl, Proposition 3.5.2]:

b
bTM, —1 5 T

Jpl JM . (1.2)

™, — I T

At each point p € My, the derivative ( f*)p and the b-derivative (b f*)p have the
same rank, by the next result proved in [CK].

Lemma 1.2.5. Let f : (M1,Z1) — (Ma, Z3) be a b-map. The anchor p1 of
YT M, induces an isomorphism (,01)p : Ker (bf*)p — Ker(f*)p for all p e M.

We finish this subsection by observing that, if a b-vector field can be pushed
forward by the derivative f, of a b-map f, then its lift to a section of the
b-tangent bundle can be pushed forward by the b-derivative °f,.

Lemma 1.2.6. Let f : (My,Z,) — (M, Z3) be a surjective b-map, and assume
that Y € T'(*TMy) is such that Y :=p,(Y) pushes forward to some element
W € X(Ms). Then b f.(Y) is a well-defined section of *T My, and it equals the
unique element W € T' ("TMy) satisfying po(W) = W.

Proof. Since f is a b-map, we have that W € X(Ms) is tangent to Z3, so
indeed W = po(W) for unique W € I'(*T My). Now, first consider p € M \ Z;.
Commutativity of the diagram (1.2) implies that

p2 (1), (V) = (1), (1 (V) = (£2), (%) = Wiy,

But we also have pa (W ¢()) = W), so that injectivity of ps at f(p) € M\ Z2
implies (bf*)p (Yp) = Wy Next, we choose p € Zy. Since f is a b-map,
we can take a (one-dimensional) slice S through p transverse to Z1, such that
the restriction f|q: S — f(S) is a diffeomorphism. Since (bf*) |S is a vector
st s (Yls)
is well-defined and smooth. Moreover, it is equal to W|sgy on the dense
subset f(S) \ (f(S) N Z2) C f(S), as we just proved. By continuity, the
equality (bf*) s (7‘5) = W|f(s) holds on all of f(S), so that in particular
(bf*) (?p) = Wf(p). This concludes the proof. O

bundle map covering the diffeomorphism f|g, the expression (b f*)

P
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1.2.2 b-submanifolds

Given a b-manifold (M, Z), a submanifold C' C M transverse to Z inherits a
b-manifold structure with distinguished hypersurface C'N Z. Such submanifolds
are therefore the natural subobjects in the b-category.

Definition 1.2.7. A b-submanifold C of a b-manifold (M, Z) is a submanifold
C C M that is transverse to Z.

Let C C (M, Z) be a b-submanifold. The inclusion i : (C,C N Z) — (M, Z)
of b-manifolds induces a canonical map %i, : *TC — YT'M that is injective by
Lemma 1.2.5. This allows us to view *T'C as a Lie subalgebroid of °*TM. In
particular, we have the following fact.

Lemma 1.2.8. If C C (M, Z) is a b-submanifold, then L, C *T,C for all
p € CNZ. HereL denotes the line bundle introduced in (1.1).

Proof. We denote the anchor maps by p : bTC — TC and p: °TM — TM, and
we put L := Ker (p|cnz) and L = Ker (p|z) as before. If i : (C,CNZ) — (M, Z)
denotes the inclusion, then we get a commutative diagram with exact rows, for
pointspe C'N Z:

0 L, T, M £ 7,2 ——— 0
(m*)J ((i|cmz)*)lw
B ) . (1.3)
0 L, .0 —E— T,(CNZ) —— 0

We obtain (%) (]It,p) = L,: the inclusion “C” holds by the above diagram, and
the equality follows by dimension reasons since (bi*)p is injective. In particular,

L, is contained in the image of (bi*)p, as we wanted to show. O

The notions of b-map and b-submanifold are compatible, as we now show.

Lemma 1.2.9. Let f: (M, Z1) — (Ma, Z3) be a b-map, and assume that we
have b-submanifolds Cy C (M1, Z1) and Cy C (Ma, Z3) such that f(C1) C Cs.

a) Restricting [ gives a b-map

f|C1 : (Cl,C1 N Zl) — (CQ,CQ N Zg).

b) Further, (bf*)’chl = b(f|C'1)*'
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Proof. a) We first note that

(fle,)  (CanZa) =Cin f7H (CaNZy) =Cin 1 (Co) N 1 (Z)
=01 NfHC)NZ =01 N7,

since f is a b-map and C; C f~1 (Cy). Next, choosing p € C; N Z;, we have
to show that

(f)p (TpCh) + Ty (C2 N Z2) = Ty () Coa. (1.4)

We clearly have the inclusion “C”. For the reverse, we choose v € Tt () Ca.
By transversality f M Zs, we know that (f*)p (TpyMy) + Ty Z2 = Ty Ma.
So we have v = (f), (z) +y for some x € T,M; and y € Ty(,)Z>. Next,
since Cy h Zy, we have T,Cy + T, Zy = T, M; so that z = z1 + x2 for some
z1 € T,C1 and z2 € T, Z;. So we have

v = (), (o) + (), (22) +9] (15)

The term in square brackets clearly lies in T, Z2, and being equal to
v = (fi), (z1) it also lies in T,y Ca. So it lies in Ty, (C2 N Z2), using the
transversality Cy h Z5. So the decomposition (1.5) is as required in (1.4).

Denoting by 11 : (Cl, 4 ﬂZl) — (Ml, Zl) and i : (027 Cy ﬁZQ) — (Mg, ZQ)
the inclusions, we have f oi; =iz o f|c,. Hence by functoriality, we obtain
that ®f, 0 ®(i1). = ®(i2)« o ® (f|c,),, which implies the claim. O

1.2.3 Distributions on b-manifolds

We saw that the short exact sequence (1.1) does not split canonically. However,
its restriction to suitable distributions does split.

Lemma 1.2.10. Let (M, Z) be a b-manifold with anchor map p : *TM — T M.

a)
b)

Given a distribution D on M that is tangent to Z, there exists a canonical
splitting o: D — YT'M of the anchor p.

Let D denote the set of distributions on M tangent to Z, and let S consist of
the subbundles of *TM intersecting trivially ker(p). Then there is a bijection

D—S:Dwo(D),

where the splitting o is as in a). The inverse map reads D' — p(D').
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Proof. a) One checks that the inclusion I'(D) C I' (*T'M) induces a well-defined
vector bundle map
0':D—>bTM:U}—)Xp,

where X € I'(D) is any extension of v € D,,. This map o satisfies po o =1Idp,
so in particular p(o(D)) = D.

b) We only have to show that if D’ is a subbundle of ®T'M intersecting trivially
ker(p), then o(p(D’)) = D'. Denote D := p(D’), a distribution on M tangent
to Z. The canonical splitting o: D — ?T'M is injective, and D and D’ have the
same rank, hence it suffices to show that (D) C D’. If X is a section of D,
then X = p(Y) for unique Y € T'(D’). We get

plo(X)) = X = p(Y),
and since the anchor p is injective on sections, this implies that o(X) =Y. O

Corollary 1.2.11. Let f: (My,Z1) — (M, Z3) be a b-map of constant rank.
Notice that Ker(f.) is a distribution on M, that is tangent to Zy. It satisfies

o (Ker(f.)) = Ker (bf*) ,
where o : Ker(f.) — *TM, denotes the canonical splitting of the anchor p;.

Proof. Under the bijection of Lemma 1.2.10 b), Ker(f.) corresponds to
Ker (°f.), as a consequence of Lemma 1.2.5. O

1.2.4 Vector bundles in the b-category

If (M, Z) is a b-manifold and 7 : E — M is a vector bundle, then (F, E|z) is
naturally a b-manifold and the projection 7 : (E, E|z) — (M, Z) is a b-map.
Along the zero section M C E, the b-tangent bundle *TE splits canonically.

Lemma 1.2.12. Let (M, Z) be a b-manifold and 7 : E — M a vector bundle.
Then at points p € M we have a canonical decomposition

"T,E=T,M @ E,.

Proof. Denote by VE := Ker(m,) the vertical bundle. By Corollary 1.2.11 there
is a canonical lift o : VE — TE such that o(VE) = Ker(*w.). So we get a
short exact sequence of vector bundles over

0— VESPTE "™ 7 (*TM) — 0. (1.6)

Here
™ (*TM) = {(e,v) € Ex "TM : w(e) = pr(v)}
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is the pullback of the vector bundle pr : *TM — M by =, and the surjective
vector bundle map

br,  PTE = n° ("TM), (e,0) = (e, (*m), (v))
is induced by the b-map 7 : (E, E|z) — (M, Z).

Restricting (1.6) to the zero section M C F gives a short exact sequence of
vector bundles over M:

b
0— E<='TE|yy T='TM —o.

This sequence splits canonically through the map %i, : *T'M — *TE|); induced
by the inclusion i : (M, Z) < (E, E|z). O

The next result makes use of the decomposition introduced in Lemma 1.2.12.

Lemma 1.2.13. a) Let 7 : (E,E|z) — (M,Z) be a vector bundle over the
b-manifold (M, Z). Denote by p and p the anchor maps of *TM and *TE
respectively. Under the decomposition of Lemma 1.2.12, we have that the
map

Plar : 'TE|y 2 TM & FE — TE|y 2TM & E

equals p ® ldg.

b) Let ¢ be a morphism of vector bundles over b-manifolds covering a b-map f:

(E1,Erlz,) —=— (B, Bs|z,)

Jﬂl | Jw . (1.7)

(Ml,Zl) % (M2722)

Then ¢ is a b-map, and its b-derivative along the zero section
Yoular: PTE v 2 PTMy @ By — "TEy| v 2 °TM, @ By

is equal to P f, @ .

Proof. a) Since M is a b-submanifold of (E, E|z), we have that *TM is a Lie
subalgebroid of T E. In particular, p and p agree on *T'M. Next, we know
that p takes £ C ?TE|y; isomorphically to E C TE|y, thanks to Lemma
1.2.5 applied to m. To see that p|g = Idg, we choose v € E, and extend it
to V€ I(VE). Denote by o : VE — *TE the canonical splitting of 5, as in
the proof of Lemma 1.2.12. Then p(v) = [p(a(V))], =V}, = v.



BACKGROUND ON B-GEOMETRY 37

b) It is routine to check that ¢ is a b-map, so we only prove the second statement.
Taking the b-derivative of both sides of the equality mo 0 ¢ = fom at a
point p € My, we know that (bﬂ'g)* (bap*(El)p) ="tf, ((bm)* (El)p) =0,
since (£7), = Ker [(bm)*]p. Hence %¢.(FE1), C Ker [(bm)*]f(p) = (E2) ()
by the proof of Lemma 1.2.12. Using a) and the diagram (1.2), we have a
commutative diagram

b
"TyEr = "T, M1 @ (Br), —— "Tjp) B2 2 Ty Mz © (B2) 4y

J(pl@ld) J(m@ld)
. (1.8)
T,By = T,M; & (B)y —— Ty Bz = Ty Ma @ (E2) 4,

It implies that
b _ _
el = i, = Pl
Finally, ®@.|s7as, = °f« holds by Lemma 1.2.9 b). O

1.2.5 Log-symplectic and b-symplectic structures

The b-geometry formalism can be used to describe a certain class of Poisson
structures, called log-symplectic structures. These can indeed be regarded as
symplectic structures on the b-tangent bundle.

Definition 1.2.14. i) A Poisson structure on a manifold M is a bivector field
II € I' (A*T'M) such that the bracket {f, g} = II(df, dg) is a Lie bracket on
C>(M). Equivalently, the bivector field II must satisty [II,II] = 0, where
[-,] is the Schouten-Nijenhuis bracket of multivector fields.

ii) A smooth map f: (My,I1;) — (Mas,Il5) is a Poisson map if the pullback
f* i (C®(Ma), {+,-}2) = (C°°(My),{,-}1) is a Lie algebra homomorphism.

The bivector I induces a bundle map IIf : T*M — TM by
(I (), B) = (e, B) Vo, B € Ty M,

and the rank of II at p € M is defined as the rank of the linear map Hf). Poisson
structures of full rank correspond with symplectic structures via w <+ —I171.

For every f € C*°(M), the operator {f,-} is a derivation of C*°(M). The
corresponding vector field Xy = 1% (df) is the Hamiltonian vector field of f.
Any Poisson manifold (M,II) comes with a (singular) distribution Im (Hu),
generated by the Hamiltonian vector fields. This distribution is integrable (in
the sense of Stefan-Sussman) and each leaf O of the associated foliation has an
induced symplectic structure wp = — (H|o)_1.
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Definition 1.2.15. A Poisson structure II on a manifold M?" is called log-
symplectic if A1 is transverse to the zero section of the line bundle A2"T M.

Note that a log-symplectic structure II is of full rank everywhere, except at
points lying in the set Z := (/\"H)*1 (0), called the singular locus of II. If Z is
nonempty, then it is a smooth hypersurface by the transversality condition, and
we call II bona fide log-symplectic. In that case, Z is a Poisson submanifold of
(M, 1II) with an induced Poisson structure that is regular of corank-one. If Z is
empty, then II defines a symplectic structure on M.

Since log-symplectic structures come with a specified hypersurface, it seems
plausible that they have a b-geometric interpretation. As it turns out, log-
symplectic structures are exactly the symplectic structures of the b-category.

Definition 1.2.16. A b-symplectic form on a b-manifold (M?3", Z) is a d-closed
and non-degenerate b-two-form w € *Q?(M).

Here non-degeneracy means that the map w’ : *TM — °T* M is an isomorphism,
or equivalently that A"w is a nowhere vanishing element of *Q%"(M).

Ezample 1.2.17. [GMP, Example 9] In analogy with the symplectic case, the
b-cotangent bundle *T* M of a b-manifold (M, Z) is b-symplectic in a canonical
way. Note that (*7*M, ®T*M| ) is naturally a b-manifold, and that the bundle
projection 7 : (*T* M, bT*M|Z) — (M, Z) is a b-map. The tautological b-one-
form 6 € *Q! (*T*M) is defined by

be(v) = (€ ('m.) (v))

where £ € bT:(g)M and v € ng (bT*M). Its differential —?df is a b-symplectic

form on ?T*M. To see this, choose coordinates (1, ...,z,) on M adapted to
Z ={z; =0}, and let (y1,...,y,) denote the fiber coordinates on *7*M with
respect to the local frame dzill, dzxs, ..., dxn}. The tautological b-one form is

then given by
dxl L
0= yl? + Zyidxia
L=

with exterior derivative

dzx -

b 1

—df = — N d dr; N\ dy;.
o y1+E T Y

=2

A log-symplectic structure on M with singular locus Z is nothing else but a
b-symplectic structure on the b-manifold (M, Z), see [GMP, Proposition 20].
Indeed, if we are given a b-symplectic form w on (M, Z), then its negative inverse
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bITE = — (wb)71 0T M — YT M defines a b-bivector field °II € T’ (/\2 (bTM)),
and applying the anchor map p yields a bivector field II := p (bH) el (/\QTM )
that is log-symplectic with singular locus Z. Conversely, a log-symplectic
structure IT on M with singular locus Z lifts uniquely under p to a non-
degenerate b-bivector field °II, whose negative inverse is a b-symplectic form on
(M, Z). These processes are summarized in the following diagram:

b

T S M

T »

M —T T

We will switch between the b-symplectic and the log-symplectic (i.e. Poisson)
viewpoint, depending on which one is the most convenient.

1.2.6 A relative b-Moser theorem

We’ll need a relative Moser theorem in the b-symplectic setting. First, we prove
a b-geometric version of the relative Poincaré lemma [C, Proposition 6.8].

Lemma 1.2.18. Let (M, Z) be a b-manifold such that Z C M is closed, and let
C C (M, Z) be a b-submanifold. Denote byi : (C,CNZ) — (M, Z) the inclusion.
If B € *QF (M) is bd-closed and %i*3 = 0, then there exist a neighborhood U of
C and n € *Q*=Y(U) such that

bdnzﬁ\U
nlc =0

Proof. We adapt the proof of [C, Proposition 6.8]. We first choose a suitable
tubular neighborhood of C' that is compatible with the hypersurface Z. Due to
transversality C' i Z, we can pick a complement V' to TC' in T M| such that
V, C T, Z for all p € CNZ. Fix a Riemannian metric g for which Z C (M, g) is
totally geodesic (e.g. [Mi, Lemma 6.8]). The associated exponential map then
establishes a b-diffeomorphism between a neighborhood of C' in (V, V|cnz) and
a neighborhood of C in (M, Z).

So we may work instead on the total space of 7 : (V,V]cnz) = (C,C N Z).
Define a retraction of V onto C by r : V x [0,1] = V : (p,v,t) — (p,tv), and
notice that the r; are b-maps. The associated time-dependent vector field X,
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is given by Xy(p,v) = %v, which is a b-vector field that vanishes along C. Tt
follows that we get a well-defined b-de Rham homotopy operator

I:°08(V) =21 (V) taw [ brf(ux,)dt,

0
which satisfies
brra —bria = dI(a) + I(*da). (1.10)
Since 71 = Id and 7y = o, the formula (1.10) implies that 8 = ®dI(f3). Setting
1 := I(B) finishes the proof of the lemma. O

Proposition 1.2.19 (Relative b-Moser theorem). Let (M, Z) be a b-manifold
with Z C M closed, and let C C (M, Z) be a b-submanifold. If wy and wy are b-
symplectic forms on (M, Z) with wo|c = wi|c, then there is a b-diffeomorphism
@ between neighborhoods of C such that |c = Id and *p*w; = wy.

Proof. Consider the convex combination w; := wy + (w1 — wy) for ¢ € [0, 1].
There exists a neighborhood U of C such that w; is non-degenerate on U for all
t € [0,1]. Shrinking U if necessary, Lemma 1.2.18 yields n € *Q*(U) such that
w1 —wp = %dn and n|c = 0. As in the usual Moser trick, it now suffices to solve
the equation

tx,wr+n=20

for X; € *X(U), which is possible by non-degeneracy of w;. The b-vector fields
X thus obtained vanish along C since 7|c = 0. Further shrinking U if necessary,
we can integrate the X; to an isotopy {@:}ic[o,1) defined on U. Note that the
¢; are b-diffeomorphisms that restrict to the identity on C. By the usual Moser
argument, we have ’¢;*w; = wy, so setting ¢ := ¢; finishes the proof. O

Remark 1.2.20. We learnt from Ralph Klaasse that the work in progress [KL]
contains a version of Proposition 1.2.19 that holds in the more general setting
of symplectic Lie algebroids.

1.3 b-coisotropic submanifolds and the b-Gotay
theorem

This section is devoted to coisotropic submanifolds of b-symplectic manifolds
that are transverse to the degeneracy hypersurface. The main result is Theorem
1.3.13, a b-symplectic version of Gotay’s theorem, which implies a normal form
statement around such submanifolds. This can be used, for instance, to study
the deformation theory of b-coisotropic submanifolds.
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1.3.1 b-coisotropic submanifolds

In this subsection we introduce b-coisotropic submanifolds and we discuss some
of their main features. First recall the definition of a coisotropic submanifold in
Poisson geometry.

Definition 1.3.1. Let (M, II) be a Poisson manifold with associated Poisson
bracket {-,-}. A submanifold C' C M is coisotropic if the following equivalent
conditions hold:

a) II* (TC°) C TC, where TC® C T*M]|c denotes the annihilator of TC.

b) {Z¢,Zc} C Ze, where Zo := {f € C°(M) : f|c = 0} denotes the vanishing
ideal of C.

c) T,C N T,0 is a coisotropic subspace of the symplectic vector space
(TPO, — (H|O);1 ) for all p € C, where O is the symplectic leaf through p.

The singular distribution IT# (TCO) on C appearing above is called the
characteristic distribution. In case Il = —w ™! is symplectic, the coisotropicity
condition becomes TC¥ C TC.

Definition 1.3.2. Let (M, Z,w) be a b-symplectic manifold, with corresponding
Poisson bivector field II. A submanifold C' of M is called b-coisotropic if it is
coisotropic with respect to II and a b-submanifold (i.e. transverse to Z).

Remark 1.3.3. A b-coisotropic submanifold C" C (M?",Z,1I) of middle
dimension is necessarily Lagrangian, i.e. 17,C'NT,0 is a Lagrangian subspace of
the symplectic vector space (TPO, — (H\@);l ) for all p € C, where O denotes
the symplectic leaf through p. Indeed, at points away from Z there is nothing
to prove. At points p € C'N Z, we have

dim (T,CNT,0) <dim (T,CNT,Z) =n—1,

where the last equality follows from transversality C' h Z. On the other hand,
T,C NT,0 is at least (n — 1)-dimensional, being a coisotropic subspace of the
(2n — 2)-dimensional symplectic vector space T,,O. So dim(7,C NT,0) =n —1,
which proves the claim.

Definition 1.3.2 can be rephrased in terms of the b-symplectic form w: a b-
coisotropic submanifold is precisely a b-submanifold C' such that (*T'C)~ c *TC.

Proposition 1.3.4. Let C be a b-submanifold of a b-symplectic manifold
(M, Z,w). Then C is coisotropic if and only if (*TC)* C *TC.

Notice that the latter condition states that *T'C' is a coisotropic subbundle of
the symplectic vector bundle (*TM|c,w|c).
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Proof. If C'is coisotropic, then at points of CN (M \ Z) we have that TC* C TC,
ie. (*TC)? c *TC. By continuity, this inclusion of subbundles holds at all
points of C. Conversely, if this inclusion holds on C, it follows that C'N (M \ Z)
is coisotropic in M \ Z, and using characterization b) in Definition 1.3.1 we see
that C is coisotropic in M. O

We give an alternative description of the characteristic distribution of a b-
coisotropic submanifold.

Lemma 1.3.5. Let C be any b-submanifold of a b-symplectic manifold (M, Z, )
and let p : *TM — TM denote the anchor of °T M, so that II = p( 1)
the Poisson bivector corresponding with w. Then

p(('TC)”) =1 (TC). (1.11)

Proof. At points p € C'\ (C'N Z), the equality (1.11) holds by symplectic linear
algebra. So let p € C'N Z. Denote by Il := —w= !l €T (/\2 (bTM)) the lift of
IT as a b-bivector field. Note that

(1,00 = () ((1,0)) =" ((1,0)"). (12)
where the annihilator is taken in °T » M. We now assert:
Claim: (prC)O = pp (T,C°) -
To prove the claim, we first note that the dimensions of both sides agree since
Ker(p}) N T,C° = Im(p,)° NT,C° = T,2° N T,C° = (T,,Z + T,C)° = {0},

where the last equality holds by transversality C' h Z. Now it is enough to show
that the inclusion “>” holds, which is clearly the case since p,(*T,C) C T,C.

We thus obtain
oo (("T,0)") = (py o "Ml 0 p3) (T,C°) =TI (T, C°) ,

where in the first equality we used (1.12) and the claim just proved, and in the
second we used the diagram (1.9). O

A general fact in Poisson geometry is that the conormal bundle of any coisotropic
submanifold is a Lie subalgebroid of the cotangent Lie algebroid. We now show
that the b-geometry version of this fact holds for b-coisotropic submanifolds.
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Proposition 1.3.6. Let (M, Z,w) be a b-symplectic manifold with correspond-
ing Poisson bivector field 1. Recall that *T*M is a Lie algebroid (endowed with
the Lie bracket induced by °T1), fitting in the diagram of Lie algebroids (1.9).
Let C' be a b-coisotropic submanifold.

a) (°TC)° is a Lie subalgebroid of *T* M.
b) (°TC)° fits in a diagram of Lie subalgebroids of the diagram (1.9):

(ch)o ~ (bTO)w

I
ﬁ}| y . (1.13)

Tce — ™, 1C

Proof. The diagram (1.13) is a diagram of vector subbundles of diagram (1.9),
by the claim in the proof of Lemma 1.3.5 and by equation (1.12). For a), since
the morphism °II* in diagram (1.9) is an isomorphism of Lie algebroids, it
suffices to show that (®T'C)“ is a Lie subalgebroid of *TM. Since (*TC)% is
the kernel of the closed b-2-form %i*w, a standard Cartan calculus computation
shows that this is indeed the case. It is well-known that TC° and T'C are also
Lie subalgebroids, proving b). O

1.3.2 Examples of b-coisotropic submanifolds

We now exhibit some examples of b-coisotropic submanifolds. The main result of
this subsection is Proposition 1.3.8, which shows that graphs of suitable Poisson
maps between log-symplectic manifolds give rise to b-coisotropic submanifolds,
once lifted to a certain blow-up.

Ezamples 1.3.7. a) Given a log-symplectic manifold (M, Z,II), any hypersur-
face of M transverse to Z is b-coisotropic.

b) Let (M, ) be a symplectic manifold, whose non-degenerate Poisson structure
we denote I := —Q~! and let (V,II) be a log-symplectic manifold with
singular locus Z. Then (M x N,I; — IIy) is log-symplectic with singular
locus M x Z. Given a Poisson map ¢ : (M,II;) — (N, IIy) transverse to Z,
we have that Graph(¢) C (M x N, —IIy) is b-coisotropic. As a concrete
example, consider for instance

2
¢: <R47zaa:1 /\8:%) _> (R27.'L'aw /\ay) . (1’17?/17352’1/2) '_> (1/171'2 _xlyl)-

i=1



44 COISOTROPIC SUBMANIFOLDS IN B-SYMPLECTIC GEOMETRY

We will now prove Proposition 1.3.8. We start recalling some facts from [GL,
§2.1]. Given a manifold M and a closed submanifold L of codimension > 2, one
can construct a new manifold by replacing L with the projectivization of its
normal bundle. The resulting manifold Bl (M), the real projective blow-up of
M along L, comes with a map

p: Bly(M) = M

which restricts to a diffeomorphism Biy (M) \ p~'(L) — M \ L. Further, let
S C M be a submanifold which intersects cleanly L, i.e. SN L is a submanifold
with T(SNL) =TSNTL. Then S can be “lifted” to a submanifold of Bly, (M),
namely the closure of the inverse image of S\ L under p:

S:=p 1S\ L).

Now let (M;, Z;,I1;) be log-symplectic manifolds, for ¢ = 1,2. The product
M; x My is not log-symplectic in general,! but [P], [GL, §2.2]

X = BlleZQ(Ml XMQ)\(Ml XZQUZl XMQ) (114)

is log-symplectic with singular locus the exceptional divisor p 1 (Z1 x Zy), and
the blow-down map p: X — My X Ms is Poisson, where My denotes (M, —II5).

Proposition 1.3.8. Assume that f: (My, Z1,111) = (Ma, Z3,115) is a Poisson

map with f(Z1) C Zs. Then graph(f) is a b-coisotropic submanifold of the
log-symplectic manifold X defined in (1.14).

Proof. The intersection graph(f) N (Z1 x Z3) is clean, since it coincides with
graph(f|z,) by the assumption f(Z;) C Z2. So graph(f) can be “lifted” to X.

The resulting submanifold graph(f) is coisotropic: graph(f) is coisotropic in
M, x M, because f is a Poisson map, so p~'(graph(f)\ Z1 x Z,) is coisotropic
in X (since p is a Poisson diffeomorphism away from the exceptional divisor),
and the same holds for its closure.

To finish the proof, we have to show that graph(f) is transverse to the
1)

exceptional divisor E := p~(Z; x Z3). Let (z;’) be local coordinates on

IHowever it fits in a slight generalization of the notion of log-symplectic structure used
in this thesis: indeed (M1 X Z2) U (Z1 X M3) is a normal crossing divisor, and vector fields
tangent to it give rise to a Lie algebroid to which the Poisson structure on Mj X My lifts in a
non-degenerate way (we thank Aldo Witte for pointing this out to us). One can check that if
f: M1 — Ma is a Poisson map transverse to Z2, then graph(f) intersects transversely both
My X Za and Z1 x Ms. This statement generalizes Example 1.3.7 b) and can be viewed as an
analogue of Proposition 1.3.8.
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M such that Z; = {mgl) = 0}, and similarly let (mgz)) be local coordinates on

My such that Zy = {mgz) = 0}. Then
1) pxq (2 2
(1’5 ),f (xg )) —x; ))

are local coordinates on M; x My that are adapted graph(f), but also to
(21 % Zy) = {a}") = 0, /" (2y") — &) = 0},

due to the hypothesis f(Z1) C Z>. Hence we can apply Lemma 1.3.9 below,
which yields the desired transversality. O

The proof of Proposition 1.3.8 uses the following statement, for which we could
not find a reference in the literature.

Lemma 1.3.9. Let m,n be non-negative integers. Consider R™™ with
standard coordinates T1i,...,Tn,Y1,---,Ym, and the subspaces

7Z :={0} x R™,
S :=(R* x {0}) x (R x {0})

where k <mn and | < m. Then, in the blow-up Blz(R"T™), the submanifold K
interesects transversely the exceptional divisor E.

Proof. We have

Bly(R™™) = {((w Y), [:p]) z e R\ {0}y € Rm} C R x RPL

where [-] denotes the class in projective space. Notice that by taking the closure
we are adding exactly the exceptional divisor

E={0} x R™ x RP""1.
We have

S = {((Il,O,yl,O), [(xl,O)]) sz € RRA\ {0}, 17 € Rl}.
By taking the closure we are adding exactly
{0} x (R' x {0}) x RP*"' =S nE.
For every point p € SN E there is a curve of the form
7t ((t21,0,41,0), [(21,0)))

lying in S with v(0) = p, and clearly %|ov(t) ¢ T,E. Since 2|o7(t) € Tp§ and
E has codimension 1, we obtain that T,E + T,S = T, Blz(R"*™). O
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Remark 1.3.10. One can show that for any pair of submanifolds L and S
intersecting cleanly, around any point of the intersection there exist local
coordinates of the ambient manifold M that are simultaneously adapted to
both submanifolds. Lemma 1.3.9 then implies that, with the same notation as

before, S intersects transversely the hypersurface p~*(L) of Bl (M).

1.3.3 b-coisotropic embeddings and the b-Gotay theorem

If C <% (M, Z,w) is b-coisotropic, then (C,C N Z.%i*w) is b-presymplectic by
Proposition 1.3.4, i.e. the b-two-form bi*w € *Q2(C) is closed of constant
rank. Conversely, in this subsection we prove that any b-presymplectic manifold
embeds b-coisotropically into a b-symplectic manifold, which is unique up
to neighborhood equivalence. In other words, we show a version of Gotay’s
theorem for b-coisotropic submanifolds. For Lagrangian submanifolds, this
becomes a version of Weinstein’s tubular neighborhood theorem, which was
already obtained in [Ki, Theorem 5.18].

As a consequence, a b-coisotropic submanifold C C (M, Z,w) determines w
(up to b-symplectomorphism) in a neighborhood of C. Notice that arbitrary
coisotropic submanifolds of the log-symplectic manifold (M, Z, IT) do not satisfy
this property: for instance Z is a coisotropic (even Poisson) submanifold, and by
[GMP] the additional data consisting of a certain element of H{;(Z) is necessary
in order to determine the b-symplectic structure in a neighborhood of Z.

Definition 1.3.11. A b-presymplectic form on a b-manifold is a b-two-form
which is closed and of constant rank.

Definition 1.3.12. Let (M, Z1,w) be a b-manifold with a b-presymplectic
form w € *Q?(My). A b-coisotropic embedding of (M, Z1,w) into a b-symplectic
manifold (Ma, Z5,Q) is a b-map ¢ : (M1, Z1) — (Ma, Zs) such that ¢ is an
embedding and

i) ’¢*Q = w.

ii) ¢(My) is b-coisotropic in (Ms, Zs, ).
We will prove the following Gotay theorem in the b-symplectic setting.

Theorem 1.3.13 (The b-Gotay theorem). Let (C, Zc,we) be a b-manifold with
a b-presymplectic form we € *Q?(C). We then have the following:
a) C embeds b-coisotropically into a b-symplectic manifold,

b) the embedding is unique up to b-symplectomorphism in a tubular
neighborhood of C, fizing C pointwise.
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We divide the proof of Theorem 1.3.13 into several steps. We roughly follow the
reasoning from the symplectic case, as presented in [G]. We start by constructing
a b-symplectic thickening of the b-presymplectic manifold C, from which item
a) of Theorem 1.3.13 will follow.

Proposition 1.3.14. Denote by E the vector bundle Ker(wc) C *TC. There
is a b-symplectic structure Qg on a neighborhood of the zero section C C E*.

Proof. Fix a complement G to E in *T'C, and let j : E* < *T*C be the induced
inclusion. Clearly, j(E*) = GY. The projection 7 : (E*, E*|z.) — (C, Z¢) and
the inclusion j : (E*, E*|z.) — ("T*C,*T*C|z,.) are both b-maps, so we can
define a b-two-form Qg on (E*, E*|z.) by

Q¢ = m*we + 5 wean. (1.15)

Here weqn denotes the canonical b-symplectic form on *T*C as in Example
1.2.17, and the subscript G is used to stress that the definition depends on
the choice of complement G. We want to show that Q¢ is b-symplectic on a
neighborhood of C' C (E*, E*|z,). As Qg is clearly b-closed, it suffices to prove
that Q¢ is non-degenerate at points p € C.

Claim: Under the decomposition T}, (*T*C) = *T,C' & "TC, of Lemma 1.2.12,
the canonical b-symplectic form is the usual pairing

(wcan)p (v+a,w+B) = (v,8) — (w,q). (1.16)

This claim can be checked in coordinates weq, = % Adyr + ELQ dx; A dy;,
noting that y; is a linear coordinate on fibers bT;C, ie y; € (bT;C)* ~b7,C.

Consider now the decomposition

"T,E*="T,C B E; =E, &G, E} (1.17)
given by Lemma 1.2.12. Using Lemma 1.2.13 b) we have (bj*)p =1Idvr,c® jlg.-
Hence under the decomposition (1.17) we have

(bj*wcan)p v+twta,xz+y+08) = (wcan)p (v +w+jla),z+y —l—j(ﬁ))
= (v+w,j(B)) — (& +y,i(a))
= <U7](ﬂ)> - <.’,U,j(0[)>,
using the above claim and recalling that j(E) = GJ. In matrix notation,
E, G, E;
) E, /70 0 A
(j*wcan)p = Gp ( 0 0 0 )7 (118)
Ex \-AT 0 0

i)
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for some matrix A of full rank. Similarly we have (bw*)p = Idor,c ®0, applying

Lemma 1.2.13 b) to 7 (regarded as a vector bundle map). Hence, under (1.17)
we get
(b’/T*wC)p (U +w +a7x+y+ﬂ) = (wC)p (U +w,:c+y),

so that we get a matrix representation of the form

E, G, E:
0 0 0

( 0 B 0 ) (1.19)
0 0 0

where we also use that E = Ker(w¢). Note that the matrix B in (1.19) is of full
rank since the restriction of (wc), to Gy is non-degenerate. Combining (1.18)
and (1.19), we have that

=
3
&
o
I
'Btlj* "EQ 'ﬁtij

E, G, E}
E, /0 0 A

Qqc), = (bﬂ-*wc)p—l— (bj*wam)p = G, ( 0 B 0 ) (1.20)
E; \-AT 0 0

which is of full rank. Therefore, )¢ is non-degenerate at points p € C C E*. O

Proof of Theorem 1.8.18 a). The inclusion (C, Z¢,wc) < (E*, E*|2.,90q) is
a b-coisotropic embedding, i.e.

i) bi*QG = wge,
i) bTC%e cbTC.

We have i*Qg = (1 0i)*we +°(j 01) Wean = we + (5 04)*Wean. Note that joi
is the inclusion of C into *T*C, so that ®(j 04)*wean = 0 since C is b-Lagrangian
in (”T*C7 wcan). This proves that item i) holds.

To check ii), we let p € C and choose v +w +« € E, & G, & Ej; = "T, E* lying
in T,0%. Let x € E, C °T,C be arbitrary. Thanks to (1.20), we then have

0= (), (@ v+w+a)=(Qq),(z a),

which forces that o = 0 due to non-degeneracy of (Qg), on E, x Ej. Hence
v+w+a=uv+wlies in E, ® G, = T,C, as desired. O

The uniqueness statement b) of Theorem 1.3.13 is an immediate consequence of
the following proposition, to which we devote the rest of this subsection.



B-COISOTROPIC SUBMANIFOLDS AND THE B-GOTAY THEOREM 49

Proposition 1.3.15. Let (M, Z,w) be a b-symplectic manifold and C a b-
coisotropic submanifold, with induced b-presymplectic form wc € *Q%(C).
Denote E := Ker(wc) and fix a splitting *TC = E @ G. Then there is
a b-symplectomorphism T between a neighborhood of C C (M,Z,w) and a
neighborhood of C C (E*, E*|cnz,Qa), with T|c = Idc.

Proof. Since the restriction w|gx ¢ is non-degenerate, we have a decomposition
TM|c = G @ G“ as symplectic vector bundles. Note that E is a Lagrangian
subbundle of (G¥,w), since

E“NGY = (E® Q) =°"TC* =°"TC*N°TC = E. (1.21)
We fix a Lagrangian complement V' to E in (G¥,w), i.e. GY = E&® V.

The idea of the proof is to construct a b-diffeomorphism between neighborhoods
of C'in M and E* — obtained by composing b-diffeomorphisms to a neighborhood
in V — whose b-derivative at points of C pulls back Qg to w, and then
apply a Moser argument. We first prove a b-geometry version of the tubular
neighborhood theorem, in which V plays the role of the normal bundle to C.

Claim 1: There exists a b-diffeomorphism ¢ between a neighborhood of C' in
(V,V|cnz) and a neighborhood of C' in (M, Z), with ¢, |C =Idvrpe-

We will construct this map in two steps:

V — p(V) — M.
(1) V) (2)

First, let p : ®TM — TM denote the anchor map of *T'M and notice that its
restriction to V is injective. To see this, recall the decomposition

"TMlo=G®G* =GOEQV ="TCoV (1.22)

and note that Ker(p|c) C *TC by Lemma 1.2.8, so Ker(p) intersects V trivially.
As such, we get a b-diffeomorphism p : (V,Vl]cnz) = (p(V), p(V)|cnz)-

Second, the distribution p(V') is complementary to T'C, i.e.
TM|c =TC @ p(V).
Indeed, by what we just showed, we have at any point p € C' that
dim(7T, M) = dim(7,C) + dim(V},) = dim(7,,C) + dim(p(V,)).

Moreover, if v € V, is such that p(v) € T,C, then v € *T,C'NV,, = {0}. Now fix
a Riemannian metric g on M such that Z C (M, g) is totally geodesic (e.g. [Mi,
Lemma 6.8]). The corresponding exponential map exp, takes a neighborhood of
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C C p(V) diffeomorphically onto a neighborhood of C C M. Moreover the fibers
of p(V) over C'N Z are mapped into Z, since p(V,) € T,Z for p e CNZ and Z
is totally geodesic. Therefore, the map exp, : (p(V), p(V)|cnz) — (M, Z) is a
b-diffeomorphism between neighborhoods of C.

We now show that ¢ := exp,op: V' — M has the claimed property. That is, we
show that [*(exp, 0p).]|,, is the identity map on *TV|c =*TC @V ="TM|c,
by checking that it acts as the identity on sections. We will need the commutative
diagram

*(expy 0p)«

‘TC oV TM|c
Jpeﬂdv J{P ) (1'23)
TCav — P g,

which implicitly uses a) of Lemma 1.2.13. We will also use that for all g € C
the ordinary derivative reads

[(exp, op)*}q TV =T,CeVy—-T,M=T,C®p(Vy) :w+v—w+p(v).
(1.24)
For a section X +Y €T (bTC’ @ V) we now compute

p ["(expy0p)(X +Y)] = (expy 0p)s(p(X) +Y)
= p(X) +p(Y)
=p(X+Y)

using (1.23) in the first equality and (1.24) in the second. Since the anchor p is
injective on sections, this implies that b(expg 0p)«(X +Y)=X+Y, as desired.
This finishes the proof of Claim 1.

Next, the map
YV = E* v —,w|g

is an isomorphism of vector bundles covering Ide, whence a b-diffeomorphism
between the total spaces (For the injectivity, note that tyw|; = 0 implies that
v € EYNGY = E as in (1.21), so that v € VN E = {0}). The composition
oo™t (M,Z) — (E*, E*|cnz) is a b-diffeomorphism between neighborhoods
of C, with (w o ¢_1)|C =Ide¢.
Claim 2: This b-diffeomorphism satisfies [*(v 0 ¢71)*Q¢] ‘C = w|e.

As before, let 7 : E* — C denote the bundle projection, and let j : E* < *T*C
be the inclusion induced by the splitting *7TC = E @ G. Since ¢: V — E* is a
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vector bundle morphism covering Id¢c, by Lemma 1.2.13 b) we have that
Yilo: TV e 2PTC OV — "TE*|c 2°TC o E*

equals Idvpe @ 4. Furthermore bqﬁ*fc = Idsppr), by Claim 1. Therefore, for
p € C and z; +v; € °T,C &V, = T, M, we have

[P0 ¢ Q6] (w1 +vi, 22+ v2) = (), (21 + (1), 2 + P(v2)). (1.25)

Recalling equation (1.15) and applying Lemma 1.2.13 b) as in the proof of
Proposition 1.3.14, the right hand side of (1.25) can be rewritten as follows:

wp(21, 22) + (Wean),, (21 + 3 (¥ (v1)), 22 + (¥ (v2)))

(21, 22) + (21, j(P(v2))) — (22, 5(P(v1)))
p(@1,22) + (e1,9(v2)) — (e, ¥(v1))
(
wp (

Il
£ €

= wp(z1, T2) + wpler, v2) + wp(v1, e2)
wp(x1 + v1, 2 + v2),
first using equation (1.16), then writing z; = e; + g; € E, ® G, = *T,C, and

using in the last equality that V is a Lagrangian subbundle of (G¥,w). This
finishes the proof of Claim 2.

Applying Proposition 1.2.19 (relative b-Moser) yields a b-diffeomorphism f,
defined on a neighborhood of C' C (M, Z), such that *f* (*(¢ 0 ¢71)*Q¢) =w
and f|c = Idc. So setting 7 := 1 o ¢! o f finishes the proof. O

1.4 Strong b-coisotropic submanifolds and
b-symplectic reduction

We consider a subclass of b-coisotropic submanifolds in b-symplectic manifolds,
namely, the coisotropic submanifolds that are transverse to the symplectic leaves
they meet. The main observation is that their characteristic distribution has
constant rank, and the quotient (whenever smooth) by this distribution inherits
a b-symplectic form (Proposition 1.4.6).

1.4.1 Strong b-coisotropic submanifolds

In Subsection 1.3.1 we have seen that a b-coisotropic submanifold C' C (M, Z,w)
comes with a characteristic distribution

D:=p(*TC¥) =TI* (TC").
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In general, D fails to be regular. To force that D has constant rank, we have to
impose a condition on C' that is stronger than b-coisotropicity.

Definition 1.4.1. A submanifold C of a log-symplectic manifold (M, Z,1I) is
called strong b-coisotropic if it is coisotropic (with respect to II) and transverse
to all the symplectic leaves of (M, II) it meets.

To justify this definition, we note that

Hg’T,,CO is injective < Ker (Hg) NnT,C° = {0}
< 1,0°NT,C° = {0}
& (T,0 + T,0)° = {0}
< 1,0+ 1T,C =T,M, (1.26)

where O denotes the symplectic leaf through p. The last equation is exactly
the transversality condition of Definition 1.4.1. Consequently, we have:

Proposition 1.4.2. Let C C (M, Z,1I) be a coisotropic submanifold. Then C
is strong b-coisotropic iff the characteristic distribution of C' is regular, with
rank equal to codim(C).

Lemma 1.3.5 immediately implies:

Corollary 1.4.3. Let C C (M, Z,w) be a strong b-coisotropic submanifold.
Then its characteristic distribution is tangent to Z, and corresponds to *TC%
under the bijection of Lemma 1.2.10b).

Remark 1.4.4. If C is a strong b-coisotropic submanifold of (M?", Z, 1I)
intersecting Z, then necessarily dim(C) > n + 1. Indeed, if O denotes the
symplectic leaf through p € C'N Z, then we have
dim(C) = dim (7,0 + T,,C) + dim (1,0 N T,,C) — dim(O)

= dim (7,0 NT,C) + 2

>n+1,
where the last inequality holds since 7,0 N T,,C is a coisotropic subspace of
the (2n — 2)-dimensional symplectic vector space T,0. Alternatively, one can

observe that a middle-dimensional b-coisotropic submanifold C™ C (M?", Z, w)
is b-Lagrangian (i.e. *TC% = T'C). Its characteristic distribution satisfies

dim(C) — 1 itpeCnZz

dim (D;) = {dim(C’) else '

so C' can’t be strong b-coisotropic when it intersects Z, due to Proposition 1.4.2.
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1.4.2 Coisotropic reduction in b-symplectic geometry

We now adapt coisotropic reduction to the b-symplectic category. It is well-
known that, given a coisotropic submanifold C' of a Poisson manifold M, its
quotient C' by the characteristic distribution is again Poisson, when it is smooth.
More precisely, the vanishing ideal Z¢ is a Poisson subalgebra of (C*° (M), {-,-}),
and denoting by N'(Z¢) := {f € C>°(M) : {f,Z¢c} C Z¢} its Poisson normalizer,
we have that N (Z¢)/Z¢c is a P01sson algebra. As an algebra it is canonically
isomorphic to the algebra of smooth functions on the quotient C, so it endows
the latter with a Poisson structure, called the reduced Poisson structure.

Remark 1.4.5. If the Poisson structure on M is non-degenerate, i.e. corresponds
to a symplectic form w € Q2(M), the reduced Poisson structure on C is also
non-degenerate. Indeed [SW], it corresponds to the symplectic form wyeq on
C obtained by symplectic coisotropic reduction, i.e. the unique one such that
¢ Wreq = 1*w, where ¢q: C' — C is the projection and i: C' — M is the inclusion.

Proposition 1.4.6 (Coisotropic reduction). Let C be a strong b-coisotropic
submanifold of a b-symplectic manifold (M, Z,w,11). Then D :=1I* (T'C°) is
a (constant rank) involutive distribution on C. Assume that C := C/D has a
smooth manifold structure, such that the projection q : C'— C is a submersion.
Then C inherits a b-symplectic structure , determined by

¢ =", (1.27)

where i : C — M 1is the inclusion. Its corresponding log-symplectic structure is
exactly the reduced Poisson structure on C obtained from II.

Proof. We know that D has constant rank, by Proposition 1.4.2. As for
involutivity, first note that D is generated by Hamiltonians X},|, of functions
h € Zo. On such generators, we have

[Xh1|c , XhQ‘C] = [Xh17Xh2]|C = X{Mﬁz}‘c?

where {hy,ha} € Zo due to coisotropicity of C. Hence D is involutive.

The quotient CNZ := (CNZ)/D is a smooth submanifold of C, since for
every slice S in C transverse to D, the intersection S N Z is a smooth slice
in C'N Z transverse to D. The leaf space (C,C N Z) is a b-manifold, and the
projection ¢ : (C,CNZ)— (C,CNZ) is a b-map. For p € C, we have an exact
sequence

0— Dy, = T,,C (@) TymC — 0,

which corresponds with an exact sequence on the level of b-tangent spaces

0— ("T,0)" < *T,C Ce )‘“ Ty C — 0. (1.28)



54 COISOTROPIC SUBMANIFOLDS IN B-SYMPLECTIC GEOMETRY

To see this, consider the canonical splitting o : D — °T'C' of the anchor
p:°TC — TC, as constructed in Lemma 1.2.10 a), and notice that

Ker ((%0.),) =0 (Ker (a.),) = (D) = ('T,0)"
using Corollary 1.2.11 in the first and Corollary 1.4.3 in the third equality.

Since q is a surjective submersion, it admits sections, hence for every sufficiently
small open subset U C C there is a submanifold S C C transverse to D such
that g|lg: S — U is a diffeomorphism. At points p € S we have

'T,C = (*T,C)*" @ *T,S

due to the sequence (1.28). This implies that bigwc is a b-symplectic form
on S, where ig : S — C' is the inclusion and w¢ is the restriction of w to C.
Denote by 7 : U — S the inverse of g|s : S — U. Then Q := 7" ("ifwc) is
b-symplectic on U. Away from C'N Z, this b-2-form agrees with the symplectic
form obtained by symplectic coisotropic reduction from w|ys z. Denote by
—0~! the non-degenerate b-bivector on U corresponding to Q. Away from
C N Z, the log-symplectic structure p(—Q_l) agrees with the reduced Poisson
structure, by Remark 1.4.5. By continuity, the same is true on the whole of U.
As U was arbitrary, the reduced Poisson structure on C is log-symplectic, and
the above reasoning shows that the corresponding b-symplectic form satisfies
equation (1.27). This finishes the proof. O

Ezamples 1.4.7. a) Let i: B — (M, Z) be a b-submanifold. A quick check
in coordinates shows? that *T*M|p is strong b-coisotropic in *T*M. Tts
quotient *T*M|p is canonically b-symplectomorphic to *T*B. To see this,
consider the surjective submersion

¢ :"T"M|p = "T"B: ap — (i) o
and notice that the fibers of ¢ coincide with the leaves of the characteristic
distribution on *T*M|z. We get a b-diffeomorphism @ : *T*M|p — *T*B.

To see that this is in fact a b-symplectomorphism, we note that the
tautological b-one-forms on *T*M and *T* B are related by

P 0p ="j"0m, (1.29)
where j :* T*M|p < T*M is the inclusion. Recall that the b-symplectic
form ©Q on *T*M|p is determined by the relation °¢*Q = ®j*wy;, where
q:* T*M|p — *T*M]|p is the projection (cf. (1.27)). Hence to conclude

that 3 is b-symplectic, we have to show that ®¢* (l@*wB) = 5*w)s. But this
is immediate from (1.29) since B o g = .

2The converse is also true. If °T* M| g is strong b-coisotropic in ®T* M, then ®T*M]|p is
transverse to bT*M|Z, which implies that B is transverse to Z, i.e. that B is a b-submanifold.
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b) Given a b-manifold (M, Z), let K be an involutive distribution on M tangent
to Z. Thanks to Lemma 1.2.10 a) we can view K as a subbundle o(K)
of ®T'M. Tts annihilator o(K)° is strong b-coisotropic in *T*M, and the
quotient o(K)? is *T*(M/K), whenever M /K is smooth. We give a proof
of this fact in the particular case of a group action, see Corollary 1.4.13.

1.4.3 Moment map reduction in b-symplectic geometry

Recall that, given an action of a Lie group G on a Poisson manifold (M, II), a
moment map is a smooth map J : M — g* satisfying the condition

I* (dJ*) = v, Vreg. (1.30)

Here J*: M — R : p— (J(p),z) is the z-component of J and the vector field
v, is the infinitesimal generator of the action corresponding with = € g, i.e.

ve(p) = — exp(—tx) - p.

We will consider equivariant moment maps J : M — g*, i.e. those that
intertwine the action G ~ M and the coadjoint action G ~ g*. Such a moment
map J : M — g* is automatically a Poisson map [V, Proposition 7.30], when
g* is endowed with its canonical Lie-Poisson structure [CW, Section 3]. In view
of Proposition 1.4.6, we recall a general fact about equivariant moment maps.

Lemma 1.4.8. Let G be a Lie group acting on a Poisson manifold (M,II) with
equivariant moment map J : M — g*. Assume that the action is locally free on
J~1(0). We then have the following:

a) J7Y0) is a coisotropic submanifold of (M,11).
b) J71(0) is transverse to all symplectic leaves of (M,11) it meets.

¢) the characteristic distribution IT* (T'(J=1(0))°) on J=1(0) coincides with the
tangent distribution to the orbits of G ~ J~1(0).

Remark 1.4.9. (i) When (M,II) is a log-symplectic manifold, Lemma 1.4.8
implies that the level set J~1(0) is a strong b-coisotropic submanifold.

(ii) When G a torus, there is a more flexible notion of moment map [GMPS,
Definition 22] for log-symplectic manifolds. The smooth level sets of such
moment maps are not strong b-coisotropic submanifolds in general. Indeed they
can even fail to be transverse to the degeneracy locus Z (see [GMPS, Example
23] for an instance where Z itself is such a level set).
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For the sake of completeness, we give a proof of Lemma 1.4.8. Items a) and
c) also follow from well-known facts in symplectic geometry, by restricting the
G-action to each symplectic leaf (whenever G is connected) and using item b).

Proof. a) We show that 0 is a regular value of J. Choosing p € J~1(0), it is
enough to prove that the restriction d,J : Im(Hg,) C Tp,M — g* is surjective.
To this end, assume that ¢ € g annihilates dp,J(Im(II%)). We then get for
all « € T; M that

(o, (ve)p) = (@, T (dp J*)) = = (dpJ*, T} () = = (dpJ (IT}()) ,€) = 0,

so (ve), = 0. Since the action G ~ J~1(0) is locally free, this implies £ = 0.
It follows that d,J (Im(Hg)) = g%, so 0 is a regular value of J. In particular,
J~1(0) is a submanifold of M. The coisotropicity of J~1(0) follows since it
is the preimage of a symplectic leaf {0} C g* under a Poisson map.

b) Let O denote the symplectic leaf through p € J~1(0). By the computation
(1.26), it suffices to prove that Hg‘[T J-1(0)]° is injective. Since 0 is a regular

value, this annihilator is given by [TpJ_l(O)]O = {d,J* : z € g} . We now
have a composition of maps
_ 0 _ 0
g — [LJH(0)] — 10 ([TPJ H(0)] )

z o dp e T (dpJ") = (ve),,

that is injective because the action G ~ J~1(0) is locally free. Consequently,
also Hg‘[TpJfl(o)]U is injective.

¢) We have

it} ([Tprl(())]o) — (I} (d,J") s 2 € g} = {(v2)p : ¢ € 8},

which is exactly the tangent space of the G-orbit through p. O

Combining Proposition 1.4.6 with Lemma 1.4.8, we obtain a moment map
reduction statement in the b-symplectic category. The case G = S' was already
addressed in [GLPR, Proposition 7.8].

Corollary 1.4.10 (Moment map reduction). Consider an action of a connected
Lie group G on a b-symplectic manifold (M, Z,11) with equivariant moment map
J: M — g*. Assume the action is free and proper on J~1(0). Then J~1(0) is
a strong b-coisotropic submanifold, and its reduction J=1(0)/G is b-symplectic.
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Remark 1.4.11. The fact that J~1(0)/G is b-symplectic follows already from
[MPR, Theorem 3.11], taking A = *T'M there. (The hypothesis made there,
that (J.)g 0 pr: °T,M — g* has constant rank for all z € J~1(0), is satisfied
since J71(0) is transverse to Z). In that reference the authors develop a
reduction theory for level sets of arbitrary regular values p € g* satisfying
the constant rank hypothesis, their statement is thus more general than the
reduction statement in our Corollary 1.4.10.

Exact b-symplectic forms

As a particular case of the previous construction, we consider the b-symplectic
analog of a well-known fact in symplectic geometry. Recall that, if a Lie group
G acts on an exact symplectic manifold (M, —df) and 6 is invariant under the
action, then J : M — g* defined by

J¥ = 1,0 (1.31)

is an equivariant moment map for the action (in the sense of (1.30)). For a proof,
see [AM, Theorem 4.2.10]. A similar result holds in b-symplectic geometry.

Lemma 1.4.12 (Exact b-symplectic forms). Suppose (M, Z) is a b-manifold
with exact b-symplectic form w = —*df. If ¢ : Gx M — M is a Lie group action
preserving Z and 6 € *QY (M), then an equivariant moment map J : M — g*
is given by J* = —uy, 0. Here Vy, € T (bTM) is the lift of the infinitesimal
generator v, € T(T M) under the anchor p.

Proof. Clearly J : M — g* is a smooth map. Restricting the action to the
symplectic manifold (M \ Z,w\M\Z), we know that G ~ (M \ Z, —d9|M\Z)
admits a moment map given by J|»n z. Hence the equality I1* (dJ*) = v, holds
on the dense subset M \ Z, and as both sides are smooth on M, it holds on all
of M. Similarly, since J|yp 7 is equivariant, also .J itself is equivariant. O

An example of Corollary 1.4.10 and Lemma 1.4.12 is b-cotangent bundle
reduction. Let us recall the picture in symplectic geometry: given an action
G ~ M, its cotangent lift G ~ (T*M, —df.,,) preserves the tautological one-
form 6., and therefore it comes with an equivariant moment map J : T*M — g*
given by (1.31)

<J(aq)7 $> = _<aq7 'Uz(q»'
Here v, is the infinitesimal generator of G ~ M corresponding with = € g.

If the action G ~ M is free and proper, then symplectic reduction gives
J7Y0)/G = T*(M/G). Indeed, in some detail, there is a well-defined map

@: JH0) = T*(M/G), ag — Gpr(q),



58 COISOTROPIC SUBMANIFOLDS IN B-SYMPLECTIC GEOMETRY

where pr: M — M /G denotes the projection and

T,M
Ty(G - q)
Since the fibers of ¢ coincide with the orbits of G ~ J~1(0), there is an induced

bijection  : J71(0)/G — T*(M/G), which is in fact a symplectomorphism (see
[MMOPR, Theorem 2.2.2]). We now prove a b-geometric analog of this.

Gpr(q) * Tpr(q) (M/G) = = R, [v] = ay(v).

Corollary 1.4.13 (Group actions on b-cotangent bundles). Given a b-manifold
(M, Z) and a connected Lie group G, assume that ¢ : G X M — M is a free
and proper action that preserves Z. Denote by ® : G x *T*M — YT*M the
b-cotangent lift of this action, that is

(@), ) = (a0, [ (¢42)., () ¥)

for aq € bT;M and v € bT¢g(q)M. Then ® is also free and proper, and it
preserves the hypersurface *T*M|z. The action ® has a canonical equivariant
moment map J, and J~(0)/G is canonically b-symplectomorphic to *T*(M/G).

Proof. Denote the infinitesimal generators of ¢ by v, = par (V) € X(M) and
those of ® by v, = pr«ar) ( ) ex (bT* ) where € g. One checks that
they are related via

T (Uz) = Vg, (1.32)

where 7 : ®T* M — M denotes the projection. Since the action ® preserves the
tautological b-one form 6 € *Q! (bT *M ), Lemma 1.4.12 gives an equivariant
moment map J : *T*M — g* defined by J* = —Lvma. Explicitly, one has

~((&)a) = (19.,0) (&) = be, (Vi) = (0 ('), (V) ) = (00 (V2),)

(1.33)

where the last equality uses (1.32) and Lemma 1.2.6. Denoting by K the tangent

distribution to the orbits of G ~ M and by o : K < *T'M the splitting of the

anchor pys : °TM — TM obtained via Lemma 1.2.10 a), the equality (1.33)
shows that

J7H0) = o(K)°. (1.34)

We now perform reduction on J~1(0) as in Corollary 1.4.10. Because the
projection map pr : (M,Z) — (M/G,Z/G) is a b-submersion with kernel
Ker(pr,) = K, Corollary 1.2.11 implies that Ker(’pr,) = o(K), and therefore

quM
U(Kq).
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It is now clear from (1.34) and (1.35) that b-covectors in J~1(0) descend to
M/G, i.e. we get a well-defined map

@1 JTH0) = T (M/G), g — Gpr(g),
where
T, M
o(K,)
It is easy to check that ¢ is a surjective submersion with connected fibers. From
symplectic geometry we know that the fibers of ¢ and the orbits of the G-action
G ~ J71(0) coincide on the open dense subset J1(0) \ (J71(0) N bT*M|Z)
of J71(0). By continuity, the corresponding tangent distributions must agree

on all of J=1(0), and so the same holds for the foliations integrating them.
Therefore, the map ¢ descends to a smooth bijective b-map

apr(q) + "Tpr(q)(M/G) = =R, [v] = ag(v).

%:JH0)/G =T (M/G).

Being a bijective submersion, @ is a diffeomorphism. The restriction of @ to the
complement of (J~1(0) N *T* M| Z) /G, endowed with the symplectic structure
obtained by symplectic (i.e. coisotropic) reduction, is a symplectomorphism
onto its image. Hence, by Proposition 1.4.6, @ is a b-symplectomorphism . [

Circle bundles

We find examples for Proposition 1.4.6 and Corollary 1.4.10 by “reverse
engineering”.

Proposition 1.4.14. Let (N,w) be a b-symplectic manifold, which we assume to
be compact. Let q: C — N be a principal S*-bundle, with connection 6 € Q' (C).
Denote by o € Q*(N) the closed 2-form satisfying df = q*o.

(i) The following is a is b-symplectic manifold:
(Cx1I, @:=dtAp*0+ (t—1)p*q o+ bp* bq*w) .

Here I is an interval around 1 with coordinate t, and p: C xI — C denotes
the projection map.

(ii) C x {1} is a strong b-coisotropic submanifold, and the reduced b-symplectic
manifold (as in Proposition 1.4.6) is isomorphic to (N,w).

We make a few observations about @. The summand of @ containing o is
necessary to ensure that @ is ®d-closed. In the special case that C is the trivial
Sl-bundle N x S, choosing § = dp for p the angle “coordinate” on S! (so
o = 0), the above lemma delivers the product of the b-symplectic manifold
(N,w) and of the symplectic manifold (I x S*,dt A 0).



60 COISOTROPIC SUBMANIFOLDS IN B-SYMPLECTIC GEOMETRY

In the special case that w equals the closed 2-form o, we have w = d(tp*#), which
can be interpreted as the prequantization of o when the latter is symplectic.

Remark 1.4.15. By the above proposition, we actually recover (IV,w) by moment
map reduction, as in Corollary 1.4.10. Indeed, S! acts on C x I (trivially on
the second factor) preserving the b-symplectic form @ (since @ is S!-invariant).
An equivariant moment map is J(z,t) =t — 1, hence C x {1} = J~1(0).

Proof. (i) To check that @ is "d-closed, notice that its first two summands can
be written as d(tp*#) — p*¢*o, which is closed since o is closed.

For every real number ¢ sufficiently close to 1, (t — 1)o + w is a b-symplectic
form on N, so its n-th power (where dim(N) = 2n) is a nowhere-vanishing
element of Q2" (N). This implies that @"*! is a nowhere-vanishing element of
b2 +1)(C x I), shrinking I if necessary. Hence & is b-symplectic.

(ii) Denote by Z C N the singular hypersurface of w. Then the singular
hypersurface of @ is p~t(¢71(Z)) € C x I, which is transverse to C' x {1}.
Therefore the latter is a b-submanifold, and is coisotropic since it has codimension
one. If i: O'x {1} — O x I denotes the inclusion, then we have i*& = b¢*w. One
consequence is that *T(C x {1})® = ker(%i*@) = ker(’q.). Applying the anchor
p, we obtain that the characteristic distribution p (*T(C x {1})¥) of C' x {1}
is given by ker(g.). Since the latter has constant rank one, Proposition 1.4.2
yields that C' x {1} is a strong b-coisotropic submanifold. A second consequence
is that the reduced b-symplectic manifold is isomorphic to (NV,w). O

A concrete instance of the construction of Proposition 1.4.14 is the following.

Corollary 1.4.16. Let h be any smooth function on CP! that vanishes
transversely along a hypersurface. On C? consider the differential forms
Q = i(dzr AN dzy + dza A dZa) (twice the standard symplectic form) and
«a = zZ1dz + zadze, and denote by r the radius.

(i) In a neighborhood of the unit sphere S3, the following is a b-symplectic
form:

1 1 7
v=— (-1 - %) Q Q 1.
@ 7"2( +P*h)( plana)t )+ ’ (1.36)

where P: C?\ {0} — CP? is the projection.

(ii) The unit sphere S3 is a strong b-coisotropic submanifold, and the reduced
b-symplectic manifold is (CP?, %0) where o is twice the Fubini-Study
symplectic form.

Remark 1.4.17. The diagonal action of S! on the above neighborhood of the
unit sphere S% in C2 preserves @ and has moment map given by v — ||v||> — 1.
This follows from Remark 1.4.15 and the proof below.
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Pmof On R* = C2, consider the 1-form 0 = 23:1 xdy; — y;dx;. Note that

ijl dzj A dy; = Q. Consider the unit sphere S, and denote by
q: S3 — CP! the principal bundle given by the diagonal action of U(1) (the
Hopf fibration). Then # := i*0 is a connection 1-form on S%, where i is the
inclusion, and df = ¢*o, where ¢ is the symplectic form on CP! obtained from
Q) by coisotropic reduction. Consider the b-symplectic form w := %a on CP.
Applying Proposition 1.4.14 to $3 x I % §3 % CP! yields a b-symplectic form
@ on S3 x I, defined by

1
w=dtNp*0+ (t—l—l— — >p*q*a. (1.37)
p*q*h

We now make @ more explicit. Denote by p’: C?\ {0} — S the projection
v = v/|[v][, let r denote the radius function v + [[v]|. Then p™(0) = /12,
since the Euler vector field E satisfies tzf = 0 and Lz (0/r%) = 0. Hence, using
q*c = df and df = Q we obtain

- 1 -
p*q*o =d0/r?) = ( 2ﬁ A6+ Q)
72

Using 6 = I'm(a) and 12 = 27 + 222 we get —24r A 0 = —L(aAa). If we
now use the identification (a,t) — v/ta between S® x I and a neighborhood of
S3 in C? (so t = r?), then the expression (1.37) becomes (1.36). O

Remark 1.4.18. We show directly from its definition (1.36) that @ satisfies

the transversality requirement for b—symplectic forms. As (—T%(a Aa) + Q)A2
vanishes, one obtains & = —2(1 — 2 + 2 P* 5 )dz1 AdZy Adza Adzy. The dual
4-vector field is thus transverse to the zero section, in a neighborhood of the
unit sphere S3.

Ezample 1.4.19. We display an example of a function h on CP! which vanishes
on the circle RP! C CP!. The function g := Im(%122) = x1y2 — Y172 on S3
is U(1)-invariant, hence it descends to a function h on CP!, which is readily
seen to vanish exactly on RP!. It vanishes linearly there: using homogeneous
the coordinate w := 25/z; on the open subset {[z1 : 23] : 21 # 0} of CP!, we

have® h = ff‘(“ﬂ, which vanishes with non-zero derivative on {Im(w) = 0}.

Since g is quadratic, we have p’*g = g/r?, hence the coefficient T% (—1 + ﬁ)

in equation (1.36) reads
R
2 Im(z129) )

3To see this, first notice that on S3 we have #7120 = (7122)/(z121 + 2222), and then divide
numerator and denominator by zjz1.
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Chapter 2

Deformations of Lagrangian
submanifolds in
log-symplectic manifolds

This chapter is based on joint work with Marco Zambon. It contains the preprint
“Deformations of Lagrangian submanifolds in log-symplectic manifolds”, which

is available on arXiv:2009.01146.

Abstract - This chapter is devoted to deformations of Lagrangian submanifolds
contained in the singular locus of a log-symplectic manifold. We prove a normal
form result for the log-symplectic structure around such a Lagrangian, which
we use to extract algebraic and geometric information about the Lagrangian
deformations. We show that the deformation problem is governed by a DGLA,
we discuss whether the Lagrangian admits deformations not contained in the
singular locus, and we give precise criteria for unobstructedness of first order
deformations. We also address equivalences of deformations, showing that
the gauge equivalence relation of the DGLA corresponds with the geometric
notion of equivalence by Hamiltonian isotopies. We discuss the corresponding
moduli space, and we prove a rigidity statement for the more flexible equivalence
relation by Poisson isotopies.

64
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2.1 Introduction

Symplectic manifolds are a key concept in modern geometry and physics. A
fundamental role in symplectic geometry is played by the distinguished class of
Lagrangian submanifolds, as emphasized in Weinstein’s symplectic creed [W2]:
Everything is a Lagrangian submanifold.

The deformation theory of Lagrangian submanifolds is well-behaved: as a conse-
quence of Weinstein’s Lagrangian neighborhood theorem [W1], deformations of
a Lagrangian submanifold L correspond with small closed one-forms on L, and
the moduli space under equivalence by Hamiltonian isotopies can be identified
with the first de Rham cohomology group H'(L).

Poisson manifolds are intimately related with symplectic geometry. The non-
degenerate Poisson manifolds are exactly the symplectic ones. If one relaxes the
non-degeneracy condition, replacing it with a transverse vanishing condition,
one obtains a larger class of Poisson manifolds, called log-symplectic manifolds:
they are symplectic outside of their singular locus, which is a codimension-one
submanifold. Their first appearance occurs in the work of Nest-Tsygan [NT].
The study of their geometry was initiated by Radko [R], who classified two-
dimensional log-symplectic manifolds (nowadays called Radko surfaces). Since
the systematic study of their geometry in arbitrary dimension by Guillemin-
Miranda-Pires [GMP2], log-symplectic manifolds have attracted lots of attention.
One reason for this is that, despite the presence of singularities, they behave
like symplectic manifolds in many respects. For instance, Marcut-Osorno Torres
[MO] showed that, on a compact manifold M, the space of log-symplectic
structures C!-close to a given one (modulo C!-small diffeomorphisms) is smooth
and finite dimensional, parametrized by the second b-cohomology of M.

This work originated from the following question: in log-symplectic geometry,
is the deformation theory of Lagrangian submanifolds as nicely behaved as in
symplectic geometry?

For Lagrangian submanifolds L transverse to the singular locus of the log-
symplectic manifold, the answer is easily seen to be positive, as shown by
Kirchhoff-Lukat [K]: a neighborhood of L is equivalent to the b-cotangent
bundle of L, and the Lagrangian deformations of L (modulo Hamiltonian
isotopy) are parametrized by the first b-cohomology group of L. In particular,
the moduli space of Lagrangian deformations is smooth and finite dimensional
for compact Lagrangians L.

This chapter focuses on the opposite extreme: we assume that the Lagrangian
submanifold L™ is contained in the singular locus Z of an orientable log-
symplectic manifold M?". Note that the b-calculus developed by Melrose
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[Me], which is one of the main tools in log-symplectic geometry, does not apply
in our setting, due to the complete lack of transversality to Z.

The main geometric questions we address are:

1) Can L C Z be deformed smoothly to Lagrangian submanifolds not
contained in Z7

2) Can a first order deformation of L be extended to a smooth path of
Lagrangian deformations?

3) Is the moduli space of Lagrangian deformations — under the equivalence
by Hamiltonian isotopies — smooth at L?

For “many” Lagrangian submanifolds L, the answer to 1) is positive, ensuring
that the deformation problem we consider does not boil down to the case of
symplectic geometry. The answer to 3) is typically negative, in contrast to
the symplectic case. The answer to 2) is striking, and displays a behaviour
that comes close to the symplectic case: first order deformations are generally
obstructed, but if an obvious quadratic obstruction vanishes, then they can be
extended to a smooth path of deformations.

Summary of results. As in many deformation problems in geometry, the first
step consists in providing a normal form for the log-symplectic structure in a
neighborhood of the Lagrangian L. Notice that as L is contained in the singular
locus, it carries a codimension-one foliation Fz,. Our normal form around L (Cor.
2.2.18) is constructed in two steps: we combine a normal form statement around
Lagrangian submanifolds transverse to the symplectic leaves of an arbitrary
Poisson manifold (Prop. 2.2.9) with the normal form around the singular locus
Z of a log-symplectic manifold (M, II) due to Guillemin-Miranda-Pires [GMP2],
[O]. Since the latter involves the modular class of (M,II), we also need to
express the first Poisson cohomology of a neighborhood of L in the singular
locus Z in terms of L alone (Cor. 2.3.5). The modular class is then encoded by
two objects attached to L:

a) A class in H'(FL), the first foliated de Rham cohomology.
We fix a representative v € Q1 (Fp).

b) An element of X(L)”t /T(TFL) = HO(FL).
We fix a representative X € X(L)”, a vector field on L that preserves
the foliation and is nowhere tangent to it.

Theorem 2A. The log-symplectic structure in a tubular neighborhood of L is
isomorphic to

(U C T*fL X R» (Vvert + szt) A tat + Hcan)'

Here U is a meighborhood of the zero section L, I, is the canonical Poisson
structure on the cotangent bundle T*Fy, of the foliation Fr, and t denotes the
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coordinate on R. Further, Vyer is the vertical fiberwise constant vector field on
T*Fr, which corresponds to v € T(T*Fr) under the natural identification, and
Viife s the cotangent lift of X.

The above normal form theorem gives an explicit model in which the Lagrangian
deformations of L can be investigated. We can characterize algebraically the
Lagrangian deformations of L, as follows (Thm. 2.4.3, Cor. 2.4.10):

Theorem 2B. Lagrangian deformations C'-close to L are exactly the graphs
of sections (v, f) of the vector bundle T*F, x R — L satisfying the quadratic
equation

d}-La =0

d]:Lf + f(’y - fxOé) =0,
where dr, denotes the foliated de Rham differential and v, X are as above.
Further, this equation is the Maurer-Cartan equation of a DGLA.

The differential graded Lie algebra mentioned above is the one introduced in
greater generality by Cattaneo-Felder [CF], and to ensure that it captures the
Lagrangian deformations we need to check that the Poisson structure of Thm.
2A is fiberwise entire.

In turn, Thm. 2B has several geometric consequences. Before explaining them,
we discuss briefly two of the tools we use. First, when L is compact and
connected, the following dichotomy about the foliation Fj, is well-known [C,
Theorem 9.3.13]: either it is the foliation associated to a fibration L — S, or
all leaves are dense. This allows us to prove several statements in the compact
case by considering the two cases separately. Second, the linear part of the
above Maurer-Cartan equation reads

drp,a=0, df, f=0 (2.1)

where d}L f =dr, f+ fv denotes the foliated de Rham differential twisted by .
The cohomology associated to d}L is the foliated Morse-Novikov cohomology
H3(FL). We will compute it in degree 0 for compact L (Prop. 2.4.16). The
ordinary (untwisted) foliated cohomology will be denoted by H*(Fr).

If the modular vector field can be chosen to be tangent to L— this happens
exactly when [y] = 0 € H'(FL)- then it is easy to see that L can be deformed
smoothly to Lagrangian submanifolds outside of the singular locus Z. At the
opposite end of the spectrum we have (Cor. 2.5.5, Prop. 2.5.10):

Theorem 2C. Assume L is compact and connected.

i) Suppose Fr, is the fiber foliation of a fiber bundle p : L — S*. If for every
leaf B of F1, we have [y|p] # 0 € HY(B), then C*-small deformations of L
necessarily stay inside the singular locus.
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ii) Suppose Fr, has dense leaves, and that H*(Fr) is finite dimensional. If
v € QL(FL) is not exact, then C*°-small deformations of L necessarily stay
inside the singular locus.

The finite dimensionality assumption in i) above is necessary: we show this
exhibiting an example, in which L is the 2-torus and F, a Kronecker foliation for
which the slope A € R\ Q is a Liouville number. The proof of these statements
relies on some functional analysis and Fourier analysis.

A first order deformation is a solution of eq. (2.1), the linear part of the Maurer-
Cartan equation. The deformation problem is obstructed in general: there are
first order deformations which do not extend to a (formal or smooth) path of
Lagrangian deformations. This is detected by the classical Kuranishi criterium:
given a first order deformation (a, f), where a € Q' (FL) and f € C*°(L),
the class Kr([(c, f)]) might not vanish. This class lives in the first foliated
Morse-Novikov cohomology group H. }/ (Fr). For a general deformation problem,
the Kuranishi criterium is a necessary — but not sufficient — condition to extend
a first order deformation to a formal curve of deformations. In the case at hand
however, we have the following striking result (Prop. 2.5.18, Cor. 2.5.20):

Theorem 2D. Let L be compact and connected. The following are equivalent:

e A first order deformation (a, f) of L is smoothly unobstructed,
« Kr([(e, f)]) =0,

o « extends to a closed one-form on L\ Zy, the complement of the zero
locus of f.

Notice that the last condition is independent of the data (X,~) encoding the
modular vector field.

Finally, we address moduli spaces. From a geometric point of view, it is natural
to identify two C!-small Lagrangian deformations of L if they are related by a
Hamiltonian isotopy of the ambient log-symplectic manifold (M, II). We show
that this is exactly the equivalence relation that the DGLA of Thm. 2B induces
on Maurer-Cartan elements (Prop. 2.5.26). Thus by eq. (2.1), the resulting
moduli space M7 has formal tangent space at [L] given by

TiyM™e™ = HY(Fr) & HY(FL).

For most choices of L, this is an infinite dimensional vector space, while the
formal tangent space to M%™ at Lagrangians contained in M \ Z is finite
dimensional (at least if L is compact). Hence, for most choices of L, the moduli
space is not smooth at [L]. We also exhibit some choices of L at which the
moduli space is smooth.

The same phenomenon occurs for the moduli space MP°%% obtained replacing
Hamiltonian isotopies by Poisson isotopies (Prop. 2.5.30). When L is compact
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with dense leaves, we show that L being infinitesimally rigid under Poisson
isotopies (i.e. T[L]MP‘”""’S = 0) implies that L is rigid in the following sense:
any sufficiently C*>°-small deformation of L is related to L by a Poisson
diffeomorphism isotopic to the identity (Prop. 2.5.34).

Organization of the chapter. In §2.2 and §2.3 we provide the geometric
background and prove the normal form given in Theorem 2A. In §2.4 and
§2.5 we address the deformations of Lagrangian submanifolds in log-symplectic
manifolds, exhibiting the underlying algebraic structure and drawing several
geometric consequences. We refer to the introductory text of the individual
sections for more details.

2.2 Lagrangian submanifolds in Poisson geometry

In this section, we first recall some concepts in Poisson geometry and we
introduce the notion of Lagrangian submanifold. Then we prove a normal
form for Poisson structures around Lagrangian submanifolds intersecting the
symplectic leaves transversely (Prop. 2.2.9), which can be seen as an extension
of Weinstein’s Lagrangian neighborhood theorem from symplectic geometry.
Our main motivation is the study of Lagrangian submanifolds contained in
the singular locus of a log-symplectic manifold. In §2.2.3-§2.2.4 we use the
aforementioned result to find local and semilocal normal forms around them
(Prop. 2.2.17 and Cor. 2.2.18).

2.2.1 Poisson structures

Definition 2.2.1. A Poisson structure on a manifold M is a bivector field
I € T'(A2TM) satisfying [II,I] = 0, where [-,-] is the Schouten-Nijenhuis
bracket of multivector fields.

The Schouten-Nijenhuis bracket on I' (A*T'M) is a natural extension of the Lie
bracket of vector fields, which turns I'(A*T'M)[1] into a graded Lie algebra [DZ,
Section 1.8].

The bivector field II induces a bundle map II¥ : T*M — TM, given by
contraction of IT with covectors. The rank of II at a point p € M is defined
to be the rank of the linear map Hg) : TyM — T,M. A Poisson structure
is called regular if its rank is the same at all points. Poisson structures
I1 € T(A2TM) of full rank correspond with symplectic structures w € T'(A2T* M)
via w «» —II71. In general, a Poisson manifold (M, 1) comes with an integrable
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singular distribution Im(TI*¥). Each leaf O of the associated foliation has an
induced symplectic structure, given by wp = — (H\@)fl.

A map @ : (M,I;;) — (N,Iy) between Poisson manifolds is a Poisson
map if Iy, and IIy are ®-related, i.e. (/\deq)) (HM)p = (HN)q)(p) for all
p € M. A vector field X on a Poisson manifold (M, II) is called Poisson if its
flow consists of Poisson diffeomorphisms, or equivalently, if £xII = 0. Each
function f € C°°(M) determines a Poisson vector field X := IT*(df), called
the Hamiltonian vector field of f. The characteristic distribution Im(IT#) of a
Poisson manifold (M, II) is generated by its Hamiltonian vector fields.

Thanks to the graded Jacobi identity of the Schouten-Nijenhuis bracket [-, -], the
operator [IL,-] : T (A*TM) — I' (A*T'TM) squares to zero. The cohomology of
the resulting cochain complex (I' (A*T M), [II,-]) is the Poisson cohomology of
(M, II), which we denote by H{(M). The cohomology groups in low degrees
have geometric interpretations, see for instance [DZ, Section 2.1]. We will only
encounter the first cohomology group H%I(M ), which is the quotient of the space
of Poisson vector fields by the space of Hamiltonian vector fields.

The modular class of (M,1I) is a distinguished element in Hf (M) which will
play a key role in this chapter. It is defined as follows: upon choosing a volume
form p € Q'°P(M), there is a unique vector field V" . € X(M) such that for all
f € C®(M), one has

£x, 1= "Vyoa(.

The vector field V" is called the modular vector field associated with p. One
can check that V! . is a Poisson vector field, and that choosing a different
volume form g/ = gu changes the modular vector field V' . by a Hamiltonian
vector field: )

Vﬂod = leuod - Xln lgl (22)

k4 € Hy(M) is intrinsically defined; it is
called the modular class of (M,II). A Poisson manifold is called unimodular
if its modular class vanishes. If M is not orientable, one can still define the
modular class using densities instead of volume forms. In this thesis, we will
only work with modular vector fields on orientable manifolds. For more on the
modular class, see [W3].

So the Poisson cohomology class [V

We also recall some useful notions from contravariant geometry [CM1]. The
general idea behind contravariant geometry on Poisson manifolds (M, II) is to
replace the tangent bundle T M by the cotangent bundle T* M, using the bundle
map II¥ : T*M — TM.

Definition 2.2.2. For a Poisson manifold (M, II), a Poisson spray x € X(T*M)
is a vector field on T* M that satisfies the following properties:
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i) pax(§) = TI*(€) for all € € T*M,
ii) mfx =tx for all t >0,

where p : T*M — M is the projection map and m; : T*M — T*M denotes
fiberwise multiplication by t.

Property 4i) above implies that x vanishes on M, so that there exists a
neighborhood U C T*M of M where the flow ¢, of x is defined up to time 1.
The contravariant exponential map of y is defined as

eXpX:UCT*M%MsﬁHpqu;(f).

The properties of the Poisson spray imply that exp, fixes M and that its
derivative at points z € M is given by

dyexp, : T,M @ TpM = T, M : (v,€) = v+ T (€).

By property i) above, exp, maps the fiber U NT;M into the symplectic leaf
through x. Poisson sprays exist for any Poisson manifold (M, II). They proved
to be useful in the construction of symplectic realizations [CM1] and normal
forms [FM], for instance.

2.2.2 Lagrangian submanifolds of Poisson manifolds
Lagrangian submanifolds

We now introduce Lagrangian submanifolds, which are the main objects of
study in this chapter. We will use the following definition [V], [GU]J.

Definition 2.2.3. A submanifold L of a Poisson manifold (M, II) will be called
Lagrangian if the following equivalent conditions hold at all points p € L:

i) T,L N T,0 c (1,0, (wo)p) is a Lagrangian subspace, in the sense of
symplectic linear algebra.

ii) Hg (TpLO) =T,LNT,0, where T,L° C Ty M is the annihilator of T}, L.
Here (O,we) denotes the symplectic leaf through the point p.

In case (M,II) is symplectic, this definition reduces to the usual notion of
Lagrangian submanifold in symplectic geometry. Another special case of interest
is when the manifold L has clean intersection with the leaves of (M, II); then L
is Lagrangian in M exactly when its intersection with each leaf is Lagrangian
inside the leaf, in the sense of symplectic geometry.

Coisotropic submanifolds of a Poisson manifold (M, II) are defined similarly,
replacing “Lagrangian" by “coisotropic" in i) and replacing equality by the
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inclusion C in ii). While coisotropic submanifolds have received lots of
attention, Lagrangian submanifolds only appear rarely in the context of Poisson
geometry. In this regard, there seems to be no standard definition for Lagrangian
submanifolds L C (M,II). Another definition that appears in the literature
uses the condition IT*(TL°) = TL (e.g. [D]). Notice that the latter definition
is more restrictive than our Definition 2.2.3, since it imposes that connected
components of L are contained in symplectic leaves and are Lagrangian therein.

Ezamples 2.2.4. a) The symplectic foliation associated with the Lie-Poisson
structure on so} = R3 consists of concentric spheres of radius 7 > 0. So a
plane in so3 is Lagrangian exactly when it passes through the origin.

b) Let (M,II) be a regular Poisson manifold of rank 2k, and ® : (M, II) — (N,0)
a proper surjective Poisson submersion of maximal rank, which amounts to
dim N = dim M — k. Assuming that the fibers of ® are connected, they are
Lagrangian tori inside the symplectic leaves of (M,II) [DDFP, Thm. 2.6].

c) Let G be a Lie group acting on a Poisson manifold (M, II) with equivariant
moment map J : M — g*. Assume the action is locally free on J~1(0).
Then J~1(0) C (M, 1) is coisotropic and transverse to the symplectic leaves
(see Lemma 1.4.8). If the leaves it meets have dimension equal to 2 dim g,
then J~1(0) is Lagrangian.

d) It is well-known that the graph of a Poisson map ® : (M7,1I;) — (Ms,Is) is
coisotropic in the product (M; x M, I} —IIy). If additionally ® restricts to
an immersion on each leaf of (Mj,II1), then its graph is in fact Lagrangian.

Normal forms

We will establish a normal form around Lagrangian submanifolds L C (M, II)
that are transverse to the symplectic leaves, extending Weinstein’s Lagrangian
neighborhood theorem [W1] from symplectic geometry. This is done in
Prop. 2.2.9 below. The following lemma reduces the problem to Lagrangian
submanifolds of regular Poisson manifolds.

Lemma 2.2.5. Let (M, 1I) be a Poisson manifold, and L C (M,1I) a Lagrangian
submanifold transverse to the symplectic leaves. Then there exists a neighborhood
U of L such that I|y is regular.

Proof. The conditions that L be Lagrangian and transverse to the leaves of
(M, 1I) determine the dimension of the leaves that L meets. Indeed, if p € L
and O is the leaf through p, then

dim(T, L) 4 dim(T,0) = dim(T, L + T,0) + dim(T, L N T, 0)

= dim(T, M) + %dim(TpO),
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so that dim(O) = 2(dim(M) — dim(L)). It now suffices to show that there is
an open neighborhood U of L that is contained in the saturation of L (i.e. the
union of the leaves that intersect L).

To construct such a neighborhood, fix a Poisson spray y € X(T*M). Let
E :=II*(TL), which is a vector bundle of rank dim(M) — dim(L) because of
the transversality requirement. Choosing a complement to E in TM|,, we get
a direct sum decomposition

T*M|, = E* ® E°. (2.3)
We claim that the contravariant exponential map
exp, : B — M

maps a neighborhood V' C E* of L diffeomorphically onto a neighborhood
U C M of L. By property i) in Definition 2.2.2, this neighborhood U is then
automatically contained in the saturation of L. To prove the claim, it suffices
to show injectivity of the derivative of exp, along the zero section

dyexp, : T, L & B} — T, M : (v,€) = v+ T (€). (2.4)

To do so, note that if TI%(¢) = —v € T, L, then ¢ € (Hg)fl (T.L) = E°. But
also £ € EZ, so that £ = 0 because of the direct sum (2.3). This implies that also
v = 0, which proves injectivity of the map (2.4). This finishes the proof. O

So in the following, we may assume that L is Lagrangian in a regular Poisson
manifold (M, II). In the next lemma, we put the foliation of (M,II) in normal
form around L, and we construct the local model for the Poisson structure II.

Lemma 2.2.6. Let (M,II) be a regular Poisson manifold with symplectic
foliation (F,w). Let L C (M,II) be a Lagrangian submanifold transverse to the
leaves of F, and denote by Fy, the induced foliation on L. We then have:

a) There is a foliated diffeomorphism ¢ between a neighborhood of L in (M, F)
and a neighborhood of L in (T*Fy,p*FL), with ¢|p, = Id. Here T*Fy,
denotes the union of the cotangent bundles of the leaves of Fr, and p*Fy, is
the pullback foliation of Fr by the bundle projection p : T*Fp — L.

b) There is a canonical Poisson structure Il.q, on the total space T*Fy, which
gives rise to the foliation p*Fy,.

Proof. a) By definition, T'F, is a Lagrangian subbundle of the symplectic
vector bundle (T'F|,w|r). Let V be a Lagrangian complement of T'Fy, i.e.
TF|r, =TFr @ V. The leafwise symplectic form w gives an isomorphism of
vector bundles

— WV S T Fp. (2.5)
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Next, by choosing a fiber metric g on the vector bundle T'F, we obtain a
foliated exponential map expyr : U C TF — M [CC, Example 3.3.9]. For
each leaf O of F, we have that expr : UNTO — O is the usual exponential
map of (O, g|ro). Since V C TF|L is a complement to TL in TM|y, the
map exp r gives a local diffeomorphism between neighborhoods of L

expr:V — M. (2.6)

Composing (2.5) and (2.6) gives a diffeomorphism between neighborhoods
of L that matches the leaves of F with those of p*Fr. Clearly, this map
restricts to the identity on L.

b) We claim that the canonical Poisson structure Iy« on T*L pushes forward
under the restriction map r : T*L — T*Fp, and that g, := 7 (p-p)
satisfies the requirement. This is readily checked in coordinates. Take a
foliated chart (x1,..., &k, Tk+1 ..., 2n) on L such that plaques of Fy, are level
sets of (Xg41,...,%n), and let (y1,...,y,) be the associated fiber coordinates
on T*L. Then the restriction map r : T*L — T*F} is just the projection
onto the first n + k coordinates, which implies that Iz« = > "1 | 0, A 9y,
pushes forward to a Poisson structure

. (Hpep) Z D, N Oy,

Clearly, the Poisson manifold (7T*Fy,.q,) decomposes into symplectic
leaves as follows:

(T*Fr,Tlean) =[] (T70,wr-0), (2.7)
O€eFL

where wr+» denotes the canonical symplectic form on 7*O. This finishes
the proof of the lemma. O

We now proceed by showing that (M,II) and (T*Fr,.qn) are Poisson diffeo-
morphic near L. If ¢ : (M, F) — (T*Fr,p*Fr) denotes the diffeomorphism
constructed in Lemma 2.2.6 (defined on a neighborhood of L), then we have
that

(¢*H> |L = Hcan|L- (28)

This can be checked by direct computation, but instead we refer to the proof of
Weinstein’s Lagrangian neighborhood theorem in [W1], as we are just applying
Weinstein’s construction leaf by leaf. In some detail, we consider the restriction
¢ : (S,ws) = (T*(LNS),wr«(1ns)) for each leaf S € F, and the usual
argument of the Lagrangian neighborhood theorem shows that ¢*wrp-(rns) and
ws agree along L N'S. This immediately implies the equality (2.8).
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Having established (2.8), we need an appropriate version of Moser’s theorem
in order to construct a Poisson diffeomorphism between neighborhoods of L in
(M, 1) and (T*FL,qpn). This in turn requires a foliated version of the relative
Poincaré lemma. Both statements already appeared in the literature (see [DI,
Prop. 3.3] and [CM2, Lemma 5]); we state them here for convenience.

Lemma 2.2.7. Let (N, F) be a foliated manifold, and let p : M — N be a
vector bundle over N. Denote by F' := p*(F) the pullback foliation of F.
Suppose that o € T (/\kT*]-") is a closed foliated k-form whose pullback i*a to
(N, F) vanishes. Then there exists a foliated (k — 1)-form 8 € T (AN*=1T*F)
such that d 8 = a and B|n = 0.

Lemma 2.2.8. Let (M,F,w) be a symplectic foliation. Consider a foliated 1-
form a € QY (F) satisfying o|n = (dra) |y = 0 for a submanifold N C M. Then
w—+dra is non-degenerate in a neighborhood U of N, and the resulting symplectic
foliation (U, Fly,w|u + (dxa) |v) is isomorphic around N to (M, F,w) by a
foliated diffeomorphism that is the identity on N.

Altogether, we obtain the following normal form around Lagrangian submani-
folds transverse to the symplectic leaves of a Poisson manifold.

Proposition 2.2.9 (Local model around Lagrangians transverse to leaves).
Given a Poisson manifold (M,1II), let L C (M,II) be a Lagrangian submanifold
transverse to the symplectic leaves. Denote by Fi, the induced foliation on L.
Then a neighborhood of L in (M, 1) is Poisson diffeomorphic with a neighborhood
of L in (T*Fr,Mean), by a diffeomorphism that restricts to the identity on L.

Proof. By Lemma 2.2.5, we can assume that (M, II) is regular, with underlying
foliation F. By Lemma 2.2.6 and (2.8), there exists a foliated diffeomorphism
between neighborhoods of L, ¢ : U C (M, F) =V C (T*F,p* FL), satisfying

((b*H) |L = Hcan|L and ¢|L = Id.

Denote by w,& € Q?(p*Fr|v) the leafwise symplectic forms on V C T*Fg
corresponding with the Poisson structures Il.,, and ¢.II, respectively. Since
@ —w is closed and the restriction (& —w)|r, vanishes, we can apply Lemma 2.2.7:
shrinking V' if necessary, we get that @ —w = d,+ 7, 8 for some 3 € Q' (p* Fr|v)
satisfying 8|, = 0. Lemma 2.2.8 gives an isomorphism of symplectic foliations
¢ (Vp*Frlv,@lv) = (W(V),p* FLlyv),wlyv)) such that 4|, = Id, again
shrinking V' if necessary. The map ¥ o ¢ : (U,II|y) — (w(V), Hcan|w(V)) now
satisfies the criteria. O

Remark 2.2.10. One can also obtain Proposition 2.2.9 by applying some more
general results that appeared in [CZ]. There one shows the following:
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o [CZ, Theorem 8.1] Let (M, D) be a smooth Dirac manifold. If DNT'M has
constant rank, then (M, D) can be embedded coisotropically into a Poisson
manifold (P,II). Explicitly, denote E := D NTM and define P to be the
total space of the vector bundle 7 : E* — M. Choosing a complement
to E inside T'M gives an embedding ¢ : E* < T*M. Then the Dirac

structure (ﬂ*D)l*wT*M , obtained pulling back D along 7 and applying

the gauge transformation by i*wr« s, defines a Poisson structure IT on a

neighborhood of M in E*. It has the desired properties: M C (P,II) is

coisotropic and the Dirac structure Dy pulls back to D on M.

o [CZ, Proposition 9.4] Given a Dirac manifold (M, D) for which D N TM
has constant rank k, let (Py,II;) and (Pz,II3) be Poisson manifolds of
dimension dim(M) + k in which (M, D) embeds coisotropically. Also
assume that the presymplectic leaves of (M, D) have constant dimension.
Then (P;,I1;) and (P, II2) are Poisson diffeomorphic around M.

In our situation, we have a Lagrangian submanifold ¢ : L — (M, II) transverse
to the symplectic leaves of (M,II), so the pullback ¢* Dy is a smooth Dirac
structure on L. Moreover, ¢* Dy NT'L has constant rank since it is given by
*(TL°) = TFr. The procedure in described in the first bullet point above
then yields exactly the local model (T*Fr, Hean)-

Now (L,i*Dy) is embedded coisotropically in (M,II) and in (T*Fr,can),
both of which have dimension equal to dim(L) + rk(T'Fr). The presymplectic
leaves of (L,i* D) have constant dimension, since they are just the leaves
of Fr. Applying the second bullet point above then shows that (M, II) and
(T*Fr,,Uean) are Poisson diffeomorphic around L.

T Fr,

Fr Fr Fr

Figure 2.1: The foliation F;, and vector bundle T* Fr,.
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Proposition 2.2.9 implies that C!-small deformations of a Lagrangian L C (M, II)
transverse to the leaves correspond with Lagrangian sections of (T*Fr, eqn ).
Thanks to the decomposition (2.7), these can be studied using well-known results
from symplectic geometry about Lagrangian sections in cotangent bundles. We
obtain that deformations of L C (M,II) are classified by the first foliated
cohomology group H'(Fp).

Corollary 2.2.11. Given a Poisson manifold (M,1I), let L C (M,II) be a
Lagrangian submanifold transverse to the symplectic leaves. Denote by F, the
induced foliation on L.

o The graph of a € T (T*Fr) is Lagrangian in (T*Fr,Uean) iff. dF,a = 0.

e Two Lagrangian sections ag, a1 € I'(T*FL) are interpolated by a smooth
family (as) of Lagrangian sections that is generated by a Hamiltonian
isotopy exactly when [ag] = [o1] in H*(FL).

2.2.3 Log-symplectic structures

The rest of this chapter is devoted to a specific class of Poisson structures, called
log-symplectic structures. These are generically symplectic, except at some
singularities where the bivector drops rank in a controlled way.

Definition 2.2.12. A Poisson structure II on a manifold M?" is called log-
symplectic if A1 is transverse to the zero section of the line bundle A2"T M.

A log-symplectic structure II is symplectic everywhere, except at points lying in
the set Z := (A™II) "' (0), called the singular locus of (M, II). If Z is nonempty,
then it is a smooth hypersurface by the transversality condition. In that case,
Z is a Poisson submanifold of (M, II) with an induced Poisson structure that is
regular of corank-one.

The geometry of the singular locus (Z, 11| ) has some nice features. The foliation
of II|z is unimodular, i.e. defined by a closed one-form 6 € Q!(Z), and the
leafwise symplectic form extends to a closed two-form w € Q?(Z). The pair
(6, w) defines a cosymplectic structure on Z. The existence of such a pair is
equivalent with the existence of a Poisson vector field on Z that is transverse
to the leaves of IT|; [GMP1]. One can obtain such a vector field by restricting
a modular vector field on (M,II) to Z [GMP2].

Ezample 2.2.13. The standard example of a log-symplectic manifold is R?" with
coordinates (x1,y1,- .., %n,yn) and Poisson structure

T =0u, AynOy, + Y Ou, ADy,.

=2



78 DEFORMATIONS OF LAGRANGIAN SUBMANIFOLDS IN LOG-SYMPLECTIC MANIFOLDS

By Weinstein’s splitting theorem, any log-symplectic structure looks like this
near a point in its singular locus. In this example, the vector field 0, is the
modular vector field corresponding with the volume form Y., dz; A dy;. It
is indeed tangent to the singular locus Z = {y; = 0} and transverse to the
symplectic leaves of II| 7, which are the level sets of the z1-coordinate.

The importance of modular vector fields is apparent in the following normal
form result, which describes the log-symplectic structure in a neighborhood of
its singular locus [GMP2], [O, Prop. 4.1.2].

Proposition 2.2.14 (Local form around singular locus). Let II be a log-
symplectic structure on an orientable manifold M, with singular locus (Z,11| 7).
Let Vinoa € X(M) be a modular vector field on M. Then there is a tubular
neighborhood U C Z x R of Z, in which Z corresponds to t =0, such that

My = Vinod|z A t0: + 1| 2.

Recall from Chapter 1 that log-symplectic structures can alternatively be viewed
as symplectic forms on a suitable Lie algebroid. To any b-manifold (M, Z)
consisting of a manifold M and a hypersurface Z C M, one can associate a Lie
algebroid ®T'M whose sections are the vector fields on M that are tangent to Z.
Lie algebroid 2-forms w € T’ (/\2 (bT*M )) that are closed and non-degenerate
are called b-symplectic forms. Having a log-symplectic structure IT on M with
singular locus Z is equivalent to having a b-symplectic form on (M, Z) [GMP2].
This point of view allows one to study log-symplectic structures using symplectic
techniques. We refer to §1.2.5 for more details.

2.2.4 Lagrangian submanifolds of log-symplectic manifolds

We now focus on Lagrangian submanifolds L of log-symplectic manifolds
(M, Z,1I). Lagrangians transverse to the degeneracy locus Z can be treated
using the b-geometry point of view, which reduces their study to symplectic
geometry. Indeed, the submanifold L is naturally a b-manifold (L, L N Z) and
the condition that L be Lagrangian (in the sense of Def. 2.2.3) is equivalent
with the requirements

bi*w =0
dim(L) = $dim(M)
where w is the b-symplectic form defined by IT and ¢ : (L, LN Z) — (M, Z)
is the inclusion. In [K], one shows that a neighborhood of L in (M,w) is

b-symplectomorphic with a neighborhood of L in its b-cotangent bundle *T*L,
endowed with the canonical b-symplectic form. As a consequence, the moduli
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space of Lagrangian deformations of L under Hamiltonian equivalence can be
identified with the first b-cohomology group *H'(L). All of this is in complete
analogy with what happens in symplectic geometry.

We will consider Lagrangians at the other extreme, i.e. those that are contained
in the singular locus of a log-symplectic manifold (M?", Z,1I). If L is such a
Lagrangian and O?"~2 is the leaf through p € L, then we have

dim(T,L) = dim(T,L + T,0) —n+ 1,

where 2n — 2 < dim(T,L + T,0) < 2n — 1. So either dim(L) = n — 1 and
connected components of L lie inside symplectic leaves, or dim(L) = n and L
is transverse to the leaves in Z. In the rest of this chapter, we will deal with
Lagrangians of the second kind:

middle dimensional Lagrangian submanifolds contained in the singular locus.

Remark 2.2.15. More generally, instead of middle dimensional Lagrangian
submanifolds, one could consider middle dimensional coisotropic submanifolds
C C (M, Z,1I). Although these two notions coincide for submanifolds transverse
to the degeneracy locus Z, they are not equivalent in general — in particular,
they are not equivalent in the setup we consider.

An example of middle dimensional coisotropic C' contained in Z which is not
Lagrangian, is the following. Take M = R* and II = 0,, A y10y, + Oz, A Oy,
take C given by the constraints 1 —y3 = 0 and y; = 0. It is coisotropic because
the Poisson bracket of these constraints is y7, thus again a constraint. It is not
Lagrangian because 17,,C = T,,0 at points p of C where y; vanishes, where O
denotes the (2-dimensional) symplectic leaf through p.

Ezample 2.2.16. In the local model (R*",z1,y1,...,%,,y,) with its standard
log-symplectic structure II = 9, A 410y, + D 1o O, A y,, the submanifold
L={y; =--- =y, =0} is Lagrangian of middle dimension, contained in the
singular locus {y; = 0}.

Example 2.2.16 is in fact the local model for any Lagrangian L™ C Z C (M?",1I).

Proposition 2.2.17 (Local form around a point). Let (M?", Z,11) be a log-
symplectic manifold and let L™ C Z be a Lagrangian submanifold. Around any
point p € L, there exist coordinates (x1,Y1,...,Tn,Yn) such that

Z ={y =0}
=0, ANy10y, + > iy Ou; A Oy,
L={y = =y,=0}
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Proof. Applying Prop. 2.2.9 and Prop. 2.2.14 locally around p shows that there

exists a coordinate system (U;x1,t,Z2,Ya ..., Zn,Yys) such that
n
|y = Vimodlunz Atr + Y 0x, A, (2.9)
i=2
Here V04 is a locally defined modular vector field, L = {t =y, = --- = y,, = 0}

and Z = {t = 0}. If we write Vi,,04|unz in coordinates as

n

VmodlUﬂZ = Z(x7y)8a:1 + Zgl(xvy)am + Z hl(x?y)aﬂz’

i=2 i=2

then requiring that Vy,04|unz is Poisson yields that z(z,y) only depends on .
Now Vinod|unz — 2(21)04, is a Poisson vector field tangent to the leaves, so it is
locally Hamiltonian. This implies that, changing to a different modular vector
field, we may assume

Vmod|UﬂZ = Z(x1)8x1~

Note here that z(x1) is nowhere zero since Vy,04|lunz is transverse to the leaves.
This allows us to define a new coordinate & by

§:=/ﬁdm1.

In the new coordinate system (&,t,22,y2,...,2Zn,Yn), the expression (2.9)
becomes

I =0c Aty + Y O, A Dy,
=2

so these coordinates satisfy the criteria. This finishes the proof. O

Given a Lagrangian L™ contained in the singular locus Z of a log-symplectic
manifold (M?", 1), Prop. 2.2.9 describes a neighborhood of L in (Z,1I|7) and
Prop. 2.2.14 describes a neighborhood of Z in (M?",1I). Combining the two
propositions, we get the following normal form around L™ C (M?",1I).

Corollary 2.2.18 (Local form around a Lagrangian in the singular locus). Let
(M?" Z T1) be an orientable log-symplectic manifold, and make a choice of
modular vector field Vioq on M. Let L™ C Z be a Lagrangian submanifold, and
denote by Fr, the induced* foliation on L. Then a neighborhood of L in (M,II)

1The leaves of the codimension-one foliation Fj, are the connected components of the
intersections of L with the symplectic leaves of Z.
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can be identified with a neighborhood of L in the vector bundle T*Fp x R — L,
endowed with the log-symplectic structure

IT:=V Aty + Hegn. (2.10)

Here t is the coordinate on R, and V is the image of Viod|z under the
Poisson diffeomorphism (Z,11|z) — (T*FL,Uean) between neighborhoods of
L constructed in Prop. 2.2.9.

Remark 2.2.19. The vector field V' in (2.10) is only defined on a neighborhood
W of L in T*Fy,. Note that there is some freedom in the formula (2.10), in the
sense that there we can replace V' by any Poisson vector field representing the
Poisson cohomology class [V].

To see this, take any representative V' — X of [V], for some function f defined
on W. Note that V is a modular vector field of ﬁ, with respect to the volume
form Q on W x R that is uniquely determined by requiring that (Q, A"II) = ¢.
If f is an extension of f to W x R, then also V — X is a modular vector field

of ﬁ, with respect to the volume form efQ on W x R. Proposition 2.2.14 now
implies that replacing V' by V' — X in (2.10) gives a log-symplectic structure
that is Poisson diffeomorphic to IT in a neighborhood of W C W x R.

An arbitrary representative of the modular class has little to do with the
Lagrangian L; we will remedy this in the next section. One could hope to find
a representative of [V] that is tangent to L. This amounts to finding a modular
vector field, defined on a neighborhood of L in (M, II), that is tangent to L.
This can always be done locally near a point, as a consequence of Prop. 2.2.17
(namely, the vector field 0,, in the statement of the proposition is modular and
tangent to L). Globally however, this may fail, as we now show.

Ezample 2.2.20 (No modular vector field is tangent). Consider the manifold
R x S x T? with coordinates (¢, 7,61, 02) and log-symplectic structure

IT = (0 + 0p,) At + O, N Dy,

The submanifold L := {t = ; = 0} = S* x S! is Lagrangian inside the singular
locus Z = S' x T?. Note that 0, + dp, is a modular vector field for II (associated
with the volume form df; A dfs A dt A dr). If there existed a modular vector
field tangent to L (defined near L), then its restriction to Z would look like

af of
ﬁ _ _J v
0+ 00, + (00, £ 90 (o) = 0+ (1+ 50 ) 00, = 20
for some f € C*(Z), where

=0. (2.11)
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But then, fixing any value of 7 and denoting by i : {7} x S! x {0} < Z the
inclusion, we get

0 :/ idf = Of 49, - —/ 6, = 2,
{r}x 81 x{0} {r}xs1x{0} O {r}x 81 x{0}

using Stokes’ theorem, and (2.11) in the third equality. So there is no modular
vector field tangent to L.

2.3 Poisson vector fields on the cotangent bundle
of a foliation

Let L be a manifold and Fy, a foliation on L. Denote by Il.,, the canonical
Poisson structure on T*Fy, (as in b) of Lemma 2.2.6). This section treats
Poisson vector fields on (T*Fp,,II..,). We show that every class in the first
Poisson cohomology group of (T*Fr,, Iq,) admits a convenient representative
(Thm. 2.3.2), and use this to compute explicitly the first Poisson cohomology
group (Cor. 2.3.5). At the beginning of §2.4, we apply these results to the
modular vector field of a log-symplectic manifold, and we find a convenient
representative of the class [V] in (2.10).

2.3.1 Convenient representatives

We denote by
X(L)r ={W e X(L): [W,I(TF)] CT(TFL)}
the Lie subalgebra of vector fields on L whose flow preserves the foliation Fy,.

Lemma 2.3.1. Let W € X(L)"% and let v : (T*L,Up-r) — (T*Fr,Uean)
denote the restriction. We then have the following:

(i) The cotangent lift of W pushes forward via v: T*L — T*Fy, to a Poisson
vector field on T Fr,, which we denote by W.
(ii) When W lies in T'(TFy), the vector field W is Hamiltonian.

Proof. We denote by pr«x, : T*Fr, — L and pr~r, : T*L — L the projections.

(i) Let Wy« € X(T*L) denote the cotangent lift of W. To show that it
pushes forward via r, we need to show that its action on functions preserves
r*(C°(T*FL)). Tt suffices to consider fiberwise constant and fiberwise
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(i)

linear functions on T*Fr. The fiberwise constant ones are of the form
pr-7, 9 for g € C*(L). Since pr+, = pr+F, or, we have

Wr-r(r*(p7-7,9)) = Wr+L (07-19) = p1-(W(9)) = r*(p7- 7, (W(9))).
Next, fiberwise linear functions on T*Fy, look like
hx :T*Fr = R: (p,a) = (o, X (p))

for X € T'(TFyp). Clearly, one has a commutative diagram

Cpe (T*Fr) —— C2 (T*L)

hﬂ hﬂ . (2.12)

N(TF) ———— I(TL)

Recall that for the standard symplectic structure on T*L, the Poisson
bracket satisfies {hx,hy} = —h[x y, for X, Y € I'(T'L). Moreover, the
cotangent lift Wy, is minus the Hamiltonian vector field of hy (see e.g.
[CCS, §2]). So for X € T'(TFL) we get

Wrep(r*hx) = Wrer, (hicx)) = —Xnw (hicx)) = —{hw, hicx)} = hwix))-

The vector field [W,i(X)] lies in I'(T'FL) by assumption, so that
Wr-p(r*hx) lies in v*(Cp (T*Fr)). This shows that Wy« pushes
forward under 7.

The vector field W is Poisson since the cotangent lift W+, is a symplectic
vector field and r is a Poisson map.

If W lies in I'(T'FL), then we have

W=r, (Z(W))TL =r. (—Xn,

z(W)) = 1 (Xpenyw) = =Xy,

where in the second equality we used the above comment about
Hamiltonian vector fields, and in the third we used the commutativity of
the diagram (2.12). O

The rest of this section is devoted to the following theorem, which provides
convenient representatives for first Poisson cohomology classes, and its
consequences.

Theorem 2.3.2. Let (L, Fyr) be a foliated manifold. Consider the standard
Poisson structure I, on the total space of the vector bundle p: T*Fr — L.
Fiz a class in Hf; (T*Fr). Then there exists a representative Y € X(T*Fp)
such that )
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(i) Y is p-projectable and p.Y € X(L)7*
(ii) the vector field® Y — pf*\{/ is vertical and constant on each fiber of p, and

Y — p.Y is closed when viewed as® a foliated 1-form on (L, Fr).

Notice that given a class in Hﬁcm (T*FpL), a representative Y as in Thm. 2.3.2
is by no means unique: adding to ¥ a Hamiltonian vector field of the form
W + X4 for W € T'(TFp) and g € C*°(L) gives a representative of the same
class that still satisfies the requirements of Thm. 2.3.2 (see Cor. 2.3.5 below).

Example 2.3.3. Consider the plane L = R? with coordinates z,y, and the
foliation F, given by the lines {x = const}. Then T*Fy, is R® with coordinates
x,9, z, with vector bundle projection p = (x,y): R® — R? and Poisson structure
Ieqn = Oy A O.. An arbitrary Poisson vector field has the form

U = f(x)0, + g0y + k0.,

where g,k € C>(R3) satisfy 0,9 = —0,k. This vector field is not p- projectable
in general, because g might depend on z. However, if h(z,y, z fo z,y,t)
we obtain a function on R3 such that

Y :=U+ X, = f(2)0, + (k+ 0yh)0.

is p-projectable. Notice that p,Y = f(x)d, lies in X(L)7*. Moreover, since the
partial derivative 0, (k+9yh) vanishes, the vertical vector field V := (k+9d,h)0,
is indeed constant on each fiber of p. Regarding V as a foliated 1-form on
(L, Fr) yields (k + 0,h)dy, which is closed due to dimension reasons.

To prove Thm. 2.3.2, we need a few general statements about cotangent bundles.

Lemma 2.3.4. Let N be a manifold. Consider its cotangent bundle T*N with
the standard symplectic form w and bundle projection pr+ .

(i) LetY € X(T*N) be a symplectic vector field*. Then there is h € C(T*N)
such that Y + X, is a vertical vector field.
(ii) Let V€ X(T*N) be a vertical symplectic vector field. Then V must

be constant on each fiber. It is closed when viewed as an element of
I['(T*N) = QY(N).

Proof. (i) Consider the foliation Fjyipe, of T*N by fibers of the projection
pr=Nn. Denote by ifiper the inclusion of its tangent distribution into the
tangent bundle of T*N. Since the 1-form tyw € QY(T*N) is closed, its

2The lift Z/)*x}; was defined in Lemma 2.3.1.
31.e., when viewed as a section of p : T*Fy, — L.
4Part (i) holds more generally when the pullback of tyw to each fiber of pr+ v is closed.
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pullback %, (tyw) is closed as a foliated 1-form. It is foliated exact,
as the leaves of Fyiper are just fibers of a vector bundle (choosing the
primitives on each fiber to vanish on the zero section, they assemble to
a smooth function on "N, c.f. Lemma 2.2.7). So i}, (tyw) equals
dF; ... for some h € C°°(T*N), which implies that vyw —dh € Q' (T*N)
pulls back to zero under i ¢;pe,. As the fibers are Lagrangian, this means
that w™(tyw — dh) =Y + X}, is a vertical vector field on T*N.

(ii) The 1-form tyw is closed because V is a symplectic vector field. For
any vertical vector field W we have that tpeyw = 0 and £y (tyw) = 0,
S0 Lyw = —pi. ya for a unique, closed a € QY(N). Writing in local
coordinates oo = ), fi(q)dg;, in the corresponding canonical coordinates
on T* N we have

V=~ ) Wrne) = 3 ia)d,

showing that V is constant along the fibers. This formula also shows that
V, when regarded as an element of I'(T*N) = Q!(N), is precisely the
closed 1-form «. This finishes the proof. O

Proof of Thm. 2.3.2. Let U € X(T*FL) be any representative of the given class
in Hi (T*Fr). Let Uy € X(L) be given by (Up)(x) := (dp)(U(z)) at each
point z € L. So (Up)(x) is just the T, L-component of U(x) w.r.t. the canonical
splitting T, (T*F) =T, L ® T} Fy.

We first show that Uy € X(L)7%. Since this is a local statement, it suffices to
consider open subsets of L whose quotient by the restriction of Fy, is a smooth
manifold and show that the restriction of Uy projects to a vector field on the
leaf space. By abuse of notation, we denote such an open subset by L. Since
the leaves of the symplectic foliation Fyymp of T*Fp, are the preimages under
p of the leaves of Fr,, there is a canonical diffeomorphism of leaf spaces

T*]:L/]:sympl = L/./—"L,

induced by the vector bundle projection p: T*F — L (or equivalently, by the
inclusion of the zero section). Since U is a Poisson vector field, it projects under
T*Fr, — T*Fr,/ Feympr to some vector field Ugyor. Restricting to points of the
zero section L, we see that Uy is projectable under L — L/Fy, (to the same
vector field Ugyot)-

By Lemma 2.3.1, Uy lifts to a Poisson vector field ffvo on T*Fr. The Poisson
vector field U — Uy is tangent to the leaves of T* Fy,. Indeed, since the statement
is local, we can again work on suitable open subsets of L and use that both U
and Uy are projectable to the same vector field under T*Fy, — T*Fr,/ Fsympi-
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We now apply Lemma 2.3.4 ¢) smoothly to the leaves of Fgymp and the vector
field U — ﬁg. More precisely, by the proof of Lemma 2.3.4 i), if w denotes the
leafwise symplectic form on T*Fy,, then we find a function h € C*°(T*Fy,) such
that the pullback of t.. ~w —dx h to the fibers of p is zero. It follows that

U*UO sympl
—1i. (LUfﬁow —dF, h) =U—Uy + X,

is vertical, i.e. tangent to the p-fibers. This has two consequences. First, we
can apply Lemma 2.3.4 ii) to conclude that this vector field is constant on
each fiber, and is closed when viewed as a foliated 1-form on (L, F1,). Second,

U + X}, is p-projectable and it projects to the same vector field as Uy, namely
Uy € X(L). Hence Y := U + X}, is a representative of the class Hlchan (T*Fr)
with the required properties. This proves the theorem. O

2.3.2 The first Poisson cohomology

Using Thm. 2.3.2, we can compute the first Poisson cohomology of (T*Fp,, eqp ).
In the following, H®(Fr) denotes the cohomology of the foliated differential
forms along the leaves of F,.

Corollary 2.3.5. Let (L, FL) be a foliated manifold and denote by Il ., the
standard Poisson structure on the total space of the vector bundle p: T*Fy — L.
There is a linear isomorphism

®: Hy (T*Fr) — X(L)"* /T(TFL) x H'(Fyr)

Y] (Y] [Y - p.Y]), (2.13)
where the representative Y satisfies the properties in Thm. 2.5.2.

Notice that X(L)*% /T(TFL) agrees with the space of vector fields on L/Fy,
whenever the latter quotient is smooth.

Proof. We first show that the map ® is well-defined. For this, due to Thm.
2.3.2, we only need to show that the above assignment is independent of the
choice of representative. Equivalently, since the expression in (2.13) depends
linearly on Y, we have to show that if ¥ is a Hamiltonian vector field on T™F,
satisfying the properties in Thm. 2.3.2; then p.Y lies in I'(T'F.) and Y — p.Y
is exact when viewed as a foliated 1-form on (L, Fr).

Being Hamiltonian, Y is tangent to the symplectic foliation of T Fz,, so p,Y
is tangent to the foliation F. Hence p.Y is a Hamiltonian vector field, by
Lemma 2.3.1. Being the difference of two Hamiltonian vector fields, the vertical
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and fiberwise constant vector field V :=Y — p’*\}; is Hamiltonian. Denote by
F € C>(T*Fr) a Hamiltonian function for V', so that for each leaf O of Fr, we
have tywr«o = —d(F|r+0). Regarding the vertical constant vector field V as a
foliated 1-form yields a € Q'(F.), determined by

see the proof of Lemma 2.3.4 (i7). In particular, F' is constant along the fibers
of p: T*Fr, — L,ie. F=p*(F|1). Thus a =dr, F, so it is foliated exact.

We show that @ is surjective. Let W € X(L)7. Then its lift W is a Poisson
vector field on T*Fy,, by Lemma 2.3.1 7). Let a € Q'(FL) be a closed foliated
1-form. Denote by V the corresponding vertical fiberwise constant vector
field on T*F;. Then V is a Poisson vector field, because it is tangent to
the symplectic leaves of T F, and its restriction to each symplectic leaf is a
symplectic vector field, by eq. (2.14). Hence W + V is a Poisson vector field on
T*Fr. By construction it satisfies the properties of Thm. 2.3.2, and its Poisson
cohomology class maps under ® to ([W], [a]).

We show that ® is injective. Let Y be a Poisson vector field on 7™ F, satisfying
the properties in Thm. 2.3.2, so that p,Y lies in I'(T'F;) and V :=Y — p.Y
is exact when viewed as a foliated 1-form on (L, Fr). By Lemma 2.3.1 i),
p.Y is a Hamiltonian vector field. Let o = dr, f € QY(FL) be the exact
foliated 1-form corresponding to V', where f € C*°(L). Then eq. (2.14) implies
that V = II¢,,,(p* (df)), showing that V is a Hamiltonian vector field. Hence

can

Y =p.Y + V is Hamiltonian, so [Y] = 0. O

We discuss the isomorphism (2.13) in two particular cases.

Ezample 2.3.6. i) Suppose Fy, is the foliation of L by points. Then T*F,
is just L with the zero Poisson structure, and the map ® reduces to the
identity map on X(L).

ii) On the other extreme, suppose Fi, is the one-leaf foliation of L. Then
T*Fy, is the cotangent bundle T* L with its standard symplectic form, and

®: Hy (T*L) — H'(L).

Since ® is an isomorphism, every class in Hlljm (T*L) admits a

representative V' which is a vertical fiberwise constant vector field (c.t.
Lemma 2.3.4). The image of this class under @ is [o] € H'(L), where « is
just V regarded as a 1-form. The inverse map ®~! reads [a] — —[w™!(p*a)],
by eq. (2.14), i.e. it is the composition of the natural isomorphism
p*: H'(L) — H'(T*L) and the isomorphism H'(T*L) = Hy, (T*L)

from de Rham to Poisson cohomology carried by every symplectic manifold.
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Remark 2.3.7. In case the foliation Fp on L is of codimension-one, we can
compare our Corollary 2.3.5 with some results that appeared in [O].

i) In [O, Prop. 1.4.7], one proves the following: if (M,II) is a corank-one
Poisson manifold and (F,w) denotes its symplectic foliation, then there is
a long exact sequence

o HY2(F, ) S BNF) L BE(M) > HYYF,0) S B (F) > -

(2.15)
Here v := T'M/TF denotes the normal bundle of the foliation, and H*(F,v)
is the cohomology of the complex (F(/\'T*]—' ®v), dv), where the differential
dy is induced by the Bott connection

V:T(TF)xT(v) > T(v): VxN = [X, N].

The connecting map 0 is, up to sign, given by the cup product with the
leafwise variation var, € H?(F,v*) of w [O, Def. 1.2.14], which vanishes
when w extends to a globally defined closed 2-form on M.

Specializing to our situation, assume (L, F,) is a codimension-one foliation.
Then (T*Fr,I.u,) is a corank-one Poisson manifold with symplectic
foliation (Fsympi,w). The leafwise symplectic form w € F(A2T*f5ympl)
extends to a closed 2-form on T*F;. Indeed, a closed extension of w is
given by ¢*wrpsp, where q : T*Fy, — T*L is any splitting of the restriction
map r: T*L — T*Fr, and wp~y, is the canonical symplectic form on T L.
So the connecting map 0 in (2.15) is zero, which implies in particular that

H%[ (T*]:L) = Hl(fsympl) @ Ho(fsymplay)- (2-16)

can

This is equivalent with our isomorphism in Corollary 2.3.5. Firstly, we
have that H'(Fsymp) = H'(FL) by homotopy invariance. Secondly, as
HO(Foymplsv) = X(T*Fp) svmvt [T(T Fyympt), We have an isomorphism

X(L)" = )T(TFL) — HY(Faympt,v) : [X] = X,

where X is the lift of X as defined in Lemma 2.3.1. To see that this map
is well-defined, just note that X € X(T*Fy)7svmrt  being a Poisson vector
field. Injectivity is clear, for if X is tangent to Fgympi, then its projection
p*)? = X is tangent to Fy. As for surjectivity, if U € HO(Fsympi, v) then
U = Uy as in the proof of Theorem 2.3.2, where Uy € X(L)”t. So the
isomorphism (2.16) is equivalent with the one from Corollary 2.3.5:

HYy  (T*Fp) = HY(FL) @ X(L)"* /T(TFy). (2.17)
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ii) In case (L, Fr) is a unimodular codimension-one foliation, then we can
further simplify the isomorphism (2.17). Indeed, if § € Q'(L) is a closed
defining one-form for Fr,, then we get an isomorphism

X(L) = )T(TFL) — HYFL) - [V] = 0(V).

An alternative argument, building on i) above, is the following. Since also
Fsympr is unimodular, the representation of T'Fsymp on v given by the
Bott connection is isomorphic with the trivial representation of T Fgympi
on the trivial R-bundle T*Fy, x R (see [O, Lemma 1.5.15]). So in (2.16),
we get HO(Fsympt, V) = HO(Fsympt) = HO(FL).

We will now upgrade Corollary 2.3.5 to an isomorphism of Lie algebras. Note
that the Lie bracket on X(L) restricts to X(L)”*Z thanks to the Jacobi identity.
Since I'(T'Fy) is a Lie algebra ideal of (X(L)”~,[-,"]), the Lie bracket passes to
the quotient X(L)”t /T(TFz). We get a representation of this Lie algebra on
the vector space H!(Fp), namely

p: XD e (H(FL) < [X] o £x (2.18)
TR : . .
Here the Lie derivative J
£xa:= T - [o3e! (2.19)

of a € QY(Fr) along X makes sense since the flow ¢; of X preserves the
foliation Fp,. Clearly, the map (2.18) is well-defined: for any X € X(L)7~, the
Lie derivative £ x acts on H!(Fy) since it commutes with the foliated differential
dr,. Moreover, if X € T'(TFL), then £x acts trivially in cohomology thanks
to Cartan’s magic formula. The fact that p is a Lie algebra morphism is simply
the identity £ixy) = £x oLy — Ly o Lx for X,V € X(L)7e.

Proposition 2.3.8. Let L be a manifold and Fr, a foliation on L. Let Il.q,
denote the standard Poisson structure on the total space of p: T*Fr — L. The
map ® constructed in Corollary 2.53.5 becomes an isomorphism of Lie algebras

©: (Hp,, (T°FL),[]) = (X(L)T /DT FL) xp H(FL). [ o) s

where [-,-] is the usual the Lie bracket of vector fields and [-, -], is the semidirect
product bracket induced by the Lie algebra representation p defined in (2.18).

To prove Prop. 2.3.8, it is convenient to rewrite the action (2.18) in terms of
vertical fiberwise constant vector fields on T Fy, instead of foliated one-forms
on (L, Fr). To do so, we use the correspondence

(Q.(IL)7de) — (x;ert.const.(T*fL)’ [Hca”?']) e (/\.Hgan) (p*oz), (220)
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which is an isomorphism of cochain complexes up to a global sign, i.e. it matches
dr, with —[II.qy, -] (see for instance [DZ, Lemma 2.1.3]).

Lemma 2.3.9. For every X € X(L)”*, the correspondence (2.20) matches £ x
and [X, ] , where X s the lift as described in Lemma 2.3.1.

Proof. For every foliated differential form o € QF(Fy) we have to show that

(AFTT

can

) (0" (£x@)) = [X, (A'TE,,) (P )] (2.21)
The left hand side of this equality, using (2.19), reads

d

% (/\kngan) ((¢t © p)*a) .

t=0

Since p*)~( = X, we have ¢; o p = p o ¢y, where 1; denotes the flow of X. So
4
dt
qa
dt

(AMIIE,,,) (4 (p"a)
t=0

(¥-0)x (A'IIE,,,) ("))

t=0

X (V) ()]

(AMIE,,) (0 (£xa)) =

using in the second equality that ), is a Poisson diffeomorphism of (T* Fy,, I an)-
So the equality (2.21) holds, and this proves the lemma. O

Proof of Prop. 2.3.8. To avoid confusion with too many brackets, we denote
equivalence classes by underlining the representatives. Fix Y, Z € Hﬁmn (T*Fr)
and assume that the representatives Y, Z satisfy the properties in Theorem 2.3.2.
Then also their Lie bracket [Y, Z] satisfies these properties: it is p-projectable,
p«[Y, Z] € X(L)”* and

_ —_— —

Y, Z] = p.[Y, Z] = [V, Z] = [p.Y, p. Z]

= Y+ (Y =p.Y) 0.2+ (2-0.2)| - 0.V, 0.7]

= [p*Y,Z —p*Z] + {Y —p*Y,p*Z] ; (2.22)

using in the last equation that Y — p:\? and Z — pf,:é are vertical and fiberwise
constant. Lemma 2.3.9 shows in particular that both terms in (2.22) are vertical

—_~—

fiberwise constant Poisson vector fields, hence the same holds for [Y, Z]—p.[Y, Z].
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So [Y, Z] meets the criteria of Theorem 2.3.2. We can therefore proceed as
follows:

@ ([v.2) = o ([v.2])

(p.l¥, 21, v, 2]~ p.[Y. 2])

(ovop2) [V 22 + [V -5V 2]

= [(py.y oY) (p2.2-0.2)]
= [2(Y),®(2)]

po

using the equation (2.22) in the third and Lemma 2.3.9 in the fourth equality. O

2.4 Deformations of Lagrangian submanifolds in
log-symplectic manifolds: algebraic aspects

In this section, we address the algebra behind the deformation problem of a
Lagrangian submanifold L™ contained in the singular locus of a log-symplectic
manifold (M?", Z,11). In §2.4.1-§2.4.2 we show that the deformation problem is
governed by a DGLA, and we discuss the corresponding Maurer-Cartan equation
(Thm. 2.4.3 and Cor. 2.4.10). We also compute the cohomology of the DGLA
in degree one, by calculating the zeroth foliated Morse-Novikov cohomology in
§2.4.3 (Thm. 2.4.16). This result will be used in the next section to extract
geometric information about the deformations.

To set up the stage, we revisit Corollary 2.2.18, which states that a neighborhood
of a Lagrangian submanifold L™ contained in the singular locus of an orientable
log-symplectic manifold (M?", Z,1I) can be identified with a neighborhood of
the zero section in T*F;, x R, endowed with the log-symplectic structure

IT:=V At + Megn. (2.23)

Here V is defined on a neighborhood of L in T*Fy, and only its Poisson
cohomology class [V] is fixed, see Remark 2.2.19. We can use Theorem 2.3.2 to
choose a convenient representative V' that satisfies

V= Vvert + Wifh

where Vj;ps := 1217 is the cotangent lift of p,V € %(L)fﬁ and Vyee =V —ﬁ
is vertical, fiberwise constant and closed as a section of p : T*Fr, — L. Indeed,
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although Theorem 2.3.2 is phrased for Poisson vector fields defined on all of
T*Fpr, it is clear that the proof still works if those vector fields are only defined
on a neighborhood of L in T*Fj, whose intersection with each fiber is convex.
We summarize the setup for the rest of this chapter:

Given a Lagrangian submanifold L™ contained in the singular locus Z
of an orientable log-symplectic manifold (M?", Z,II), denote by Fi, the
induced foliation on L. Fix an embedding ¢ : (Z,1I|z) — (T*FL,Hcen) of
a tubular neighborhood of L, as in Prop. 2.2.9. Denote by [V] the image
of [Vinod|z] under this map, and assume that V is a representative that
satisfies the assumptions of Thm. 2.3.2. The local model around L is then

(U - T*-FL X R7 ﬁ = (Vve'r't + szt) A tat + Hcan)7
where U is a neighborhood of the zero section L. We denote by
v € Qu(Fr)

the closed leafwise one-form that is defined by considering V., as a section
of p: T*Fr — L, and we also write

X :=p,V € X(L)"*r.

Remark 2.4.1. The Poisson cohomology class [V] is completely determined
by [Vinod|z], i-e. it does not depend on the choice of tubular neighborhood
embedding ¢ : (Z,11|z) — (T*FL,can) of L. Hence, the same holds for the
classes ([7],[X]) € HY(Fr) x X(L)"t /T(TF). This is a consequence of the
fact that any two tubular neighborhoods are isotopic; a proof can be made
using the concrete isotopy constructed in the proof of [Hi, Theorem 5.3].

Slightly abusing notation, we will often denote the local model by (T*]—' . X R, ﬁ)
although it is only defined on the neighborhood U. Throughout the rest of the
chapter, U denotes this fixed neighborhood. We only make reference to it when
strictly necessary.

2.4.1 The Maurer-Cartan equation

Studying C'-small deformations of L now amounts to studying Lagrangian
sections in (T*Fy x R,1I), the vector bundle over L given by the Whitney sum
of T* Fy, and the trivial R-bundle. By the following little lemma, it is equivalent
to look at coisotropic sections.

Lemma 2.4.2. The graph of a section («, f) € T'(T*FL x R) is coisotropic in
(T*]—"L X R, H) iff. it is Lagrangian.
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Proof. We only have to check the forward implication at points (a(g),0) inside
the singular locus T*Fj, x {0}. The symplectic leaf of (T*]—'L x R, ﬁ) through
(a(q),0) is given by p~1(O) x {0}, where O is the leaf of Fr, through ¢. By
assumption, the subspace

T(a(g),0)Graph(e, f) N Tia(g).0) (™' (O) x {0})
= {(dg)(v) : v € T,0 and (dyf)(v) = 0} (2.24)

is coisotropic in T{a(q).0) (P~ (O) x {0}), so it is at least (n — 1)-dimensional.
But clearly the right hand side of (2.24) is at most (n — 1)-dimensional, which
shows that the subspace (2.24) is Lagrangian in T{a(q),0)(p™*(0) x {0}). O

We now derive the equations that cut out coisotropic sections in (T*]-' 7 X R, ﬁ)

Theorem 2.4.3. The graph of a section («, f) € T(T*F, x R) is coisotropic
m (T*]—"L X ]R,H) ezactly when

{dﬁo‘ =0 . (2.25)

dr f+ fly—£xa)=0

Recall that any vector bundle E — L carries a family of natural maps
N*Pg : X*(E) — I'(A*E), given by restriction to L composed with the vertical
projection T' (A*TE|L) — T'(A*E). In particular, for E := T*F, x R we have
the following map in degree two:

APy : X2(E) — T(N*T*Fr) @ T(T* Fr).

Clearly, L is coisotropic with respect to II if and only if /\2PE(ﬁ) = 0. Below,
we denote the bundle projections by prg : £ — L and pro-z, : T*Fr, — L.

Proof of Thm. 2.4.3. A section («, f) € T'(E) gives rise to a diffeomorphism
T E 5 B (p&t) = (0,6~ o).t — f(p))

which maps the graph of (¢, f) to the zero section L C E. So it suffices to single

out the sections (a, f) such that L is coisotropic with respect to ¢§f""f)ﬁ.
This amounts to asking that

O — /\2PE ((b:(k*av*f) ( (V'UET’t + ‘/hft) A\ tat + Hcan)) . (2.26)

We now simplify the expression (2.26) in two steps, identifying throughout
vertical fiberwise constant vector fields on T™*F, with foliated one-forms on
(L, Fr) via the bijection (2.20).
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Claim 1: A?Pg (qb,(k_a’_f) ((Voert + Viige) A tat)) =(0,fy—ffxa). (*)
First, we note that
PE (¢*_a7_f)vvert> = PT*]:L (Vvert) = Vvert

and
P (65 D10,) = Po((t+ prf)dn) = (orif)o,

which yields the first term on the right in (*). Secondly, we have
A? Py (¢>(k7a’7f) Viipe A tat)) = Pg (¢>(:a’7f)vlift) A (prif)o
= Prer, (65 Viige) A (prif)or,
so Claim 1 follows if we show that
Prer, (67 Viig) = —£xa. (2.27)
To do so, we compute
Prer, (07 Viige) = (07 Viige) |, — (orr=7.), (62 “Viige)
= (62 Vi) |, — (prrer.), Viige)
= (¢ZaVlift)|L —Viiselo

:/0 g(@? “Viist)

using that pry«z, o =% = pry-r,. Now, note that

d , _ d
= (07 Vi) = —

dt, (2.28)
L

o1 (% Vi)
0

s=

— ¢7to< el
*

d
ds

i)
s=0

= 67" ([, Viipe])
= [av Vlift]
= —Viist,ql, (2.29)

In the fourth equality, we used that [c, Vj; 5] is vertical and fiberwise constant,
which follows from Lemma 2.3.9. Therefore, the equality (2.28) becomes

1
Prer, (65 Viigt) = —/ Viige, ol dt = — [Vigge, |,
0
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which is exactly (2.27) under the identification (2.20). This proves Claim 1.
Claim 2: A2Pg (¢Sﬁ“"f)nm) = (dF, o, dF, f). (*%)

Since L C (T* Fr, eqn) is Lagrangian, we get A2Pg(Iean) = A2Pre 7, Heqn = 0,
so the left hand side of (**) is equal to

/\2 PE (qi(k_a,_f)ﬂcan - Hcan) . (230)
We can decompose
(Z)Scia’if)ncan - Hcan = At A at + Bt (231)

for some A; € X(T*Fr) and By € X2(T*F1) depending smoothly on ¢t. We find
Ay by contracting with dt:

Ay == (6 Mg — Hwn)ﬁ (dt)
_ [qsfk*%*” oI, o (¢><*av*f>)*} (dt)
=~ (I, (d(t - pripf)))
=gl (Xpr;*hf)

(2.32)

XpT*T*fov

using that Xpr;*f ¢ is vertical and fiberwise constant. Next, since
L

(—a,—f) _d (O,~t) ( ,(—o—1)
£6t ( * Hcan) - dt —o * (¢* Hcan)
e [ d _
= ¢£ =7 (dt ¢£O, t)Hcan>
t=0

= ¢£_a’_f)(°€8tncan)
= 0,
it follows that
JgatBt = £6t ((ngimif)ncan —Ilean — Xpr;,*]_.Lf A at) = 0,
i.e. By = B is independent of t. So B is equal to its pushforward under the

projection T* Fy, x R — T*Fp,, which yields

1 1
— d —lx
B= ¢* Mean — Mean = / (¢* ¢ Hcan) dt = Lollegndt = £ cqn.

0 % 0
(2.33)



96 DEFORMATIONS OF LAGRANGIAN SUBMANIFOLDS IN LOG-SYMPLECTIC MANIFOLDS

Here the third equality follows from a computation similar to the one that led
to (2.29). Inserting (2.32) and (2.33) into (2.31) gives

(—a,—f)
¢* « Hcan - Hcan = pr;,*]__Lf N at + £o¢Hcan-
Applying the identification (2.20) now yields the conclusion of Claim 2:
/\QPE (Qi)s:a’if)ncan - Hcan) = /\QPE (Xp'r;*]_.Lf A 875 + £04Hcan)

= (dea7def)'

Combining Claim 1 and Claim 2, we see that the requirement (2.26) is equivalent
with the equations (2.25) in the statement of the theorem. O

Corollary 2.4.4. Any Lagrangian section of (T*]:L xR, ﬁ) can be connected to
L by a smooth path of Lagrangian sections. In particular, the set of Lagrangian
sections of (T*fL X R,H) is path connected for the compact-open topology.

Proof. Let (a, f) € T'(T*Fr xR) be a Lagrangian section. Fix a smooth function
U € C°(R) satisfying U(s) =0 for s < 0,0 < ¥(s) <1for0< s <1and
U(s) =1 for s > 1. Define & € C*°(R) by putting ®(s) := ¥(s — 1), and notice
that ® - ¥ = ®. Consequently, the smooth path s — (\I/(s)a, CID(S)f) consists of
Lagrangian sections, since (¥(s)a, ®(s)f) is a solution to the equations (2.25)
for each value of s € R. Clearly, this path is continuous for the compact-open
topology, it passes through the zero section at s = 0, and it reaches (o, f) at
time s = 2. This proves the statement. U

Remark 2.4.5. We comment on the Maurer-Cartan equation (2.25).

i) Twisting the foliated de Rham differential with a closed element n € Q! (Fy)
gives a differential

A% QNFL) = Q"N (FL) ram dra+nAa (2.34)

The associated cohomology groups, which we denote by H,’;(]-' 1), will be
discussed in more detail later. If F, is the one-leaf foliation on L, then we
recover what is called the Morse-Novikov cohomology, which appears in
the context of locally conformal symplectic structures [HR, Section 1].

ii) The Maurer-Cartan equation (2.25) shows that the problem of deforming
L into a nearby Lagrangian Graph(cq, f) can essentially be done in two
steps. Indeed, one can solve the first (linear) equation in (2.25) for «, and
then solve the second equation — which for fixed o becomes linear — for f.
Geometrically, this amounts to the following. First, one deforms L inside
the singular locus along the leafwise closed one-form «, and then one moves
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the obtained Lagrangian L' = Graph(a) C T*Fy in the direction normal
to T*Fp, along the function f € H2_£Xa(]:L)_

HY(Fr)  HY)_ o .(Fr)

P P
®
(v, f)
'O ‘a > Q4(Fr)

Figure 2.2: Deforming L into Graph(a, f).

So heuristically, it seems like deforming L into Graph(a) C T*F, for closed
a € QY (Fr) transforms v into v — £ xa. We will now make this precise.

Proposition 2.4.6. Let ¢ : Uy C (Z,1l|z) — Uy C (T*Fr,Ipr-x,) be a
fized tubular neighborhood embedding of L into T*Fr,, where Ilp«x, denotes
the canonical Poisson structure Ilcq,. Assume that V. = Viere + Vigpe is
a representative of the Poisson cohomology class Vs« [Vinod|z] satisfying the
requirements of Thm. 2.3.2, with associated data (X,v) € X(L)"t x QL (FL).
Consider a Lagrangian L' = Graph(a) C Uy C T*Fr for some closed
a € QY(FL). Then the following hold:

i) There is a canonical diffeomorphism of affine bundles
(q)ad)) : (T*vanT*]—-L) — (T*IL’;HT*]:L/) 5

which is a Poisson diffeomorphism between the total spaces and which fizes
points of L', so that ® o is a tubular neighborhood embedding of »~1(L")
into (T*]:Ll, HT*]:L, ) .

it) The representative .V also satisfies the requirements of Thm. 2.3.2, and
its associated data are

(X',7) = (X, (671)" (7 = £x0)) € R(L)W x Q(Fp).
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Proof. i) Since « is closed, the translation map

ii)

¢—O¢ : (T*-FLal_-[T*]:L) :> (T*fLu]-_-[T*]:L) : (p7 f) = (p7§ - O[(p))

is a Poisson diffeomorphism; this follows from the computation (2.33)
and the isomorphism (2.20). Its restriction to L', which coincides with
the restriction of the vector bundle projection py to L', is a foliated
diffeomorphism 7 : (L', Fr.) = (L, Fr), and the cotangent lift T*7 of T
descends to a Poisson diffeomorphism

T}i—’]’ : (T*}—L, HT*]—'L) :> (T*]:L/ s HT*]:L,) .
In summary, we have a commutative diagram

(T*L/, HT*L’) T (T*L, HT*L)

¢

TL! TL

(T*Fp Tp-x,,) e (T*Fp X7, ) - (2.35)

prs pL

(L/,fL/) % (L,fL)

The affine bundle map (®, ¢) := (T;—T oY, 7*1) meets the requirements.
Clearly @,V is pr/-projectable, since V' is pp-projectable and ® covers the
diffeomorphism ¢. Using that py o =% = pr, we have

(pL/)* (@*V) = (pL/ (0] T.;—T [e) ¢7a)* V — (7—71 OpL [e) ¢*OL)* V — (Tﬁl)* X.
Because the map 77! : (L, Fr) — (L', Fr/) is a foliated diffeomorphism
and X € X(L)”*, we also have (771), X € X(L')”+. Moreover, it is clear
that (7—1)

X = (T37), Viig+ by functoriality. It remains to show that

*

—_~—

BV — (pr)(®.V) = (T5706), V — (T57), Viigs

is vertical, fiberwise constant, and that it corresponds with the closed
foliated one-form 7* (v — £xa) € QY (FL/). We rewrite it as

(TF7), [(07%), (V= Viigo)] + (Tr7), [(67%), Viige — Viig]

= (7). (V = Viige) + (T57), [(67%), Viige — Viige] » (2.36)

using that V' — Vj;5, is vertical and fiberwise constant. The computations
done in (2.28) and (2.29) show that (¢=*), Viist — Viipe = —[Viist, o, so
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it is vertical fiberwise constant and it corresponds with the closed one-
form —£xa € QY(F) under (2.20). Since V — Vj;5¢ corresponds with
v € QY(FL), we get that the vertical fiberwise constant vector field (2.36)
indeed corresponds with the closed one-form 7* (y — £x ). O

2.4.2 The DGLA behind the deformation problem

We now show that the equations (2.25) obtained in Theorem 2.4.3 represent
the Maurer-Cartan equation of a differential graded Lie algebra (DGLA) that
governs the deformations of the Lagrangian L C (T*]—' L X R, ﬁ) To this end,
recall the following.

Suppose E — C' is a vector bundle and let II be a Poisson structure on E such
that C is coisotropic. Cattaneo and Felder showed in [CF] that the graded
vector space I' (A®E) [1] supports a canonical Ly [1]-algebra structure whose

multibrackets Ay, : I' (A®E) [1]®" — T (A*E) [1] are defined by
M(E1®@ - ®E&) := AP ([...[[IL&], & ... &) (2.37)

Here the &; are interpreted as vertical fiberwise constant multivector fields
on F and the map A*P : X*(F) — ['(A®E) is the restriction to C' composed
with the vertical projection I' (A*TE|L) — T'(A®E). These structure maps Ay
only depend on the co-jet of IT along the submanifold C, so the L [1]-algebra
usually does not carry enough information to codify II in a neighborhood of C.
Consequently, this L.[1]-algebra fails to encode coisotropic deformations of C
in general (see [S, Ex. 3.2]).

However, if the Poisson structure II is analytic in the fiber directions, then
the Loo[1]-algebra of Cattaneo-Felder does govern the smooth coisotropic
deformation problem of C. In [SZ1], such bivector fields are called fiberwise
entire, and there one proves the following [SZ1, Thm. 1.12].

Theorem 2.4.7. Let E — C' be a vector bundle and 11 a fiberwise entire
Poisson structure which is defined on a tubular neighborhood U of C in E.
Suppose that C' is coisotropic with respect to 11, and consider the Lo[1]-algebra
associated with C C (U,II). For any section o € T'(E) such that Graph(—a) is
contained in U, the Maurer-Cartan series MC(a)) converges. Furthermore, for
any such o € I'(E), the following are equivalent:

i) The graph of —« is a coisotropic submanifold of (U,1I).
it) The Maurer-Cartan series MC(a) converges to zero.

In the rest of this section, we show that the L.-algebra of Cattaneo-Felder
associated with (T*}" L X R, H) reduces to a DGLA, and that this DGLA governs
the deformation problem of the Lagrangian L.
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Lemma 2.4.8. The Poisson structure I = (Voert + Viige) ANt0y + gan, defined
on a neighborhood U of L in T*Fp x R, is fiberwise entire.

Proof. This is straightforward computation. Choose coordinates (z1,...,z,)
on L adapted to the foliation F, such that plaques of F, are level sets of ;.
Let (y1,...,Yn) be the corresponding fiber coordinates on T*L. Then write

Hcan = Z 6% A 8@/” Vuert = Z fj (x)aij p*V = Z hj (x)axj7
j=2 j=1

=2

where p : T*F;, — L is the projection and hi(z) only depends on z; since
p.V € X(L)7t. We then obtain

n

Vire = Y2 hy()n, = 323y 22 ()3
j=1 i

i=2 j=2

So the Poisson structure II reads

T= (Y f@)dy, +> hi(@)de, = > > yj%(x)ayi Nty + Y On, Ay,
j=2 j=1

i=2 j=2 ! i=2
which is clearly a fiberwise entire bivector field. O

Lemma 2.4.9. The Lo[1]-algebra (T(A®(T*Fp x R))[1],{\}) of Cattaneo-
Felder associated with (T*]-'L X R, ﬁ) corresponds to a DGLA-structure on the
graded vector space T'(A®(T*Fr x R)).

Proof. We will show that the multibrackets A, defined in (2.37) vanish for £ > 3.
Since the A are multiderivations, it is enough to evaluate them on elements
of C*°(L) and T'(T*FL x R). As the Ay have degree one, a degree counting
argument shows that they can be non-zero only when evaluated on tuples of
the form

(01,...,Uk), (h,al,...7ak,1) and (h,h/,O'l,...,O'k,Q),

where h,h' € C*(L) and o4,...,0, € I'(T*Fr x R). Now choose sections
(o, f),(B,g) € T(T*FL xR) and let h € C°(L). Let pr : T*"Fr xR — L
denote the projection. If we show that the multivector fields

[T a+pr (DA 8+ pr*(9)1]

Hﬁ, a + pri( f)at] : pr*(h)] (2.38)
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are vertical and fiberwise constant, then the above observation implies that
A = 0 whenever k > 3, since clearly Hﬁ,pr*(h)] ,pr*(h’)] = 0. One checks
that

[ﬁv « +p7‘*(f)at} = [(Vvert =+ ‘/lift) A tat + Hccm y & +pr*(f)at]

= —pr*(f)Voert N O + [Viige, o] ANtOy — pr*(f)Viige A O

+ [Hcana Oé} + [Hcanvpr*f] A 8757

where —pr*(f)Vyert A0, [Hean, @] and [eqn, pr* f]AO; are vertical and fiberwise
constant. So only the second and third summand are relevant to compute the
expressions (2.38), and we get

[a+pr (o] .5+ pr ()0

= [Viige, a] N0y — pr* (F)Viige A Oy, B+ pr(9)d;]
= pr* ()8, Viage] A Oy + pr*(9)[ev, Visge] A Oy

and

[[Ta+pr (o] pr(0)] = [Vigesa] A0 = pr* (F)Vaige A 0r , pre ()]

= pr* (fX(h))at,

where X = pr.Vj;s: as before. Using Lemma 2.3.9, we see that the multivector
fields (2.38) are vertical and fiberwise constant, which proves the lemma. O

We now established the existence of a DGLA-structure supported on the graded
vector space I'(A®(T*F, x R)), which governs the deformations of L as a
coisotropic submanifold. Thanks to Lemma 2.4.2, this DGLA in fact governs
the Lagrangian deformation problem of L. We now provide more explicit
descriptions for the structure maps of the DGLA.

Corollary 2.4.10. The deformation problem of a Lagrangian submanifold
L™ contained in the singular locus of an orientable log-symplectic manifold
(M2, Z 1) is governed by a DGLA supported on the graded vector space
L (A (T*Fp x R)) =T (AT*F, @ A*"IT*Fp), whose structure maps (d, [-,-])
are defined by

d:T (A" (T*FL x R)) = T (AFHH(T*F, x R))
(aaﬁ) = (_d]:Laa _d]:Lﬁ —YA ﬁ) ’
[]:T (AR (T*FL xR)) @ T (AN (T*FL x R)) = T (AFHH(T*FL x R))

(a,8)® (6,¢) = (0, £xaNe— (=) £x5 A B).
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Proof. We first write down explicitly the structure maps A, Ao of the Lo.[1]-
algebra (T(A®(T*Fr x R))[1],A1,A2), as defined in (2.37). We then apply
the décalage isomorphisms to obtain the DGLA (I'(A*(T*F., x R)),d,[,-])
associated with it. In the computations below, we again identify elements of
F( AN T*F L) with vertical fiberwise constant multivector fields on T Fy, via
the isomorphism (2.20).

Choosing (a, B) € T (A* (T*Fp, x R)) and (d,¢) € T' (AL (T*FL, x R)), we have
|:ﬁ7 a+ B A 8t:| = [(Vvert + Wift) A tat + Hcan7 o + ﬂ A 815]

= (=D [Viigr, ] At — V A BA D,
+ [Hcan’ O‘} + [Hcanvﬁ] A ata (239)

which implies that
M((,8)) = (—~drya, —dF, B —v A B). (2.40)
Next, using the computation (2.39), we have
Hﬁ,a—!—ﬂ/\@t} ,6+eA8t}
= [(=D)* ' [Viige, o] Atdy — V A BA Oy + Mean, ] + [Mean, Bl A 9, 6 + € A 0]

= [(=1)* [ Viige, o] Nt0y — Viggpe A BA Oy, 6 + € N Oy
= (=1)* Viigr,a] Ae A Dy — (—1)F7D [Vigpe, 6] A B A O,

which implies that
A2 ((a, B) @ (6,¢€)) = (o, (-D)*£xane— (=)D L5 A ﬂ) . (241)

The décalage isomorphisms act as

(@, 8) = (. B)

(avﬁ) ® (57 6) = (_1)k(avﬂ) ® (5’ 6)7
and applying them to (2.40) and (2.41) yields the result of the corollary. O
In more detail, the fact that this DGLA governs the deformations of L means

the following. For convenience, we assume the neighborhood U of L in T* F xR
where II is defined to be invariant under fiberwise multiplication by —1.
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Then for any section («, f) € I'(T*FL x R) whose graph lies inside U, we have

Graph(a, f) is Lagrangian < Graph(a, f) is coisotropic
& (—a,—f) is a Maurer-Cartan element of
the Loo[1] — algebra (T'(T*FL x R)[1], A1, A2)
< (a, f) is a Maurer-Cartan element of

the DGLA (T(T*Fp, x R),d, [-,-])

d;La:O
dr [+ f(y—£xa)=0

where the first equivalence is Lemma 2.4.2 and the second one is Thm. 2.4.7. So
we recover the equations (2.25) derived in Thm. 2.4.3 by direct computation.

Remark 2.4.11 (Formality). We do not know whether the DGLA in Corollary
2.4.10 is formal, i.e. Ly-quasi-isomorphic to its cohomology H*® (}‘L)@H,;’l (Fr)
with the induced graded Lie algebra structure. On one side, such a result would
not be so surprising when L is compact, because of the following. Any graded
Lie algebra (H,[-,-]) has the property that the Kuranishi map completely
characterizes unobstructedess: a first order deformation A is unobstructed
if and only® if Kr(A) = 0. When L is compact, we know that the DGLA
in Corollary 2.4.10 satisfies this property, as a consequence of Prop. 2.5.18.
Further, we expect this property to be invariant under L.,-quasi-isomorphisms
satisfying mild assumptions. We do not address the formality question any
further here. A possible approach is to apply Manetti’s formality criteria in
Thm. 3.3 or Thm. 3.4 of [Ma].

Remark 2.4.12. We comment on the DGLA (F(T*]—"L x R),d, [, ]]) introduced
in Corollary 2.4.10 above.

i) One can write down this DGLA in more generality. Let (A,p,[,"]) be
a Lie algebroid over a manifold M, and let V be a flat A-connection on
a line bundle F — M. Let D € Der(A) be a derivation of A. Then
there is an induced DGLA-structure (d, [-,-]) on the graded vector space
I (A(A* @ E)) =T (A*A*) @ T (A*"1A* ® E) defined by

d(a, ) = (daa, dyp)
[(a, ), (B,0)] = (0, £pa Ay — ()M £pB A ), (2.42)

for (o, ) € T (A" (A* @ E)) and (8,v) € T' (AL (A* @ E)). Here the Lie
derivative £p is obtained extending the derivation on A* dual to D.

5This is immediate, since if Kr(A) = [A, A] vanishes then ¢ +— tA is a curve of Maurer-
Cartan elements.
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iii)

DEFORMATIONS OF LAGRANGIAN SUBMANIFOLDS IN LOG-SYMPLECTIC MANIFOLDS

We discuss the structure of the DGLA (I'(A*(A* @ E)),d,[-,-]).- The
underlying cochain complex is a direct sum of complexes

(C(A*A"),da) ® (T (A"A* @ B)[-1], dy) .

It can also be described as the cochain complex of differential forms on the
Lie algebroid A ® E*, the semidirect product of A by the representation on
E* given by the dual connection V*. The underlying graded Lie algebra
structure is the semidirect product of the abelian graded Lie algebras
I'(A*A*) and T’ (A®*A* ® E) [—1] with respect to the action

T (A®A*) = Der(T (AA* @ E) [-1]) : @ £paAe.

We can recover the DGLA (I'(T*FL x R),d, [,]) described in Corollary
2.4.10 by making the following choices in the general construction of i)
above:

o Take the Lie algebroid A := (T'Fr,—t,—[,]), where ¢ : TFy, — TL
is the inclusion and [-, -] is the Lie bracket of vector fields. The Lie
algebroid differential d4 on I' (A®*A*) is then —dr, .

o Let D :=[X,] be the derivation determined by X € X(L)”*.

o Let E:= L xR — L be the trivial line bundle.

o Let the representation V of A on E be defined by

Vye=L_y oe—y(Y)e

for Y € T'(A). Since 7 is closed, this is indeed a representation, and
the induced differential dy on I' (A®*A*) is given by

dV. = _d]:L ® —7 Ne.

2.4.3 On foliated Morse-Novikov cohomology

We now discuss the cohomology of the DGLA (T'(A*(T*Fr x R)),d,[-,-]) in
degree one, which in the notation of Remark 2.4.5 is given by H' () ® HY(FL).
We explicitly compute the second summand of this cohomology group for
Lagrangians that are compact and connected. We first collect some foliated
analogs of well-known facts about Morse-Novikov cohomology [HR, Section 1].

Lemma 2.4.13. Let L be a manifold, Fr, a foliation on L and n € QY (FL) a
closed foliated one-form. As before, denote by H,'](}"L) the cohomology groups
of the differential dr}L defined in (2.34). We then have the following:

i) If [n] = [n'] € HY(FL), then HZ;(FL) = Hf;,(]-'L). In particular, if [n] =0

in HY(Fy) then HTI:(}_L) =~ H*(Fp).
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ii) Assume [n] # 0 in H'(Fr) and let f € H)(FL). Then there is a leaf O of
Fr, on which f vanishes identically.

Proof. i) If / = n+dg,g for g € C°°(L), then the following map is an
isomorphism of cochain complexes:

(Q°(Fr),d%. ) = (Q(Fr),d%, ) : B e9B. (2.43)
ii) By assumption we have that

dr, [+ fn=0. (2.44)

If f would be nowhere zero, then we could write n = —dz, log|f],
contradicting that 7 is not exact. So f must have a zero, say in the
leaf O € Fr. Consider the vanishing set Z; := {z € O : f(z) = 0}, which
is nonempty and closed in O. If we show that Z; is also open in O, then
we reach the conclusion f|p =0, since O is connected.

To this end, let € Z;. Since njo € Q'(O) is closed, there exist a
neighborhood U of z in O and g € C*°(U) such that 5|y = dg. Using
the isomorphism (2.43) for the one-leaf foliation on U, we obtain that
d(e?f|ly) = 0. So e9 f|y is constant on U, and since f(x) = 0 we must have
e? fly = 0. Consequently f|y = 0, which shows that U C Z;. So Z; is
open, and this finishes the proof. O

Remark 2.4.14. If we replace the hypothesis [] # 0 in i7) of Lemma 2.4.13 by
the stronger requirement that 7|0 € Q1(O) be not exact for all leaves O € Fy,,
then, restricting the equality (2.44) to each leaf O, we obtain that HS (Fr) =0.

We now specialize to compact, connected manifolds L endowed with a
codimension-one foliation F, defined by a nowhere vanishing closed one-form.
Under these assumptions it is well-known [C, Thm. 9.3.13] that:

o either (L, Fy) is the fiber foliation of a fiber bundle p : L — S*,

o or all leaves of Fy, are dense. (%)

For completeness, we have included a proof of this fact in the Appendix. Recall
that in the fibration case, the k-th cohomology groups of the fibers of p : L — S*
constitute a vector bundle #* over S':

Hy=H" (p7'(q)),
and one has

HM(Fr) 5T (HY) : [o] = (O’a tq [a|p_1(q)D . (2.45)



106 DEFORMATIONS OF LAGRANGIAN SUBMANIFOLDS IN LOG-SYMPLECTIC MANIFOLDS

Using the identification

FL .
x(Sl)%l%:YHY,

one can define a natural flat connection V on the vector bundle H* by the
formula

Vyos i= Otas (2.46)
for € QL (F) and Y € X(S'). Note that V is well-defined, because of Cartan’s
formula. If F denotes the typical fiber of p : L — S and {[f1],..., [Bm]} is

a basis of H*(F), then in a local trivialization U x F, the constant functions
(Bl ..., [Bm] € C°(U, H*(F)) 2 T(H*|) form a local frame of flat sections.

The following lemma will be useful to compute the foliated Morse-Novikov
cohomology in case the foliation is given by a fibration.

Lemma 2.4.15. Let L be a compact manifold endowed with a foliation F,
that is the fiber foliation of a fiber bundle® p : L — S'. Let n € QY(FL) be a
closed foliated one-form, denote by o,, € T'(H') the section corresponding with
[n] € H'(FL) under (2.45), and let Z, := o, (0). Then there exists a smooth
function g € C*°(L) such that

Mp-1() :d(g|p_1(q)) for all g € Z,,.

Proof. By [MM, Lemma 2.28], we can fix an embedded loop 7 : S — L
transverse to the leaves of F, which hits each leaf of Fj, exactly once. Define a
function h on p~1(Z,) by setting hlp-1(q) to be the unique primitive of 7[,-14)
that vanishes at the point p~!(g) N 7(S1). We claim that h extends to a smooth
function g € C°°(L). To prove this, it suffices to show that around each point
z € p~'(Z,) there exist a neighborhood U C L and a smooth function on U
that agrees with h on U Np~1(Z,).

Let « € p~i(q) for ¢ € Z, and denote y := p~1(q) N 7(S'). Working in a
local trivialization V' x p~!(q), choose a path 7 : (—e, 1 +¢) — p~(q) such
that v(0) = « and (1) = y, take a tubular neighborhood N of this path in
p~1(q) and define U := V x N. Since N is contractible, we have for each value
of v € V that n, € Q'(NV) is exact. Since one can choose primitives varying
smoothly in v (see [GLSW]), it follows that n|y is foliated exact. Choose any
primitive k € C*°(U) of n|y. Shrinking V if necessary, we can assume that
each fiber {v} x N intersects the loop 7(S'). Define a map ¢ : U — U N 7(S!)
by setting ¢(z) to be the intersection point of 7(S!) with the fiber through z.
Then setting hi=k— o* (k|Uﬁ7—(Sl)), we obtain a primitive of 5|y that vanishes

6Note that under these assumptions, L is automatically connected.
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along U N 7(S'). Uniqueness of such primitives implies that h agrees with h
wherever both of them are defined. This shows that h can be extended to a
smooth function g € C*°(L). O

We can now compute the zeroth foliated Morse-Novikov cohomology group.

Theorem 2.4.16. Let (L, FL) be a compact, connected manifold endowed with
a codimension-one foliation defined by a closed one-form. Let n € QY(FL) be a
closed foliated one-form.

i) Assume Fi, is the fiber foliation of a fiber bundle p : L — S'. Then we
have
H)(Fp) = {fe€C®(S"): f-0,=0},
where o, € T(H') denotes the section corresponding with [n] € H*(Fr)
under the correspondence (2.45).

it) Assume all leaves of Fr, are dense. Then

R if n is foliated exact
0 otherwise

H)(FL) = {

Proof. i) Fix a smooth function g € C*°(L) as constructed in Lemma 2.4.15
and define

U:H)(FL) = {feC®(S"): f-0y=0}:h e’h.

We first check that ¥ is well-defined. Choosing h € H(FL), we must show
that e9h is constant along the leaves of Fr, and that the induced function
on the leaf space S* lies in the annihilator ideal of o,, € T'(H'). Note that
for any ¢ € S, we have

d (h|p*1(tI)) + h|p*1(q) nlp“(q) =0.

In case oy (q) = 0, then n|,-1¢4) = d(gl,—1(
implies that

) and the isomorphism (2.43)

(€h)],-1(q) € H(p™'(q)) =R

Next, assume that o, (q) # 0, i.e. 1|,-1(4) is not exact. Then hl,-14 =0
by applying ii) of Lemma 2.4.13 to the one-leaf foliation on p~!(q), and
therefore (eh)],-1(¢) = 0.

Clearly, W is linear and injective. For surjectivity, we let f € C°°(S') be
such that f - o, = 0 and we have to check that e~9p*f € H)(Fy), i.e.

dr, (p*f) Y (2.47)

ed ed
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On fibers p~!(q) with o,(¢q) # 0, the equality (2.47) is satisfied since
p*f vanishes there. On fibers p~!(¢) with 0,(¢) = 0, we know that
Np-1(q) = d(glp-1(q)), s0 that the left hand side of (2.47) becomes

*f(Q)(679|p*1(q))d(g|p*1(q)) + f(Q)(eig|p*1(q))d(g|p*1(q)) =0.

ii) This is an immediate consequence of Lemma 2.4.13. O

Example 2.4.17. Take L = (S' x S',6;,65) and let Fr be the foliation by
fibers of the projection (S! x S1,6;,605) — (S',61). In order to compute the
cohomology group H,OI (Fr) for closed n € Q(Fz), we can choose a convenient
representative of [n] € H'(FL), by i) of Lemma 2.4.13.

In this respect, notice that every class [g(01,02)d0:] € H'(F) has a unique
representative of the form h(6;)dfs. Namely, setting h(0;) := % fsl g(61,02)dbs,
we have

[, 1601.02) — n(oy)] o = .

which implies that there exists k(61,02) € C>°(S! x S1) such that
ok
01,02) — h(01) = =——(01,02).
9(01,0-) (61) 892( 1,62)
This implies that
o
004

Uniqueness of such representatives follows by integrating around circles {6 } x S*.

g(917¢92)d92 - h(91)d92 = (91, 02)d92 = d]:Lk‘.

Now, fix 7 = h(61)df> in Q'(FL) and assume that f € H)(Fz). Then
_9f
00y

For fixed 6, the restriction of f to {f;} x S! reaches a maximum M and a
minimum m. The equality (2.48) implies that

M- h(6;) =0
m - h(6y) =0

0 dby + f - h(01)dbs. (2.48)

So either h(f1) = 0 or flr 1,60 = 0. Hence, we get that f-h(f1) = 0, and
(2.48) then implies that also 9f/002 = 0. In conclusion, we get

HY g, ya0, (FL) = {f(01) : £(61)h(61)db = 0}

={f(01) : f(01) - On(o,)ae, = 0},

using in the last equality that o4(g,)a6,(01) = 0 < h(01)df2 = 0. So we obtain
the result that was predicted by ¢) of Theorem 2.4.16.
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Remark 2.4.18. The example we have in mind throughout this subsection is of
course that of a compact connected Lagrangian L™ contained in the singular
locus Z of a log-symplectic manifold (M?", Z,II). The induced foliation 7, on
L is defined by a closed one-form, which is obtained by pulling back a closed
defining one-form for the foliation on Z. So (L, Fy) is either the fiber foliation
of a fiber bundle L — S, or all leaves of Fy, are dense.

Moreover, the foliation type of Fr, is stable under small deformations of the
Lagrangian L inside Z. To see this, we can work in the local model p : T*Fr, — L,
where the total space T*Fy, is endowed with the pullback foliation p=!(Fy).
Any Lagrangian deformation L’ of L is of the form L’ = Graph(«) for some
o€ Q}:l (FL), and the induced foliation Fp is obtained by intersecting L’ with
the leaves of p~1(FL). Therefore, the map p: (L', Fr/) — (L, Fy) is a foliated
diffeomorphism (with inverse o : (L, Fr) — (L', Fr/)), which shows that (L, Fr)
and (L', Fr+) are of the same type.

2.5 Deformations of Lagrangian submanifolds in
log-symplectic manifolds: geometric aspects

We present some geometric consequences of the algebraic results obtained in
the previous section. We address three different geometric questions, each in
a separate subsection, as we now outline. Throughout, we assume the set-up
given at the beginning of §2.4.

§2.5.1 Deformations constrained to the singular locus We investigate
when all sufficiently small deformations of the Lagrangian L are
constrained to the singular locus. Prop. 2.5.2 gives a condition under
which this does not happen. On the opposite extreme, in Cor. 2.5.5 and
Prop. 2.5.10 we obtain positive results assuming that L is compact, by
considering separately the case that L is the total space of a fibration and
the case that L has a dense leaf. The latter case is subtle, and we show
that the conclusion of Prop. 2.5.10 fails to hold if we remove a certain
finite dimensionality assumption.

§2.5.2 Obstructedness of deformations We ask when infinitesimal defor-
mations of the Lagrangian L can be extended to a smooth curve of
Lagrangian deformations. A sufficient criterium is given in Prop. 2.5.13.
(All smoothly unobstructed deformations arise this way under an additional
assumption, see Lemma 2.5.17). Our main results, under the assumption
that L is compact, are the computable “if and only if” criteria of Prop.
2.5.18 and Cor. 2.5.20.
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§2.5.3 Equivalences of deformations and rigidity On the set of Lagran-
gian deformations of L there are two natural notions of equivalence: an
algebraic one and a geometric one, given by Hamiltonian isotopies. In
Prop. 2.5.26 we show that they coincide. We also show that there
are no Lagrangian submanifolds which are infinitesimally rigid under
Hamiltonian isotopies, so that the moduli space (which typically is not
smooth) does not have any isolated points. This leads us to consider the
more flexible equivalence relation given by Poisson isotopies. The formal
tangent space of its moduli space is computed in Prop. 2.5.30. There do
exist Lagrangians which are rigid under Poisson isotopies, as follows using
Prop. 2.5.34.

Remark 2.5.1 (The local deformation problem). We summarize here how our
results specialize to the local deformation problem, i.e. to a Lagrangian L as in
the local model of Prop. 2.2.17:

e L can be deformed smoothly to a Lagrangian submanifold outside of the
singular locus (Remark 2.5.3).

o all first order deformations of L are smoothly unobstructed (Cor. 2.5.15).

e The space of local Lagrangian deformations modulo Hamiltonian isotopies
is not smooth at [L]. Indeed, the formal tangent space at [L] is isomorphic
to C*°(R) (see eq. (2.75)), while at Lagrangians contained in M \ Z it
is the zero vector space. The same is true if one replaces Hamiltonian
isotopies by Poisson isotopies.

2.5.1 Deformations constrained to the singular locus

We now investigate whether it is always possible to find deformations of the
Lagrangian L that escape from the singular locus. Working in the model
(U CT*Fp xR,V Ato; + Hcan), a sufficient condition is the existence of a
representative of the fixed first Poisson cohomology class [V] that is tangent to
L. Below, we denote by W := U N {t = 0} C T*Fy, the neighborhood of L in
T*Fr, where V is defined.

Proposition 2.5.2. The Poisson cohomology class [V] € Hf; (W) has a
representative tangent to L if and only if [y] = 0 € HY(Fr). If these equivalent
conditions hold, then there is a smooth path of Lagrangian deformations L
starting at Lo = L which is not contained in the singular locus for s > 0.

Proof. We start by showing that the conditions are equivalent. First assume
that V — X, for g € C°(W) is a representative of [V] that is tangent to L. As
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before, let P denote the map that restricts vector fields on W to L and then
takes their vertical component. By assumption, we then have

0=PV —Xy) = P(Voert + Viigs — Xy)
=7 = P(Xg = Xpe(ig) + Xp+ (i)
=7 = P(Xp(irg))
=5 —dr,(i"9g).

Herep: W — L and i : L — W denote the projection and inclusion, respectively,
the fourth equality holds since L is coisotropic, and the last equality holds
by the correspondence (2.20). This shows that v = dz, (i*g), and therefore
[v] = 0 € HY(FL). Conversely, if v = dz, g for some g € C*°(L), then V — Xy
is a representative of [V] that is tangent to L.

If the equivalent conditions hold, then by Remark 2.2.19 we can assume that
v = 0. The Maurer-Cartan equation (2.25) then shows that any path of the
form s — (0, sf) for a nonzero leafwise constant function f € C*°(L) consists
of Lagrangian deformations of L that are no longer contained in the singular
locus for s > 0. Alternatively, if v = dx, g for some g € C°°(L), then for any
nonzero leafwise constant function f on L, the path s +— (0, sfe™9) meets the
criteria. This proves the proposition. O

Remark 2.5.3. For the local deformation problem we have v = 0, see Prop. 2.2.17.
Hence locally, every middle-dimensional Lagrangian submanifold contained in
the singular locus can be deformed smoothly to one outside of the singular
locus, by Prop. 2.5.2.

We will single out some Lagrangians whose deformations are constrained to the
singular locus. We restrict ourselves to Lagrangians L that are compact and
connected. Recalling the dichotomy (%) from §2.4.3, these assumptions imply
that either (L, F) is the fiber foliation of a fiber bundle L — S! or the leaves
of Fr, are dense.

The fibration case

We need the following lemma about the map which, under the identification
(2.45), assigns to a closed foliated one-form its cohomology class.

Lemma 2.5.4. Let (L, F;) be a compact manifold, where Fy, is the fiber
foliation of a fiber bundle p : L — S'. Then the following map is continuous
for the C°-topology:

(Q4(Fr),C%) — (T(H"),C%) r - 04 (2.49)
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Proof. Let F' denote the typical fiber of p : L — S'. Choose a basis
{Im]s--.,[¥a]} of the first homology group H;(F’;Z), where the representatives
vi : [0,1] — F are smooth 1-cycles. Via the de Rham isomorphism

Hip(F) — Hom (H\(F;Z),R) : [w] = (Z cilvi] = Zcz/ w) ;

i=

we can pick the dual basis {{a1], ..., [a,]} of H}p(F), satisfying

/ a; = 5”
Vi

~

This provides an isomorphism H}p(F) = R". Choose local trivialisations of
p: L — S' over open subsets Uy, ..., U, covering S', and let V1,...,V, be open
subsets whose compact closures satisfy V; C U;, such that Vi, ...,V still cover
S1. Then locally the map (2.49) reads

QL (]—“)|p_1(Ui) =T (U; x Hjp(F)) 2 C™(Us;,R)" : g +— (/ Otg,...,/ Oég).
Y1 n

Therefore the C%-norm of o, is

> sup

1<i<r1<j<n 9€Vi

)

Vi

which can be made arbitrarily small by shrinking o in C°. Since the map (2.49)
is linear, this proves the lemma. O

The following corollary states that, under hypotheses that are antipodal to
those of Prop. 2.5.2, small deformations of L stay inside the singular locus Z.

Corollary 2.5.5. Let L™ be a compact connected Lagrangian submanifold
contained in the singular locus Z of an orientable log-symplectic manifold
(M?", Z,1). Assume that the induced foliation Fr, on L is the fiber foliation
of a fiber bundle p : L — S*, and that the section 0., € T (7—[1) is nowhere zero.
Then C-small deformations of L stay inside the singular locus Z.

Proof. Clearly, we have a continuous map
(QL(FL),CY) = ((FL).C%) tar v — £xa,
so composing with the map (2.49) gives a continuous map

(Q4(Fr),CY) = (T(H"),C%) ta s 04— £1a-
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Therefore, since 0., € I'(H!) is nowhere zero, the same holds for 0., ¢ o € I'(H)
provided that o € QL(F.) is sufficiently C'-small. By Theorem 2.4.16, this
means that the cohomology group H° (Fr) is zero for Cl-small . Looking

yY— f:x o
at the Maurer-Cartan equation (2.25), this implies that C!-small deformations
of L necessarily lie inside the singular locus. O

Remark 2.5.6. The assumption in Corollary 2.5.5 cannot be weakened. Clearly,
if the interior of o’ 1(0) is nonempty, then by Theorem 2.4.16 i) there exists
fe H,? (Fr) which is not identically zero, and s — (0, sf) is a path of Lagrangian
sections not inside the singular locus for s > 0.

Even if we ask that the support of o, be all of S', the conclusion of Corollary 2.5.5
does not hold. Indeed, one can construct counterexamples where the vanishing
set of 0, £ has nonempty interior, for arbitrarily C'-small « € QL (Fz).

The following is an example of a Lagrangian L for which small deformations
stay inside the singular locus. However there exist “long” paths of Lagrangian
deformations that start at L and end at a Lagrangian that is no longer contained
in the singular locus.

Ezample 2.5.7. Consider the manifold (T? xR?, 0y, 6, &1, &) with log-symplectic
structure
II:= (891 - 852) A 61851 + 892 A 852

and Lagrangian L := T?x{(0,0)}. Note that the leaves of F, are the fibers of the
fibration (T2, 60y, 60y) — (S1,0;). Considering (£1,&2) as the fiber coordinates on
T*L induced by the frame {df,df>}, we have that T*F; = (T? x R, 0y, 05,&)
with canonical Poisson structure s, A J¢,. Therefore, using the notation
established in the beginning of this section, we have

X = 0y,

v = —db;
So the section o, € I'(H') is nowhere zero, and Corollary 2.5.5 shows that
C'-small deformations of the Lagrangian L stay inside the singular locus.

It is however possible to construct (large) deformations of L that don’t lie in the
singular locus T*Fy, x {0} C T*Fp x R, first deforming L inside the singular
locus by large enough a € Q},(F1) such that Hgffxa(}—L) is no longer zero.
To do so explicitly, note that (g(@l, 02)dbs, f(91,92)) € QY (Fr) x C>=(L), gives
rise to a Lagrangian section of T*F x R exactly when

of 9g

e

004 00,
We construct a solution (g, f) to (2.50) with f not identically zero. For instance,
let f(61) be any bump function and let H(6;1) be another bump function with

(2.50)
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Hlgupp(sy = —1 and —1 < H(01) < 0. Define C := [g, H(01)dfy, so C > —2m.

Let K := —C/(C + 27) and put G(6;) := K(1+ H(61)) + H(6,). Notice that
Glsupp(f) = —1, and since

Sl
there exists a periodic primitive g(#1) with 9g/00; = G. We check that (g, f) is
a solution to the Maurer-Cartan equation (2.50): for p ¢ supp(f) both sides of
(2.50) evaluate to zero, whereas for p € supp(f) both sides of (2.50) are equal
to —f(p). It is clear that f # 0.

So first deforming L along o := g(61)df; and then moving outside of T*F, x {0}
along f gives a Lagrangian deformation that is no longer contained in the
singular locus. As a sanity check, looking at i) of Theorem 2.4.16, we notice
that Hf: £ya(FL) is indeed nonzero and that f € H _£yal(FL), since the
section 0_ £, vanishes on the support of f.

Moreover, the proof of Corollary 2.4.4 shows that this procedure can be
done smoothly, in the sense that one can construct a smooth “long” path
of Lagrangians that connects L with Lagrangians that are no longer contained
in the singular locus. Concretely, let (g, f) be the solution to (2.50) just
constructed, and let ¥ : R — R be any smooth function satisfying ¥(s) = 0 for
$<0,0<U(s) <lfor0<s<1land ¥(s)=1fors>1. Take ®:R — R to
be defined by ®(s) = ¥(s — 1). Then the path s +— (¥(s)gdba, P(s)f) consists
of Lagrangian sections, it starts at L for s = 0, passes through («,0) at time
s =1, and it reaches Graph(c, f) at time s = 2.

The Lagrangian Graph(c, f) constructed above does not lie entirely outside of
the singular locus. Interestingly, it is not possible to find such deformations of
L. For if we assume by contradiction that (g, f) is a solution to (2.50) with f
nowhere zero, then

271 af dg
df; = —db; =0,
/0 f<592 f) : /0 a0, 41

27T 1 af
~ 2 s 2.51
o Fa0," (2:51)

so that

But then we would get

B B 8f 2 27r1 af .
0—/Tzd(ln|f\d91)—/ fagzdeg/\cwl /0 (/o faQQdal) dbs =

using Stokes’ theorem in the first and (2.51) in the last equality. This
contradiction shows that f must have a zero, i.e. the Lagrangian Graph(c, f)
intersects the singular locus.

472

)
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Alternatively, if there were a = g(01, 62)df2 and a function f € HO _rxalFL)
that is nowhere zero, then Theorem 2.4.16 implies that o,_ ¢, o = 0 Therefore,
v — £xa is foliated exact, which implies that there exists a function k € C*°(T?)
such that

dg Ok
00, 00y
Integrating this equality against the standard volume form df; A df; on the
torus T2 gives a contradiction, since the left hand side integrates to —4m2 and
the right hand side integrates to zero.

11—

The case with dense leaves

Corollary 2.5.5 has no counterpart for Lagrangians whose induced foliation Fp,
has dense leaves, at least not without additional assumptions. Indeed, looking
at Theorem 2.4.16 and the Maurer-Cartan equation (2.25), we would need a
positive answer to the following question:

If v € QL(FL) is not ezact, is v — £ xa still not exact for small o € QL (Fp)?

Drawing inspiration from [B, Section 4], we construct an explicit counterexample
which answers this question in the negative. Let L = (']I‘Q, 01, 92) be the torus
with Kronecker foliation T'Fy, = Ker(df; — Adfs), for A € R\ Q irrational. A
global frame for T Fp, is given by dfs, so that every foliated one-form looks like
f(01,02)db,, which is automatically closed by dimension reasons. It is exact
when there exists g(61,602) € C* (T?) such that

dg dg
I =250+ 56, (2.52)

Expanding f and g in double Fourier series,

f(el’ 92 Z fm ne 27'm(n91+m02) and 9(91’ 92 Z Im, n€27rz(n91+m92)

m,ne” m,ne’
the equality (2.52) is equivalent with
frmn = 2mi(m + An)Gm.n Ym,n € Z, (2.53)

which implies in particular that fo o = 0. Note that the g, for (m,n) # (0,0)
are uniquely determined by the relation (2.53) since A is irrational.

Assume moreover that the slope A € R\ Q is a Liouville number (see Definition
2.6.1 in the Appendix). In this case the foliated cohomology group H'(Fr)
is infinite dimensional [Hae], [MS, Chapter III], as one can construct smooth
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functions f(61,62) in such a way that the g, , defined in (2.53) are not the
Fourier coefficients of a smooth function. We give an example of such a function
f(01,602) in part i) of the proof below.

Lemma 2.5.8. Consider the torus L = (TQ, 01, 92) endowed with the Kronecker
foliation TFr = Ker(df, — A\dbs), for A € R\ Q a Liouville number. There
exist a mon-ezact foliated one-form v € QY(Fr) and X € X(L)'t such that
every C>®-open neighborhood of 0 in QY (Fr) contains a one-form o for which
v — £xa is foliated exact.

Proof. The proof is divided into two steps. In the first step, we construct
v € QYFr). In the second step, we fix X € X(L)”* and we construct a
sequence of foliated one-forms ay, such that v — £ xay is exact for each value of
k, and aj — 0 in the Fréchet C*°-topology.

i) We first have to find a foliated one-form v = f(61, f3)df> that is not exact.
Moreover, since we want to approach « by means of exact one-forms, we
need that the coefficient fo o = ﬁ fT2 fdfy A dbs is zero. This can be done
as follows. By Lemma 2.6.3 in the Appendix, for each integer p > 1, there
exists a pair of integers (my,n,) such that

1

My + Iy < —m— .
A TR EATR I

(2.54)

We can moreover assume that (mp,n,) # (mg,ng) for p # ¢, and that
ny > p (see Remark 2.6.4). We now define f(61,62) by means of its Fourier
coefficients f, ,, setting

¥ _ (myp + Any)ny, if (m,n) = (my, nyp)
e 0 else

To see that these coefficients define a smooth function, we make the following
estimate for k € N:
| frnpinp | - H(mp,np)Hk = [mp + Anp| - ny - ||(mfa:”p)||]€
k
< myp + Anp| - (Imp| + [npl) - (Imp| + [np])
k+1
= |myp + Anp| - (Imyp| + [np])

1 k1
5 * (Imp| + [np])
(Imyp| + [np))" P P

1 p—k—1
G

IN

IN
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ii)

where the last inequality holds for p > k + 1. This shows that
SUP (1, myez2 | fmnl [l (2, n)||¥ is finite for each value of k € N, and therefore
f(61,02) is indeed smooth. To see that v = f(61, 63)db> is not exact, note
that the Fourier coefficients of a primitive g(61, 62) are given by (2.53):

Jmon

= 2mi(m + ) for (m,n) # (0,0). (2.55)

Imn

Therefore 1

(9o, | = 519 2 5P,
which does not tend to zero for p — co. So the gy, defined in (2.55) are
not the Fourier coefficients of a smooth function.
We let X := 0y,. Notice that X € X(L)”* and that X is transverse to
the leaves of Fr. We now construct a sequence oy € QY (Fr) such that
v — £xay is exact and ap — 0 in the C*°-topology. For each integer
k > 1 we define ay, = hy(61,02)d02, where hi (61, 62) is given by its Fourier
coefficients

- {(mp;?np) - O (%) if (m,n) = (mp,np)

0 else

Here ¢y is a bump function on R that is identically equal to 1 on the interval
[0, %] As before, we see that hy is a smooth function by the estimate

. ;1 L1 1\
hmp,np|'||(mpvnp)” S%‘mp"‘)‘npl'(‘mpl"'lnp‘) Sg P ’

where the last inequality holds for p > [. Note that v — £ xay is indeed
exact: it equals (f — Op, hy)df2, and the Fourier coefficients of f — Jy, hi
are given by

(myp + Any)n, (1 — ok <%)) if (m,n) = (myp,nyp)
0 else

fm,n_QWi'n'hfn,n = {

only finitely many of which are nonzero. Finally, by letting k increase, we
can make aj as C*°-small as desired. Indeed, for each integer | we have

Ml < 37 S fmy + M| - [|(mp, )| - (27077

0<j<lp>k

< >N (;)p_j.(%)j—l, (2.56)

0<j<lp>k
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where the last inequality holds for k > [. The expression (2.56) tends to
zero for k — 0o, since the inner sum is the tail of a convergent series for
each value of j € {0,...,1}. O

The above construction gives a concrete counterexample to the version of
Corollary 2.5.5 for Lagrangians (L, Fr,) with dense leaves. We only have to
realize L = (T?, 6, 05) with TFr, = Ker(df; —\dfs) as a Lagrangian submanifold
contained in the singular locus of some log-symplectic manifold. The normal form
(2.23) tells us how to construct this log-symplectic manifold. If (£, &) are the
fiber coordinates on T*L, and ¢ is the fiber coordinate on T*F, corresponding
with the frame {df>}, then the restriction map reads

T T°L — T*]:L . (917927§1a§2) — (917927)\61 +€2)7
and therefore the canonical Poisson structure on T*Fy, is
egn =74 (891 A (951 + 392 AN (952) = ()\691 + 392) A (95.

Let V denote the vertical Poisson vector field on 7% Fp, defined by the one-form
v € I'(T*FL) constructed in Lemma 2.5.8, and let X := 9p,. Then V + X is a
Poisson vector field on (T*Fr,, .4y, ) transverse to the symplectic leaves, so the
following is a log-symplectic structure:

(T*]—"L X R, (V + X) A td, + (\Jp, + p,) A af),

and L is Lagrangian inside T* Fy, with induced foliation F,. The above argument
shows that, for each integer k > 0, there exists arbitrarily C*-small o € QL (Fy,)
for which v — £x« is exact. By Theorem 2.4.16, there exists f € H2_£Xa(.7-"L)
not identically zero, where f can be made arbitrarily C*¥-small by rescaling
with a nonzero constant. The Maurer-Cartan equation (2.25) now implies that
Graph(a, f) is an arbitrarily C¥-small Lagrangian deformation of L that is not
completely contained in the singular locus T*Fy,.

Remark 2.5.9. In the above counterexample, it is crucial that the slope A is
a Liouville number. If Fr, is the Kronecker foliation with generic (i.e. not
Liouville) irrational slope A, then H'(Fr) = R[dfs]. In this case, exactness is
detected by integration, for if we denote

I: COO(Tz) —R: h(01,92) — / h(01,02)d91 A d92,
T2
then hdfy € QY(FL) being exact is equivalent with h € I-'(0). Since

integration is C°-continuous, it follows that the space of exact one-forms
Im(dr,) C (QY(FL),C°%) is closed. Therefore, if we take v € Q'(FL) not
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exact, so that HS(]—'L) = 0, then also v — £xa is not exact for Cl-small «a, so
that still H2_£Xa(.7:L) = 0. This shows that, if in the above counterexample
we take a generic slope A € R\ Q, then C'-small deformations of L do stay

inside the singular locus.

The problem in the above counterexample is that the space of exact one-forms
in QL (FL) is not closed with respect to the Fréchet C*°-topology generated by
CF-norms {|| - ||x }x>0. Under the additional assumption that H'(Fz) is finite
dimensional, this problem does not occur, and we obtain the following analog
to Corollary 2.5.5.

Proposition 2.5.10. Let L be a compact, connected Lagrangian whose foliation
Fr has dense leaves. Assume that H'(Fp) is finite dimensional and that
v € QL (FL) is not ezact. There is a neighborhood V of 0 in (D(T*Fy x R),C>)
such that if Graph(a, f) is Lagrangian for («, f) € V, then f = 0.

Proof. Consider the Fréchet space (Ql(}"L),C“’) and notice that the space
of closed foliated one-forms QL (F) C (Q'(FL),C*) is closed. To see
this, note that dr, is continuous with respect to the C*-topology and that
{0} C (Q3(FL),C>) is closed since Fréchet spaces are Hausdorff. Consequently,
(Qil (Fr), C°°) is itself a Fréchet space. Moreover, the space of exact foliated one-
forms Im(dg, ) C (Qil(]-'L), COO) is a closed subspace. Indeed, by assumption,
the range of dr, : (C*(L),C>) — (Q%,(FL),C>) has finite codimension, so it
must be closed because of the open mapping theorem (see [B, Remark 3.2]).

Since 7 is not foliated exact, there exists a C*°-open neighborhood of « consisting
of non-exact one-forms. By continuity of the map

(QL(FL),C®) = (QL(FL),C®) ta v — £xa,

we find a C*°-open neighborhood U of 0 in 2}, (F,) such that y— £ x v is not exact
for all v € U. Take a C*°-open subset U’ C Q'(F) such that U =U' N QL (FL).
We now define the C*°-neighborhood V of 0 in (I'(T*F, x R),C>) by

Vi={(a,f) e(T"FL xR) :a € U'}.

To see that V satisfies the criteria, let («, f) € V be such that Graph(e, f) is
Lagrangian in (T*Fp, x R,1I). Then a € Y and f € H) , . (Fr) = {0}, by i)
of Theorem 2.4.16. This proves the proposition. O

Since the C*°-topology is generated by the increasing family of C*-norms, every
C>-open neighborhood contains a C*-open neighborhood for some k € N. So
shrinking the neighborhood V obtained in the above proposition, one can assume
that it is a C*-neighborhood of the zero section, for some (unspecified) k € N.
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2.5.2 Obstructedness of deformations

Recall that a deformation problem governed by a DGLA (W, d, [-,-]) is called
formally /smoothly unobstructed if every closed element o € W7 — i.e. every
first order deformation — can be extended to a formal/smooth curve of Maurer-
Cartan elements. A way to detect obstructedness is by means of the Kuranishi
map

Kr:H' (W) = HQ(W) da] = H[O‘?O‘]H’

for if Kr([«]) does not vanish, then « is formally (and therefore also smoothly)
obstructed [OP, Theorem 11.4].

For the deformation problem of a Lagrangian L™ contained in the singular locus
of a log-symplectic manifold (M?", Z,11), a first order deformation is a pair
(051, fl) el (T*]:L X R) such that

drpon =0 (2.57)
dr, fi+ fiy=0

Clearly, first order deformations of the specific form (a1, 0) or (0, f1) are smoothly
unobstructed, since s(ay,0) and s(0, f1) satisfy the Maurer-Cartan equation
(2.25) for all s € R.

Obstructedness

We show that the above deformation problem is formally obstructed in general.
The Kuranishi map of the DGLA (I (A® (T*FL x R)),d,[,-]) described in
Corollary 2.4.10 reads

Kr: HY (T (A(T*Fr, x R))) — H? (T (A*(T*Fr x R))) :
[(OZ, f)] = [(07 2f£Xa)] ) (258)

and the following example shows that this map need not be identically zero.

Ezample 2.5.11 (An obstructed example). Consider the manifold T? x R2,
regarded as a trivial vector bundle over T2. Denote its coordinates by
(61,02,&1,&) and endow it with a log-symplectic structure II given by

IT = 0y, /\51851 + 0p, N 652.

Note that L := T? x {(0,0)} is a Lagrangian submanifold contained in the
singular locus T? x R = {& = 0}. It inherits a codimension-one foliation F7,
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with tangent distribution T'F;, = Ker(d#,), so the cotangent bundle 7 F}, has
a global frame given by dfs. In the notation established earlier, we now have

7=0
X =0y
and the differential d of the DGLA acts as

ok

d:T(T*Fr x R) = T (A} (T*FL x R)) : (gdbs, k) — (0, ~ 50
2

deg) . (2.59)

Since the Kuranishi map (2.58) is given by

K [(9d62. 1)) ) = [(O’Qfaaa’ld@’ﬂ 7

it is clear that

dg Ok
Kr( [(gdbs, £)] ) —0e fa—i = 5, for some k € C>(T?)

99
— =0. 2.
= Slff)&ldez 0 (2.60)

The equation (2.60) is a non-trivial obstruction to the prolongation of
infinitesimal deformations. For instance, (sin(6;)dfs,cos(61)) € T (T*F x R)
is an infinitesimal deformation of L since it is closed with respect to the
differential (2.59). But it cannot be prolonged to a path of deformations, since
the integral (2.60) is nonzero.

Formally unobstructed deformations

It is well-known that a deformation problem is formally unobstructed whenever
the second cohomology group of the DGLA governing it vanishes [OP, Theorem
11.2]. Specializing to our situation, say we have a first order deformation (a1, f1)
as in eq. (2.57) and we wish to prolong it to a formal power series solution
Y o> (ak, fr)€® of the Maurer-Cartan equation. So we require that

d Z(Oék,fk)ﬁk +% Z(O‘kvfk)€k,2(ak7fk)€k =0.

k>1 E>1 E>1
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Collecting all terms in €” gives

1

d(en, fu) + 5 > e fa)s (cu, )] =0
kl>1
k+l=n
1
& (~dr om, —dr, fo = fur) + 5 >0, fifxa + frfxar) =0
ki>1
k+l=n
d]:LOzn =0
< dr, fn + fny — %Z ki>1 (ifxar + fudxo) =0
k+l=n

We can always construct a formal power series solution if Hi(]:,;) =
Concretely, constructing (ag, fi) inductively, we can set o, = 0 for k >
and choose fi such that

0.
2

dry fe+ fuy = fem1£xon. (2.61)

A quick proof by induction indeed shows that the right hand side of (2.61) is
closed with respect to the differential d}L for each £ > 2. In conclusion, we
have proved the following:

Corollary 2.5.12. If H.(FL) = 0, then all first order deformations of the
Lagrangian L are formally unobstructed.

Note that this assumption is weaker than requiring that the second cohomology
group of the DGLA is zero, since the latter is given by H?(Fz) ® H.(FL).

We will see that the vanishing of H}/ (Fr) in fact ensures that the deformation
problem is smoothly unobstructed, at least for Lagrangians that are compact
and connected.

Smoothly unobstructed deformations: general results

We give a sufficient condition for smooth unobstructedness. When £ xa« is
foliated exact, we have HY(Fr) = H)_, . (Fr). Using this isomorphism, from
a solution of the linearized Maurer-Cartan equation (2.57) we can construct
a solution of the Maurer-Cartan equation (2.25). This leads to the following

result, which we prove with a short direct computation.

Proposition 2.5.13. If (a, f) € T'(T*FL x R) is a first order deformation
such that £xa is foliated exact, then («, f) is smoothly unobstructed.
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Proof. Let £xa = dg, h for h € C*°(L). We claim that the path
s+ (sa, sfeh) (2.62)

is a prolongation of (a, f) consisting of Lagrangian sections for all times s.
Indeed, we have the following equivalences:

dr, (sfe) + sfeh (v — £xsa) =0
& dr, (sfe’) + sfesh (v — dr,sh) =0
e dr, sf+sfy=0. (2.63)

In the last equivalence we use i) of Lemma 2.4.13, which says that the following
map is an isomorphism of cochain complexes:

(Q.(]'—L),d;—:d&m) = (Q*(Fp),d%,) : B> e "B

The equality (2.63) is satisfied, since («, f) is a first order deformation. Hence,
by Theorem 2.4.3, we know that (s, sfe®") is indeed a Lagrangian section for
each time s. Clearly, the path passes through the zero section at s = 0 with
velocity (a, f). This proves the claim. O

As a consistency check, we note that a first order deformation (a, f) as in
Proposition 2.5.13 maps to zero under the Kuranishi map. By eq. (2.58), we
have Kr([(o, f)]) = [(0,2f £x)]. If £xa = dx, h for some h € C*°(L), then

d}L(f-h) = d;_-Lf‘thﬂd]:Lh: f€xa.
Remark 2.5.14. We give a geometric interpretation of Proposition 2.5.13.

i) For a closed foliated one-form o € Q!(FL), exactness of £ x« is equivalent
with the existence of a closed one-form & € Q!(L) that extends . Indeed,
if @ € QY(L) is a closed extension of o and 7 : QY(L) — Q! (FL) is the
restriction map, then

0=r (Lxd&) =T (.,€X& - dbxa) = .,€Xa — d]:L (LXa) s
which shows that £xa = dr, (1xa) is exact. Conversely, assume that
£Lxa =dr, h for some h € C*°(L). Let & € Q'(L) be the unique extension

of « satisfying a(X) = h. Then « is closed, since

T’(Lxd&) = T’(.fxa—dLXg) = .ont—d]:Lh =0.
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ii) The smooth path? of Lagrangian deformations given by (2.62) is obtained by
applying certain Poisson diffeomorphisms of T*F, x R to the smooth path
of Lagrangian sections s — (0, sf). More precisely, as in item i), assume
that £xa = dz, h, and let & € Q'(L) be the closed one-form extending o
determined by a(X) = h. As before, denote by pr: T*F;, x R — L and
p : T*Fr, — R the vector bundle projections. Since « is a closed one-form,
it gives rise to a Poisson vector field on T*F x R, namely

I (pr*&) = (pr*h)td; + 1%, (0" Q).

Notice that this vector field is tangent to the fibers of pr, and that the second
summand is the constant vector field on the fibers of T F, with value a.
The flow at time s of II* (pr*@) maps graph(0, sf) to graph(sa, sfeh).

In case o = dr, g is exact, then we can interpret this construction in terms
of the DGLA governing the deformation problem. Indeed, Remark 2.5.23
shows that the gauge action by the degree zero element (g,0) takes the
Maurer-Cartan element (0,sf) to (sd}-Lg,sfeSX(g)). This is consistent
with the above, since X (g) is a primitive of £xa.

Corollary 2.5.15. If HY(FL) = 0, then all first order deformations of the
Lagrangian L are smoothly unobstructed.

Proof. If (a, f) is a first order deformation, then « is closed. Since H!(Fy) = 0,
it is exact. The same then holds for £ xa, so Prop. 2.5.13 gives the result. [

Corollary 2.5.15 shows in particular that obstructedness is a global issue, since
the cohomology group H'(Fp) always vanishes locally.

One may wonder if all first order deformations (a, f) that are smoothly
unobstructed arise as in Prop. 2.5.13. The answer is negative, but it becomes
positive if we restrict to first order deformations for which f € C°°(L) is nowhere
vanishing. We spell this out in the following remark and lemma.

Remark 2.5.16. First order deformations of the form (a,0), hence dr, o = 0,
are smoothly unobstructed, but in general £ xa« is not foliated exact. For
instance, consider the log-symplectic manifold (T? x R? IT) and Lagrangian
submanifold L := T? x {(0,0)} as in Example 2.5.11, for which the foliation
F1 is one-dimensional. Any a = g(01,02)df, € Q(F) is foliated closed, but
in general the integral of a along the fibers of L — St : (01,603) — 60y is not
independent of 1, implying that £ x« is not foliated exact.

"This path can certainly not be obtained by applying Poisson diffeomorphisms to L itself,
since the latter preserve the Poisson submanifold T Fp,.
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Lemma 2.5.17. Let (o, f) be a first order deformation of L that satisfies
Kr([(a, f)]) = 0. Assume moreover that f € C°°(L) is nowhere vanishing.
Then £x« is foliated exact.

Proof. The assumption K7([(a, f)]) = 0 is equivalent to [f£xa] = 0 in H}(Fy)
by (2.58), so it implies that there exists g € C°°(L) such that

f€xa=dr, g+ g7
Since f is nowhere zero, we can divide by f and we obtain

1 9
f 7!

1 g
= }d]‘—Lg - Fd]:Lf

= %dhg + 9dF, (;)

—dr, <§{) , (2.64)

using in the second equality that d}L f =0. Hence £ xa« is foliated exact. [

Exa=—dr g+

Smoothly unobstructed deformations: the compact case

We now show that for compact connected Lagrangians (L, Fr,), the condition
H,t (Fr) = 0 from Corollary 2.5.12 in fact implies that the deformation problem
is smoothly unobstructed. We actually prove more: one only needs that the
Kuranishi map (2.58) is trivial.

Proposition 2.5.18. Let (L™, Fr) be a compact connected Lagrangian
submanifold that is contained in the singular locus of a log-symplectic manifold
(M?", Z ). A first order deformation (v, f) € T (T*Fr x R) of L is smoothly
unobstructed if and only if Kr([(a, f)]) =0.

Proof. We only have to prove the backward implication. Let (a, f) be a first
order deformation of L with Kr([(c, f)]) = 0. We know that either the leaves
of Fy, are dense, or (L, Fy) is the foliation by fibers of a fiber bundle over S*.

i) First assume that the leaves of Fr, are dense.

o If 7 is not exact, then HI(Fz) = {0} by Theorem 2.4.16. Since
(a, f) is a first order deformation, we have that f € HY(Fz) = {0}.
Therefore (a, f) = (a,0) and a path of Lagrangian sections that
prolongs («, 0) is simply given by s — (sa,0).
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o Now assume that v = dz, k is exact. Thanks to (the proof of) Lemma
2.4.13 i), we know that e*f is constant on L. So either f = 0, in
which case we conclude that («, f) is smoothly unobstructed as in
the previous bullet point. Or f is nowhere zero, in which case we can
use Lemma 2.5.17. There we showed that £ x« is foliated exact, and
Proposition 2.5.13 then implies that the first order deformation (a, f)
is smoothly unobstructed.

ii) Now assume that F, is the fiber foliation of a fiber bundle p : L — S*. The
closed foliated one-form £ x o defines a section o, of the vector bundle
H! — S! via the correspondence (2.45). By Lemma 2.4.15, we can fix a
smooth function h € C*°(L) satisfying

(‘fxa)ha*l(q) :d<h‘p*1(Q)) ¥ € Zexan

1
X

2.5.13, we claim that the path s — (sa, sfe®") is a prolongation of («, f)
by Lagrangian sections. So we have to show that

where we denote Z¢, o := 0 (0). Mimicking the proof of Proposition

dr, (sfe’™) + sfesh(y — £xsa) = 0. (2.65)

To do so, we denote Zy := f~'(0) C L. Recall here that f € H)(F7), so
that Z; is a union of fibers of p: L — S* (cf. the proof of Theorem 2.4.16).
Clearly, the equality (2.65) holds on Z;. On the other hand, Lemma 2.5.17
implies that £xa is exact on L\ Zy. Therefore, £xa =dz, hon L\ Zy,
and the computation (2.63) in the proof of Proposition 2.5.13 shows that
(2.65) holds on L\ Z¢. This finishes the proof. O

Remark 2.5.19. A crucial point in the proof of Prop. 2.5.18 is that h is a smooth
function defined on the whole of L. Its existence is guaranteed by Lemma 2.4.15,
a statement about fiber bundles over S'. Due to this, we do not expect the
result of Prop. 2.5.18 to hold if one removes the compactness assumption on L.

We give an algorithmic overview of first order deformations and their
obstructedness, for Lagrangians that are compact and connected.

i) Assume (L, Fy) is the foliation by fibers of a fiber bundle p : L — S1. Fix
a smooth function g € C°°(L) that is a primitive of vy on Z, := 071(0), as
constructed in Lemma 2.4.15. Thanks to Thm. 2.4.16 i) and its proof, we

can characterize first order deformations («, f) of L by the requirements

d]:La =0
e9 f is constant on each p-fiber and vanishes on S\ Z,
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if)

By Prop. 2.5.18, a first order deformation («,f) of L is smoothly
unobstructed exactly when Kr([(c, f)]) = 0. We claim that the latter
condition is equivalent to the following:

[£xa]l=0€ H'(FL) on L\ Z;. (2.66)

Here Z; denotes the zero locus of f, as in the proof of Prop. 2.5.18.

To see that the two conditions are equivalent, recall that Kr([(c, f)]) =0
implies the condition (2.66), by Lemma 2.5.17. Conversely, assume that the
condition (2.66) holds. As in the proof of Prop. 2.5.18, choose a smooth
function h € C*°(L) such that £xa =dz, h on p~1(Z,,4). In particular,
this equality holds on L\ Z;. From this, we conclude that

f€xa=dx (fh).

Indeed, on Z; this equation holds because both sides are zero; on the
complement L\ Z; it holds because d}*_-L (fh) = d;—Lf ‘h+f-dr,h=ffxa.
So [f£xa] =0 in HI(FL), which by (2.58) implies that Kr([(c, f)]) = 0.

In case Fr, has dense leaves, then we distinguish between two types of first
order deformations. The first type are the ones of the form («, 0) for closed
a € QY(FL). Clearly, these are smoothly unobstructed.

First order deformations of the second type, those with nonzero second
component, can only occur if vy is foliated exact, by Thm. 2.4.16. They are
characterized as the («, f) for which

d]:LOé =0
e9 f is a nonzero constant

where g € C*°(L) is a primitive of 4. Such a first order deformation («, f)
is smoothly unobstructed exactly when [£xa] = 0in H*(Fy): the forward
implication holds by Lemma 2.5.17, the backward one by Prop. 2.5.13.

Notice that we now showed that the criterion (2.66) for unobstructedness
in the fibration case also holds if F has dense leaves: the two types of
infinitesimal deformations just described correspond with the extreme cases
L\Z;=0and L\ Z; = L.

In conclusion, we have proved the following.

Corollary 2.5.20. A first order deformation (c, f) € T'(T*Fr xR) of a compact
connected Lagrangian L is smoothly unobstructed exactly when

[£xal=0¢€ HY(FL) on L\ Z;. (2.67)

Here Z; denotes the zero locus of f.
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Given a first order deformation (v, f), the condition (2.67) is equivalent with «
extending to a closed one-form on L\ Z¢, by the argument of Remark 2.5.14 i).
Therefore the condition (2.67) is independent of the data (X,~) coming from
the modular vector field.

Ezample 2.5.21. Consider the manifold T? x R?, regarded as a trivial vector
bundle over T?, with coordinates (01, 02,&1,&2). Let Z := T? x R = {¢; = 0}
and L := T? x {(0,0)}.

i)

ii)

Any orientable log-symplectic structure with singular locus Z so that
L is Lagrangian with induced foliation T'F;, = Ker(df;), up to Poisson
diffeomorphism, looks as follows nearby L:

II=V A& O + Opy A Oy,

where
V= gX(el)ael + 97(91)852

for some function g, € C*°(S') and some nowhere vanishing function
gx € C°°(S1). Here we use Corollary 2.2.18, Remark 2.2.19 and Corollary
2.3.5, along with Remark 2.3.7 ii).

We have v = g,(61)df2, and a function on L satisfying the properties of
Lemma 2.4.15 is the constant function zero. Hence first order deformations
are given by pairs («, f), with the condition that f = f(#;) and f-g, = 0.

To see when such a first order deformation is unobstructed, we apply
Corollary 2.5.20. In the case at hand, since the fibers of p : L — S' are
circles and thanks to Stokes’ theorem, the condition (2.67) can be rephrased
as:

the function ¢ — / a is locally constant on p(L\ Z;) C S*.
P~ (2)

For instance, in case g, = 0 (as in Ex. 2.5.11), any pair (a, f) with
f = f(61) is a first other deformation. Such a pair is unobstructed exactly
when, writing o = a(61, 02)df, the expression

/ a(01,02)d92
{61} xSt

is constant on connected components of p(L \ Zy).

Now let A € R\ Q be a generic (i.e. not Liouville) irrational number.
Any orientable log-symplectic structure with singular locus Z so that L
is Lagrangian with induced foliation T'F;, = Ker(df; — Adf2) is Poisson
diffeomorphic around L with

II = (Cagl + Ka&) A 51851 + ()\691 + 892) A 852, (2.68)
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for some C, K € R with C nonzero. This follows from a similar reasoning
as above, now using that

(L) D(TFL) = HY(F) =R  and H'(FL) = R[dbs].

Note that v = Kdfs is exact if and only if K = 0. Therefore, first order
deformations are given by (a,0) if K # 0 and (o, ¢) if K =0, with ¢ € R.
Clearly, the Lie derivative along X = C0p, acts trivially in cohomology,
since H*(F) = R[dfs]. Therefore, all first order deformations of L are
smoothly unobstructed, by Corollary 2.5.20.

The situation is different when A\ € R\Q is a Liouville number. Disregarding
trivially unobstructed first order deformations of the form (a,0), Thm.
2.4.16 ii) implies that the ones with nonzero second component can only
occur for log-symplectic structures that are isomorphic around L to the
following model:

IT = COp, N&10¢, + (Ao, + 0p,) A O,

where C' € Ry. Notice that H'(F.) is now infinite dimensional, and that
the Lie derivative along X = C0y, no longer acts trivially in cohomology,
which is a direct consequence of (the proof of) Lemma 2.5.8. This shows
that there exist obstructed first order deformations.

2.5.3 Equivalences of deformations and rigidity

We now consider two natural equivalence relations on the space of Lagrangian
deformations: equivalence by Hamiltonian diffeomorphisms and by Poisson
isotopies. We show that the action by Hamiltonian diffeomorphisms agrees with
the gauge action of the DGLA that governs the deformation problem. We also
discuss rigidity of Lagrangians, both for Hamiltonian and Poisson equivalence.

Hamiltonian isotopies

We showed in §2.4.2 that the graph of (o, f) € T'(T*FL, xR) defines a Lagrangian
submanifold of (U, II) exactly when (a, f) is a Maurer-Cartan element of the
DGLA (I(A*(T*Fr, x R)),d, [,-]). So if we write for short

Defy (L) := {(a, f) €T(U) : gr(a, f) is Lagrangian inside (U,II)}
and

MCy (T(A*(T*Fi xR))) = {(a, f) € MC(T(A*(T*Fr, x R))) : gr(a, f) C U},



130 DEFORMATIONS OF LAGRANGIAN SUBMANIFOLDS IN LOG-SYMPLECTIC MANIFOLDS

then we have a correspondence
Defy (L) <5 MCy (D(A*(T*Fr, x R))). (2.69)

We now define equivalence relations on both sides of (2.69) and we show that
they agree under this correspondence. We closely follow the exposition in [SZ2].
There one considers equivalences of coisotropic submanifolds in symplectic
geometry, but most of their results remain valid in the more general setting of
fiberwise entire Poisson structures.

Definition 2.5.22. i) Two Lagrangian sections (ay, fo), (a1, f1) € Defy (L)
are Hamiltonian equivalent if they are interpolated by a smooth family
{(as, fs)}seo,1) of Lagrangian sections in Defy (L) that is generated by a
(locally defined) Hamiltonian isotopy. In other words, there exists a time-
dependent Hamiltonian vector field X, on U such that the associated
isotopy ¢s maps graph(ay, fo) to graph(as, fs), for all s € [0,1].

ii) Two MC elements (o, fo), (o1, f1) € MCy (D(A*(T*FL x R))) are gauge
equivalent if they are interpolated by a smooth family {(as, fs)}sefo,1
of sections whose graph lies inside U, and there exists a smooth family
{9s}se[0,1) of functions on L such that

d

7(as,fs)

ds (gsvo)a(asafs)]] 7d(9570)

=
= (d]:LgS7fs£ng)' (270)

Remark 2.5.23. By solving the flow equation (2.70), we obtain an explicit
description for the gauge action of the DGLA. Namely, a path of degree zero
elements (gs,0) acts on a Maurer-Cartan element («y, fo), which yields a path
of Maurer-Cartan elements (s, fs) given by

(e fa) = (ao+dﬁ ( / Sgudu) \foexp <£X / Sgudu)>. (2.71)

We rewrite the gauge equivalence relation in more geometric terms.

Lemma 2.5.24. Two MC elements (o, fo), (o1, f1) € MCy (T(A®(T*FLL xR)))
are gauge equivalent if and only if they are interpolated by a smooth family
{(cws, fs)}sepo,) of sections whose graph lies inside U, and there exists a smooth
Jamily {gs}sej0,1) of functions on L such that

d
%(as’ fs) = Xpr*gs|graph(as7fs) . (272)

Here pr: U C T*F, x R — L denotes the bundle projection, and we see (2.72)
as an equality of sections of the vertical bundle restricted to graph(as, fs).
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Proof. We compute the Hamiltonian vector field X4, . As before, we denote
by p: T*Fr, — L the bundle projection. We obtain

)(pr*gS = ((Vve'rt + ‘/lift) A tat + l_Ican)jj (dpr*gs)
= pr*(£xgs)toy + 11, (p"dgs), (2.73)
and therefore

Xpr*gs ‘graph(oes,fs) = pr*(fs"gxgs)at + Hgan(p*dgs)'

The section of T*Fj, x R corresponding with this vertical fiberwise constant
vector field is (dr, gs, fs£x9s) € T(T*Fr x R), in agreement with (2.70). O

We need some technical results from [SZ2]. We state them here for convenience.

Lemma 2.5.25. Let A — M be a vector bundle with vertical bundle V. Let
X, be one-parameter family of vector fields on A with flow ¢, and let 7y be a
section of A.

i) If 75 is a one-parameter family of sections of A such that the requirement
graph(ts) = ¢s(graph(ro)) holds for all s € [0,1], then 75 satisfies

d

5T P. X, Vsel0,1].

Here P, denotes the wvertical projection with respect to the splitting
TA‘graph(TS) = Tgraph(Ts) 2 V|graph(7's)-

it) Conversely, assume that the integral curves of Xs starting at points of
graph(rg) exist for all times s € [0, 1], and suppose that 5 is a one-parameter
family of sections of A satisfying

d
=P Xe Vse o]

Here P, is defined as above. Then the family of submanifolds graph(t)
coincides with ¢s(graph(y)) for all s € [0,1].

Making some minor modifications to the proofs of [SZ2, Proposition 3.18] and
[SZ2, Proposition 3.19], we can show that Hamiltonian equivalence coincides
with gauge equivalence.

Proposition 2.5.26. The bijection between Lagrangian sections and Maurer-
Cartan elements

Defy; (L) — MCU(F(A'(T*.FL X R))) oy e (o f)
descends to a bijection

Der(L)/NHam — MCy (F(A.(T*fL X R)))/Ngauge-
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Proof. First assume that the Lagrangian sections (ao, fo), (o1, f1) € Defy (L)
are Hamiltonian equivalent. Then they are interpolated by a smooth family
of sections (as, fs) € Defy (L) generated by the flow ¢4 of a time-dependent
Hamiltonian vector field Xy € X(U). Part ¢) of Lemma 2.5.25 then implies

that J
%(Oés,fs) = Pa,,1)XH, (2.74)

for all s € [0,1]. Define g5 := Hso(as, f5) € C°°(L) and observe that Hs—pr*gs
vanishes along graph(as, fs). Because graph(as, fs) is coisotropic, this implies
that the Hamiltonian vector field Xg, _pr+g, = Xg, — Xppeg, is tangent to
graph(as, fs). Consequently, the equality (2.74) becomes

d
%(O‘mfs) = P(as,fs)Xpr*gs = Xpreg,

graph(as,fs)’

where we also used that X4, is vertical (which is clear from the expression
(2.73)). Lemma 2.5.24 implies that («p, fo) and (a1, f1) are gauge equivalent.

Conversely, assume that (g, fo), (a1, f1) € MCy (D(A®(T*FL x R))) are gauge
equivalent. By Lemma 2.5.24, this means that they are interpolated by a smooth
family of sections (as, fs) inside U, such that

d

E(am fs) = Xpreg,

sty = Pt Korrs, 95 € 10,1

for a smooth family of functions g; € C°°(L). In particular, the integral curve
of X4, starting at a point (ao, fo)(p) € graph(ao, fo) is defined up to time
1, and is given by (as, fs)(p) for s € [0,1]. Part i) of Lemma 2.5.25 gives
os(graph(ag, fo)) = graph(as, fs) for all s € [0,1], where ¢ is the flow of
Xpr+g,. This shows that (ao, fo) and (a1, fi) are Hamiltonian equivalent. [

Remark 2.5.27. The above proof is almost identical to the one presented in [SZ2].
The main difference is that in [SZ2], one needs to impose compactness on the
coisotropic submanifold to obtain that gauge equivalence implies Hamiltonian
equivalence, as otherwise the flow lines of X,,«4. need not be defined for long
enough time. Since in our setting Hamiltonian vector fields of basic functions
are vertical, we don’t need this additional assumption.

As a consequence, we obtain that the formal tangent space at zero to the moduli
space MH*™ (L) := Defy(L)/~Ham can be identified with the first cohomology
group of the differential graded Lie algebra (I' (A® (T*F x R)),d, [,-]):

TioM{“™(L) = H'(FL) & HY(Fy). (2.75)

Indeed, if (s, fs) is a path of Lagrangian deformations of L, then % s=o(as, fs)
is closed with respect to the differential d of the DGLA. Moreover, if the path
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(s, fs) is generated by the flow of a time-dependent Hamiltonian vector field,
then (as, fs) is obtained by gauge transforming the zero section, as we just
proved. The expression (2.71) then shows that %|3:0 (as, fs) is of the form
(dr,g,0) for g € C°°(L). This proves the assertion (2.75).

Smoothness of the moduli space by Hamiltonian isotopies

In general, the moduli space MIU{ @™ (L) is by no means smooth, since the formal
tangent spaces at different points can be drastically different. For instance, let
us look again at Example 2.5.11, where we considered (T? x R?, 60y, 0q,&1,&2)
with log-symplectic structure

II = 391 /\51351 + 392 A&

and Lagrangian L = T? x {(0,0)}. The induced foliation on L is the fiber
foliation of (L, 6y, 0s) — (S*,01). Since v = 0, we get for any nonzero constant
¢ € R a Lagrangian section (0,c¢) € I'(T*F;, x R) whose graph lies outside the
singular locus. Hence, by symplectic geometry, we have

Ti0,eyMG“™(L) = H' (graph(0,c)) = H' (L) = R?,
which is finite dimensional. On the other hand, we have
T M{“™(L) = H'(Fr)® H)(FL) = H'(FL) & H(FL) = C>(S") @ C>(S"),
which is infinite dimensional.

There are however instances in which the moduli space is locally smooth.
Suppose a Lagrangian submanifold L™ contained in the singular locus Z has the
property that C'-small Lagrangian deformations of L stay inside Z. This means
that the C'-small deformations are precisely the graphs of C'-small elements of
QL (FL). Then MH*™ (L) is naturally isomorphic to an open neighborhood of
the origin in H'(F.), by Corollary 2.2.11. In particular, M{7%™(L) is smooth.
We present two classes of examples.

i) A class of Lagrangians L as above are those satisfying the assumptions of
Corollary 2.5.5. In that case M{%™(L) is infinite-dimensional. Indeed,
recall that H'(Fp) = T'(H1); if this was finite-dimensional, then H* would
be of rank zero, which implies that H'(Fz) = 0. Then v would be exact,
which is impossible under the assumptions of Corollary 2.5.5.

ii) Another class of Lagrangians L as above are those that are C!-rigid under
Poisson equivalences (see later on), since Poisson diffeomorphisms of the
ambient log-symplectic manifold necessarily preserve Z. In that case
MHam (L) is finite-dimensional by Lemma 2.5.31, assuming L is compact
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and connected. We exhibit concrete examples of such L in Example 2.5.36.
Notice that Proposition 2.5.34 as stated does not quite provide examples,
since it makes a statement only about C*°-small deformations.

Rigidity and Hamiltonian isotopies

At this point, we would like to address some rigidity phenomena. A Lagrangian
L is called infinitesimally rigid under Hamiltonian equivalence if the formal
tangent space T [O]M{}mm(L) is zero. We call a Lagrangian L rigid under
Hamiltonian equivalence if small deformations of L are Hamiltonian equivalent
with L. It turns out however that Hamiltonian equivalence is too restrictive
for rigidity purposes: there are no Lagrangians that are infinitesimally rigid.
Indeed, if the formal tangent space Tio)M{7*™(L) = H*(F1) & HI(FL) is zero,
then the triviality of the first summand implies that « is foliated exact. But
then H°(F) = HY(Fr) = {0} by Lemma 2.4.13 i), which is impossible. This
is a motivation to look at a more flexible notion of equivalence.

Poisson isotopies

We will use flows of Poisson vector fields instead of Hamiltonian vector fields
to obtain a less restrictive equivalence relation on the space of Lagrangian
deformations of L.

Definition 2.5.28. Two Lagrangian sections (o, fo), (a1, f1) € Defy (L) are
called Poisson equivalent if they are interpolated by a smooth family (asy, f5) of
Lagrangian sections in Defy (L) that is generated by a (locally defined) Poisson
isotopy. In other words, there exists a time-dependent Poisson vector field Y
on U such that the associated isotopy ¢s maps graph(ayg, fo) to graph(as, fs),
for all s € [0,1].

We denote the moduli space Defyy(L)/~poiss of Lagrangian deformations under
Poisson equivalence by ME°¥$(L). In order to study rigidity under Poisson
equivalence, we want to compute the formal tangent space T[O]MEOiSS(L),
as done in (2.75) for Hamiltonian equivalence. We now quotient first order
deformations of L by elements of the form | _o(as, fs), where (o, fs) is
generated by the flow of a time-dependent Poisson vector field Yy € X(U).
Lemma 2.5.25 ¢) implies that

di (as, fs) = P(Yo), (2.76)

S 1s=0

where P : X(U) — T'(T*F x R) is the restriction to L composed with the
vertical projection induced by the splitting (T'(T*F. xR))|, = TL®(T*Fr xR).



GEOMETRIC ASPECTS OF THE DEFORMATION PROBLEM 135

So we have to take a closer look at (vertical components of) Poisson vector
fields on U € T*Fr, x R.

Lemma 2.5.29. Given the Poisson structure Il = V A t0; + I eupn defined on
the neighborhood U C T*Fy, x R, the following map is an isomorphism.:

H'(L) ® H'(L) = BL(U) : (1€],9) = [TE(pr) + (org)V |,

where pr: U — L is the projection.

We remark that the existence of the isomorphism follows from known facts: L
is a deformation retract of U and of U N T*F, and both cohomology groups
appearing above are isomorphic to the first b-cohomology group of the pair
(U, UNT*FL), by [Me] and [MO, Prop. 1] respectively.

Proof. Clearly, the map is well-defined. To check injectivity, we assume that
I (pr=¢) + (pr*g)V = II*(dh) for some h € C>=(U). Taking the restriction
to W := U N {t = 0}, this implies that II¥,, (p*¢) + (p*g)V is tangent to the
symplectic leaves, where p : W — L is the projection. Since V is transverse
to the leaves, we get that p*g = 0, and therefore g = 0. This means that
% (pr*¢) = T1*(dh), and since II is invertible away from W C U, we get that
pr*§ = dh on U \ W. By continuity, pr*{ = dh on all of U, so that £ = d(i} h)
is exact. This shows that the map is injective.

To prove surjectivity, we use some b-symplectic geometry. The b-symplectic
form w on U obtained by inverting II reads [O, Proposition 4.1.2]

. dt
w=—T""=q"0A—+q",

where ¢ : U — W is the projection and (6,7) € QY(W) x Q*(W) is the
cosymplectic structure corresponding with the pair (Il.q,, V). Y € X(U) is a
Poisson vector field, then Y is tangent to W, so we can evaluate

. dt . . dt dt . X
S0 = 0T+ (07) = 0. vlwe) = (¥ )0+ v
(2.77)
which is a closed b-one form on U. Note indeed that the summand between
square brackets is a smooth de Rham form since ¢*(0, Y |w) — (¢*6,Y") vanishes

along the hypersurface W < ¢t = 0 and Y is tangent to it. Invoking the
Mazzeo-Melrose isomorphism [GMP2], [MO]

HAU) > B @ HOOV) s [0 + 5 - (3.
we know that the one-form

. . it Jdt _\ . .
8= (a"0,Y) — a0, VIw) T - <t,Y>q 04 vy
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appearing in (2.77) is closed, and that h := (0,Y|w) is locally constant. We
now have

Y = I (V)

~ dt dt
=YV T (0. )~ (0.7 § o+ (T )0 )

= (¢*h)V + I (—B) (2.78)
We make sure that the neighborhood U is such that the map ip opr: U — U
induces the identity map in cohomology. This means that ¢*h = pr* (i} ¢*h)

and B — pr*(i} B) is exact. So if we put £ := —i} 5 and g := i} ¢*h, then it
follows from (2.78) that

Y] = [[E@re) + (rg)V] € HLW). O

Proposition 2.5.30. The formal tangent space T[O]MEO”S(L) is given by

Q4(Fr)

Poiss _
T My (L) = Im(r: Qil(L) — Qil(}-L)) + HO(L)

~ ©HYFL), (2.79)

where the map r is restriction of closed one-forms on L to the leaves of Fr,.

Proof. Throughout, for all vector bundles appearing, we denote by P the map
that restricts vector fields to the zero section, and then takes their vertical
component. Because of (2.76), we have to show that the denominator appearing
in (2.79) is equal to

{P(Yp) : Ys € X(U) time-dependent Poisson vector field} .

Notice that the above set lies in Q!(F7), since all Poisson vector fields on U

are tangent to W := U N {t = 0}. For one inclusion, let Yy be a Poisson vector

field on U. Using the fact that Y} is tangent to W and Lemma 2.5.29, we have
P(Yo) = P (Yolw)

= P (I (0°6) + (0" 9)V + 1L, (dD)) (2:80)

for some ¢ € QY (L),g € H°(L) and h € C°(W). Here p: W — L is the
projection. Now note that
p (1

can

(dh)) = P (I, (p"diLh)) -
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Indeed, since L is coisotropic and h — p*i}7 h vanishes along L, we have that
1%, (d(h — p*i% h)) is tangent to L. So (2.80) becomes

P(Yy) = P (I, (p°€) + (0*9)V + Iy, (0" diLh))
=r(§+digh) + g7,
using the correspondence (2.20) in the last equality. This proves one inclusion.

For the reverse inclusion, given & € QY (L) and g € H°(L), we get a Poisson
vector field B
¥ (pr*6) + (prg)V € X(U),

and its vertical component along L is

P (B (pre) + (prg)V ) = P (W, (0°6) + ("9)V) = 7€) +97. O

Smoothness of the moduli space by Poisson isotopies

The moduli space ME°%%(L) is not smooth in general, since its formal tangent
space can change drastically from point to point. For instance, let us again look
at (T? x R2,01,0,, &1, &) with log-symplectic structure

IT = Oy, AN &10¢, + 0, N &2

and Lagrangian L = T? x {(0,0)}. Consider again a Lagrangian section
(0,¢) € T(T*Fr, x R) for nonzero ¢ € R; its graph lies outside the singular
locus. By symplectic geometry, [(0, )] is an isolated point in the moduli space
MEes3(L) and therefore

Ti(0,eyME**(L) = 0.

On the other hand, we have

T[O]Mgm'ss([/) — 19;1:1(}1) . ) HO(}-L)
Im (T : ch(L) - ch(‘rL))
[e%s} 2

{rec=m): B (fo fdos) =0}

which is infinite dimensional. In the computation, we used Remark 2.5.14 i).
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Rigidity and Poisson isotopies

We now address rigidity of Lagrangians under the equivalence relation by Poisson
isotopies. As in the case of Hamiltonian equivalence, we call a Lagrangian L
infinitesimally rigid under Poisson equivalence if the formal tangent space
T[O]ME"”S(L) is zero. A Lagrangian L is called rigid under Poisson equivalence
if small deformations of L are Poisson equivalent with L. Rigidity is a very
restrictive property: since Poisson diffeomorphisms fix the singular locus of the
log-symplectic structure, a Lagrangian L can only be rigid if small deformations
of it stay inside the singular locus.

We will restrict ourselves to Lagrangians L that are compact and connected.
It turns out that asking for infinitesimal rigidity under Poisson equivalence is
only a little weaker than asking for infinitesimal rigidity under Hamiltonian
equivalence, as the next lemma shows.

Lemma 2.5.31. Let L be a compact, connected Lagrangian that is infinitesi-
mally rigid under Poisson equivalence. Then H'(FL) is finite dimensional.

Proof. Since L is compact, we know that H'(L) is finite dimensional. Choose
a basis {[B1],...,[Bk]} of H'(L). If a € QL (FL) is a closed foliated one-form,
then infinitesimal rigidity implies that o = r(a) + ¢y for some & € Q,(L)
and ¢ € R. Since a can be written as a = ¢181 + - -+ + ¢Sk + dh for some
€1,...,c, € Rand h € C°(L), we get

a=cir(B) + - +epr(Br) +dr b+ cy.

So HY(Fy) is spanned by {[r(51)], - - -, [r(Bk)], [7]}, hence finite dimensional. [

This implies that Lagrangians L for which Fr, is the foliation by fibers of a fiber
bundle over S! are never rigid, not even infinitesimally.

Corollary 2.5.32. If L is a compact Lagrangian for which Fi, is the foliation
by fibers of a fiber bundle p : L — S*, then L is not infinitesimally rigid under
Poisson equivalence.

Proof. Assume to the contrary that L is infinitesimally rigid. By Lemma 2.5.31,
we know that H'(Fr) = T'(H?!) is finite dimensional. So H! has to be of rank
zero, which implies that H'(Fp) = 0. Consequently, v is exact, and Theorem
2.4.16 4) ensures that HY(Fp) is nonzero. This contradicts that the infinitesimal
moduli space (2.79) is zero. So L cannot be infinitesimally rigid. O

Remark 2.5.33. Alternatively, one can obtain Corollary 2.5.32 by using the
flat connection V on H!, which was defined in (2.46). Assuming that L is
infinitesimally rigid, fix an open U C S* and a frame {0, ..., 0, } for H!|y
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consisting of flat sections. If o € Q1,(Fy), then infinitesimal rigidity implies
that o = 7(&) + ¢y for some & € QL (L) and ¢ € R. Note that the section
ora) € (M) is flat, since for all Y € X(S') we have

Vyora) = 0p(soa) = Odr,ipa = 0,
where we used Cartan’s magic formula. It follows that
ool =10y, + -+ Cmoy,, + coylu

for constants c1,...,cx,c € R. This means that necessarily H!(Fz) = 0, and
we obtain a contradiction as in the proof of Corollary 2.5.32.

So fibrations over S' don’t give examples of rigid Lagrangians. However, if the
foliation F1, on L has dense leaves, then we do obtain an interesting rigidity
statement: infinitesimal rigidity implies rigidity with respect to the C*°-topology.

Proposition 2.5.34. Let L be a compact, connected Lagrangian whose induced
foliation Fr, has dense leaves. Assume that L is infinitesimally rigid under
Poisson equivalence. Then there exists a neighborhood V C (I'(T*Fp, x R),C>)
of 0 such that if Graph(«, f) is Lagrangian for (a, f) € V, then («, f) is Poisson
equivalent with the zero section of T*Fp x R.

Proof. Infinitesimal rigidity implies that HS (Fr) =0, so ~ is not foliated exact
by ii) of Thm. 2.4.16. Moreover, H'(Fp) is finite dimensional by Lemma 2.5.31.
By Prop. 2.5.10, we obtain a neighborhood V C (I'(T*F x R),C*) of 0 such
that if Graph(e, f) is Lagrangian for (o, f) € V, then f = 0. To show that V
satisfies the criteria, we distinguish between two cases.

Case 1: v extends to a closed one-form on L.

The assumption of infinitesimal rigidity then implies that
QL(Fr) =Im(r: QY4(L) = QL(FL)).

So if (e, f) = (,0) € V is such that the graph of (a,0) € T'(T*Fr x R) is
Lagrangian, then we have a = r(a) for some & € Q},(L). The time 1-flow of
the Poisson vector field IT¥(pr*@) then takes L to Graph(a,0).

Case 2: v does not extend to a closed one-form on L.

In this case, infinitesimal rigidity implies that (Qil (]-"L),COO) splits into an
algebraic direct sum

QL (Fr) =Im(r: QY(L) = QL(Fr)) ® Ry. (2.81)
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Since r is C*°-continuous, linear and Im(r) C Q! (Fy) is of finite codimension,
we get that Im(r) C (Q(FL),C*) is closed. This implies that (2.81) is in fact
a topological direct sum: R+ is an algebraic complement to a maximal closed
subspace, and therefore a topological complement [NB, Theorem 4.9.5]. So the
projection onto the second summand of (2.81) is continuous, and therefore we
get a continuous map

P : (Q};l(}'L),COO) - R:r(a)+cy— e

Therefore, shrinking the neighborhood V constructed above if necessary, we can
assume that pa(£xa) < 1 when (o, f) = (o, 0) € V is a Lagrangian section.

Now let (o, f) = (a,0) € V be such that the graph of (a,0) € I'(T*F, x R) is
Lagrangian. We decompose o and £ x« in the direct sum (2.81):

a=r(§)+Cy
{.,EXQ =r(n) + K~y (282)

for &, € QL (L) and C,K € R with K < 1. We define smooth families
& € QL(L) and Cs € R for s € [0,1] by the formulas

C C
1-sk" CS'_lsz'

£oi=E+ (2.83)

Note that the denominator 1 — sK occurring in these expressions is never zero
for s € [0,1] since K < 1. We claim that the isotopy ¢s generated by the
time-dependent Poisson vector field ﬁﬁ(pr*gs) + C,V takes the zero section
of T*Fr, x R to graph(a,0), or more precisely, that ¢s(L) = graph(sa,0) for
s € [0,1]. To prove this, by [SZ2, Lemma 3.15] it is enough to check that

d . *
%(50[70) = P(sa,O) (Hﬁ(pr 59) + OGV) ’ (284)

where P(;q,0) denotes the vertical projection induced by the direct sum
decomposition of T'(T* Fr X R)|graph(sa,0) into T'graph(sa,0) and the vertical
bundle along graph(sa,0). The right hand side of (2.84) is equal to

Py (I, (p*&s) + CsV) = 1(&) + Cs Poa(Viert + Viige)
=7(&) + Cs(v — £x(sa))

c c
r<§+1_sKsn)+1_SK(vsr(n)SKW)

C C(1-sK C
=r(§)+172K7‘(n)+ LSSK)V_I,;(T(”)

=r(§) +Cy.
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Here we used the correspondence (2.20) in the first equality, Lemma 2.5.35
below in the second equality and the expressions (2.82), (2.83) in the third
equality. Since a = r(§) + Cy by (2.82), we now showed that the equality (2.84)
holds. This finishes the proof. O

By definition of the C*°-topology, one can rephrase this proposition as follows:
infinitesimal rigidity of L implies C*-rigidity of L for some k € N.

Lemma 2.5.35. Let o € I'(T*FL), and denote by P, the vertical projection
induced by the splitting of T(T*FL)|graph(a) into Tgraph(a) and the vertical
bundle along graph(a). We then have

P,(Viist) = —£xa.
Proof. Denote by ¢~ the translation map
¢_a : T*]:L — T*]:L : (p7§) = (paé- - Oé(p)),

and let P := Py be the vertical projection along the zero section. We then have
a commutative diagram

) (6)- .
T(T J:L)‘graph(a) — T(T J—"L)|L

xlp,

(T*Fr)
so the lemma follows immediately from the equality (2.27). O

Example 2.5.36. Let L = (T?,0y,0,), endowed with the Kronecker foliation
TFr, = Ker(dfy — Adfz) for generic (i.e. not Liouville) A € R\ Q. Let £ be the
fiber coordinate on T*Fj, corresponding with the frame {df2}. As in eq. (2.68),
we take a log-symplectic structure

(T*]-"L x R,II := (COp, + K¢) Aty + (\dp, + Dp,) A ag),

where now C, K € R are both nonzero. Since for generic A € R\ Q, we have
H(FL) = R[dfs], it is clear that every element of Q! (Fy) extends to a closed
one-form on L. Moreover, since v = Kdf is not exact, we have that H)(Fz) = 0
by Theorem 2.4.16 iz). So L is infinitesimally rigid:

Q4 (Fr)

T Poiss L —_
o MEE) = LG oL (@) — oL ) + 'y

@ H)(FL) =0,

and therefore L is C*°-rigid, by Proposition 2.5.34.
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In this particular example, we in fact know a bit more. We already noted in
Remark 2.5.9 that C!-small deformations of L stay inside the singular locus,
i.e. they are of the form (e, f) = (a,0) € D(T*Fy, x R) for o € QL(FL). Along
with the fact that foliated closed one-forms extend to closed one-forms on L,
this implies that the Lagrangian L is Cl-rigid under Poisson equivalence. For if
a € QL (L) is a closed extension of a, then the flow of the Poisson vector field

I (pr*a) takes L to graph(a,0).

If instead we take A € R\Q to be a Liouville number, then L is not infinitesimally
rigid by Lemma 2.5.31, since in that case H'(Fy) is infinite dimensional.

2.6 Appendix

We list some facts about Liouville numbers and Fréchet spaces. We also prove
that a codimension-one foliation defined by a closed one-form on a compact,
connected manifold either has dense leaves, or is given by a fibration over S*.

2.6.1 Liouville numbers

We collect some facts about Liouville numbers that are used in §2.5.1.

Definition 2.6.1. A Liouville number is a real number o € R with the property
that, for all integers p > 1, there exist integers m,, n, € Z such that n,, > 1 and

1
-
P

m
o M
Np

0<

n

Liouville numbers are irrational (even transcendental, see [M, Theorem 4.5]).

Remark 2.6.2. For any sequence (my, np)pen as in Definition 2.6.1, the set of
denominators {n, : p € N} is unbounded. Indeed, assume to the contrary
that this set is bounded by some constant M. Since n, > 1, the sequence
(mp/nyp)pen converges to a. As there are only finitely many fractions a/b such
that 1 < b < M and a/b lies within distance 1 of «, the sequence (m,/n,)pen
must have a constant subsequence. This subsequence must also converge to «,
which yields a € Q. This contradiction shows that {n, : p € N} is unbounded.

The following statement is used in the proof of Lemma 2.5.8. It appears (without
proof) in [B].
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Lemma 2.6.3. If « is a Liouville number, then for each integer p > 1, there
exists a pair of integers (my,n,) € Z* such that

1
|my + any| < ——————.
P P (Imp| + [npl)P

Proof. Since « is Liouville, we can fix a sequence (M, N,) for integers p > 1,
satisfying

1
NE’

M,
a— L2 <

0
< N,

N, > 2.

The sequence (M,/Np)pen is convergent hence bounded, so there exists an
integer k > 1 such that

|M,| < 28N, Vp > 1. (2.85)
Notice that
Mt 2)p 1 1 1
a— = < . (2.86)
(k+2) (k+1p = NP okt 1)
’ Novow | Ny Niayp Ny Neszp 2077

Since the function x + P is convex on (0,00), we have

(|N(k+2)p| + |M(k+2)p|)p < ‘N(k+2)p|p + |M(k+2)p|p
2 - 2 ’

and therefore
(N2l + [Meg2pl)” < 2770 (INGa2ppl” + M) )
< 27 max (| Nty |, [ M2y [7)
< 27 2% | gy o |?
= 2 FDP| Ny 4o, |2, (2.87)
using (2.85) in the third inequality. Combining (2.86) with (2.87) gives

1
(INGet2)p] + [ Mgt2)p])”

Replacing M,, by —M,,, this implies that

M
‘a My
Nk+2)p

Nigt2yp 1

Mjy2)p + O‘N(k+2)p| < —1-

<
p i
(ING+2)p] + [Mg+2)1) (IN 42y + 1 Mg 2)p])”
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So if we set (mp,n,) = (M(k+2)(p+1), N(k+2)(p+1)), then we have

1

[my + any| < ——————.
P (myl )y

O

Remark 2.6.4. The proof of Lemma 2.6.3 shows that we can make the additional
assumptions n, > p and (my, ny) # (Mg, ng) for p # ¢. Indeed, since the set of
denominators {N, : p € N} of the sequence (M, Np)pen is unbounded, we can
ensure that N, > p. For if N, < p, then we know that there exists p’ > p such
that the element (M, , N,/) satisfies N,y > p. We then have

My|_ 1 _ 1
o — 7 ATD
Np/ NZI:I Ng’

so we can just replace (M,, Np,) by (M, Np/). It then follows that

np = Ngy2y(p+1) = (K +2)(p+1) > p.

In the same spirit, we can make sure that N, # N, for ¢ # p, which implies
that also (mp,n,) # (Mg, ng).

2.6.2 Fréchet spaces

We recall some basic facts about Fréchet spaces, which are used in §2.5.1 and
§2.5.3. For more details, see for instance [Ham].

Definition 2.6.5. A Fréchet space is a topological vector space X that satisfies
the following three properties:

i) X is Hausdorff.
ii) The topology on X is induced by a countable family of seminorms {||-||x }x>0-
iii) X is complete.
By item ii), a base of neighborhoods of x € X is given by subsets of the form
Byt (z) -+ N B (2)
for n € N and r > 0, where B}? (z) denotes the open ball
By (z) ={y € X : [ly — lx, <r}.

A sequence x,, converges to x if and only if ||z, — z||; converges to zero Yk > 0.
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Ezample 2.6.6. If L is compact, the space of sections of any vector bundle over L
becomes a Fréchet space when endowed with the C*-topology generated by C*-
norms || - ||x. We recall the construction of such norms in the situation that is of
interest to us. Let (L, ) be a compact manifold endowed with a codimension-
one foliation; we will define C*-norms on the space Q°(Fr) = I'(A*(T*Fr)) of

foliated forms of fixed degree. Fix a finite cover {Us,...,U,,} of L consisting
of foliated charts with coordinates (x1,...,Z,—1,Zy), such that plaques of Fr,
are level sets of x,,. Choose open subsets V; for i = 1,...,m that still cover L

and have compact closures satisfying V; C U;. The k-norm of a foliated form
n € Q!(F1) with coordinate representation

_ J
nlu, = E gi, .., dxiy N Ny,
1<ip << <n—1

is then
g'Ll

Il = > > > sup

1<i<m 1<ip <<y <n— 1|oz\<kp€v

“(p)|.

Recall also that a closed subspace of a Fréchet space is itself a Fréchet space.
Finally, it is useful to note that, if X and Y are vector spaces whose topologies
are generated by families of seminorms {|| - ||} and {|| - ||} respectively, then a
linear map L : X — Y is continuous if and only if for every k& € N, there exist
ni,...,n; € Nand C € R such that

IL(2)Il5, < CZ [l -

2.6.3 On foliations defined by a closed one-form

This subsection is devoted to proving the following theorem.

Theorem 2.6.7. Let M be a compact, connected manifold with a codimension-
one foliation F defined by a closed one-form 6 € Q*(M). Then either (M, F) is
the fiber foliation of a fiber bundle over S, or all leaves of F are dense.

The proof presented below was made before we became aware of the reference
[C, Thm. 9.3.13], which contains a proof of Theorem 2.6.7. We decided to keep
our proof in the thesis, because our argument deviates from the proof of [C,
Thm. 9.3.13] in some places (more precisely, Case 2 in our proof of Theorem
2.6.7 below is dealt with in a different way).

Assuming the setup of Theorem 2.6.7, fix a vector field X € X(M) satisfying
0(X) = 1. Then X is an infinitesimal automorphism of F, since for any
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Y € I'(TF) we have
0(X,Y])=X(0F))-Y(@(X)) —di(X,Y)=0.

So the flow ¢ : R x M — M of X, which is globally defined by compactness of
M, carries leaves of F to leaves of F. We first show that this action is transitive.

Lemma 2.6.8. For any leaf o € F, the set Uy := |J,cp ¢t(0) is open.

Proof. It suffices to show that every point p € ¢ has a neighborhood U,, contained
in U,. Indeed, then any point ¢ € ¢:(c) has a neighborhood ¢ (U¢7t(q))
contained in U,. So let p € o and choose a foliated chart (V,z1,...,z,)
centered at p so that plaques are given by z,, = ¢. Consider the map v given by

U0 =Rt z(de(p),
defined on an open neighborhood O C R of 0. Notice that

d

G| V0= b (X0) #0

since X is transverse to the x,-fibers. By the inverse function theorem, 1) maps
a neighborhood of 0 € O diffeomorphically onto a neighborhood | —¢€, €[ of 0 € R.
It follows that z,,! (] — €, €[) is an open neighborhood of p lying inside U,. O

Corollary 2.6.9. For each leaf 0 € F, we have U, = M.

Proof. By Lemma 2.6.8, we have a decomposition into open subsets

M= U,. (2.88)
ceF

Now notice that for leaves 0,0’ € F, one has either U, NU, = 0 or U, = U,.
If there would exist 0,0’ € F for which U, NU, = @, then out of (2.88) we
would get a separation of M

M=, | U u].
TEF: Uy AUy

which contradicts that M is connected. Hence for all leaves 0,0’ € F we have
U, = U,, so that the equality (2.88) yields the conclusion of the corollary. [

Proof of Theorem 2.6.7. Fix a leaf 0 € F, and consider the set of periods

F:={teR:¢o) =0} (2.89)
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Since I is a subgroup of (R, +), it is either discrete or dense.
Case 1: I' C R is dense.

We first show that o is dense. Pick p € M and let U be an open containing p.
Thanks to Corollary 2.6.9, there exists t' € R and ¢ € o such that ¢ (q) = p.
Now consider the map

U:R— M:t— ¢(q).

Since I' C R is dense, the open neighborhood W—1(U) of ¢ contains an element
s € T'. It then follows that ¥(s) € U No. This shows that ¢ is dense in M.
Then also any other leaf ¢;(o) is dense, since

M = ¢i(M) = ¢1 (7) C ¢i(0).

Case 2: I' C R is discrete.

We first argue that T' # {0}. Assuming to the contrary that I' = {0}, the map
Y:oxR—= M:(pt)— odi(p) (2.90)

is injective. Since v is surjective by Corollary 2.6.9, it is a bijection. Moreover,
we claim that ¢ is an immersion. To see this, assume (v, w) € Tpo X T;R lies in
the kernel of d(; +)1. Take a curve («(s),t+ sw) in o x R passing through (p, )
at time s = 0 with velocity (v, w). Then

0 =dpny(v,w)

o en(als))

ds s=0

d
= dp¢t (ds »
= dppy (WX (p) +v),

so that wX (p) + v = 0. Since the second summand is tangent to o and the
first is transverse to it, both must be zero. Since X(p) # 0, we obtain that
v = w = 0, showing that 1 is indeed an immersion. It then follows that v is a
diffeomorphism, being a bijective immersion. But this is impossible, since M is
compact and ¢ x R is not. We now proved that I" # {0}.

d

g S_O“(S))

¢sw (p) + df

Then I" has a minimal positive generator a, i.e. I' = {na : n € Z}. Reconsidering
the surjection 1 defined in (2.90), we remark that

Pe(p) = op (1) & {;’:&:)Za(p/) for some n € Z.
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This makes us define a Z-action on o X R by

n- (pv t) = ((¢a)7n(p),t+ na).

This action is free and proper, since the action on the second factor is free
and proper. So the quotient is a smooth manifold, and the map v induces a
well-defined bijection

— o xR

P

— M : [(p, )] = éu(p). (2.91)

The map 1/ is smooth because its composition ¢ o 7 = 1) with the surjective
submersion 7 : ¢ x R — (0 x R)/Z is smooth. Even more, ¢ is in fact
a diffeomorphism, being a bijective submersion. To see that 1 is indeed a
submersion, it suffices to remark that 1 is a submersion, or equivalently, that ¥
is an immersion, which we already showed above.

Next, we get a well-defined projection

o xR . R

Z aZ
This is a smooth surjective submersion, since it is obtained by passing the
smooth surjective submersion o x R — S : (p,t) = t mod aZ to the quotient

(0 xR) /Z. Composing the diffeomorphism (2.91) with the projection (2.92)
yields a surjective submersion

pr: St [(p,t)] = t mod aZ. (2.92)

— —1 R
M — — =St 2.
pro (¢) — =5 (2.93)
which is proper since M is compact and S! is Hausdorff. Hence by Ehresmann’s
lemma, the map (2.93) is a locally trivial fibration, and the fiber over ¢ mod aZ
is the leaf ¢;(c). This finishes the proof. O
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Chapter 3

The Poisson saturation of
regular submanifolds

This chapter reports on a project that I carried out under supervision of Ioan
Marcut. It follows the preprint “The Poisson saturation of reqular submanifolds”,
which is the content of arXiv:2011.12650.

Abstract - This chapter is devoted to a certain class of submanifolds in Poisson
geometry, which we call regular. We show that the local Poisson saturation of
such a submanifold is an embedded Poisson submanifold, and we prove a normal
form theorem for this Poisson submanifold around the regular submanifold. This
result recovers the normal form around Poisson transversals, and it extends some
normal form/rigidity results around constant rank submanifolds in symplectic
geometry. As an application, we prove a uniqueness result concerning coisotropic
embeddings of Dirac manifolds in Poisson manifolds. We also show how our
results generalize to the setting of regular submanifolds in Dirac geometry.

152
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3.1 Introduction

A well-known result in symplectic geometry states that symplectic manifolds
(M,w) are rigid around submanifolds X C M, in the sense that the restriction
of w to TM|x determines the symplectic form w on a neighborhood of X [We2].

By contrast, given a Poisson manifold (M, II) and any submanifold X C M,
one should not expect Il to be determined, up to neighborhood equivalence, by
its restriction II|x. For instance, the origin in R? is a fixed point for both the
zero Poisson structure and the Poisson structure II = (2% + y?)9, A 9, which
are clearly not diffeomorphic around (0, 0).

In order for the restriction IT|x to determine IT around X, the ambient Poisson
manifold needs to satisfy a minimality condition with respect to X. Since
IT|x only contains information in the leafwise direction along X, we are led
to consider the saturation of X C (M,II), i.e. the union of the symplectic
leaves that intersect X. Clearly, the saturation of X fails to be a submanifold
in general; the purpose of this chapter is to single out a class of submanifolds
X C (M,II) whose saturation is smooth near X, in a sense that will be made
precise later. Since the saturation Sat(X) of X C (M,II) is traced out by
following Hamiltonian flows starting at points of X in directions normal to
X C M, it is natural to impose the following regularity condition on X.

Definition. We call an embedded submanifold X of a Poisson manifold (M, II)
regular if the map pr o II* : T*M|x — TM|x/TX has constant rank.

It is equivalent to ask that the IT-orthogonal X1 := IT¥(T'X°) has constant
rank. Extreme examples are transversals and Poisson submanifolds, and we
show that any regular submanifold X C (M,II) is the intersection of such
submanifolds. If II is symplectic, then any submanifold of (M,II) is regular.

The main result of Section 3.2 is the fact that the saturation of a regular
submanifold X C (M, II) is smooth around X, in the following sense.

Theorem 3A. If X C (M,II) is a reqular submanifold, then there exists
a neighborhood V' of X such that the saturation of X inside (V,II|y) is an
embedded Poisson submanifold.

We will refer to this Poisson submanifold as the local Poisson saturation of
X. The proof of Theorem 3A relies on some contravariant geometry and some
results concerning dual pairs in Poisson geometry.

Sections 3.3 and 3.4 are devoted to the construction of a normal form for the
local Poisson saturation of a regular submanifold. In Section 3.3, we introduce
the local model; it is defined on the total space of the vector bundle (7X1m)*,
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and it depends on two additional choices:

1. A choice of complement W to TX*1 inside TM|x. Such a choice yields
an inclusion j : (TX+1)* < T*M|x.

2. A choice of closed two-form 7 on a neighborhood of X in (TX11)* with

prescribed restriction n|x = —o — 7 along the zero section X C (TX+m)*.
Here 0 € T(A2TX*1) and 7 € T(T*X ® TX 1) are bilinear forms defined
by

o(&1,&) =1(j(&), (&),
7((v1,61), (v2,&2)) = (v1,5(&2)) — (v2,5(&1)),
for &, & € (T, X*1)" and vy, v, € T, X.

To such a complement W and closed extension 7, we associate a Poisson
structure (U,II(W, 7)) on a neighborhood U of X C (T'X*m)*. It is defined as
follows: pull back the Dirac structure Ly defined by the Poisson structure I1
under i : X < (M, Ly), then pull back once more by the bundle projection
pr: (TX+1)* — (X,i*Ly) and gauge transform by the closed extension 7.
The obtained Dirac structure (107"*(1'*LH))77 is Poisson on a neighborhood U of
X C (TX+m)*. This Poisson structure, denoted by (U7 (W, 77)), is the local
model for the local Poisson saturation of X C (M,II), as shown in Section 3.4.

Theorem 3B. Let X C (M,II) be a regular submanifold. A neighborhood of
X in its local Poisson saturation is Poisson diffeomorphic with the local model
(U.1(W,1)).

The proof of this result goes along the same lines as the proof of the normal
form around Poisson transversals [FM1], using dual pairs in Dirac instead of
Poisson geometry. The statement shows that the pullback Dirac structure
i* L1 determines the local Poisson saturation in a neighborhood of X, up to
diffeomorphisms and exact gauge transformations. Since X is a transversal in its
local Poisson saturation, this result is consistent with the normal form around
Dirac transversals, which was proved in [BLM] and [FM2]. Our argument has
the advantage that it proves Theorem 3A and Theorem 3B at the same time.

In Section 3.5, we specialize our normal form result to some particular classes of
regular submanifolds X C (M, II). These allow for a good choice of complement
W and/or closed extension 7, and as such our normal form becomes more
explicit. Most notably, we obtain statements concerning the following types of
submanifolds:

i) Poisson transversals: We recover the normal form theorem around Poisson
transversals, which was established in [FM1], [BLM].
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ii) Regular coisotropic submanifolds: We obtain a Poisson version of Gotay’s
theorem from symplectic geometry [G], which shows that the local Poisson
saturation of a regular coisotropic submanifold ¢ : X < (M,II) is
determined around X by the pullback Dirac structure ¢* Lyy.

iii) Regular pre-Poisson submanifolds: We obtain a Poisson version of Marle’s
constant rank theorem from symplectic geometry [Ma]. The statement
shows that the local Poisson saturation of a regular pre-Poisson submanifold
1: X < (M,II) is determined around X by the pullback Dirac structure
i* L1 and the restriction of I to (TX+1)*/(TXtn N TX)*.!

In Section 3.6, we present an application of our normal form specialized to
the case of regular coisotropic submanifolds. We address the problem of
embedding a Dirac manifold (X, L) coisotropically into a Poisson manifold
(M, 1I), which was considered before in [CZ2] and [Wa]. Existence of coisotropic
embeddings is settled in [CZ2], where it is proved that such an embedding
exists exactly when L NT'X has constant rank. An explicit construction of the
Poisson manifold (M,II) is given in that case; another construction appears
in [Wa]. The uniqueness of such embeddings has not been established yet in
full generality. A partial uniqueness result appears in [CZ2], under additional
regularity assumptions on the Dirac manifold (X, L). As a consequence of our
normal form result, we obtain that any coisotropic embedding of (X, L) factors
through the model (M, II) constructed in [CZ2], which settles the uniqueness of
coisotropic embeddings.

In Section 3.7, we discuss how our results can be generalized to the setting of
regular submanifolds in Dirac geometry. The Appendix contains a result in
differential topology for which we could not find a proof in the literature.

3.2 The saturation of a regular submanifold

In this section, we discuss the saturation of submanifolds X in a Poisson manifold
(M,II). Our aim is to give sufficient conditions on X that ensure smoothness
of its saturation locally around X. We introduce a class of submanifolds
X C (M,1I), which we call regular, and we show that such a submanifold X
has a neighborhood U in M such that the saturation of X in (U,II|y) is an
embedded Poisson submanifold.

Definition 3.2.1. The saturation of a submanifold X of a Poisson manifold
(M, 1) is the union of all the leaves of (M, II) that intersect X. We denote the
saturation of X by Sat(X).

LSuitable complements need to be chosen in order to make sense of this, see Lemma 3.5.3.
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Note that Sat(X) is the smallest complete Poisson submanifold of (M, II)
containing X, if it is smooth. Indeed, complete Poisson submanifolds P C (M, II)
are saturated [CW, Prop. 6.1], so if X C P then Sat(X) C Sat(P) = P.

The saturation of a submanifold can be very wild; in general it does not have a
submanifold structure. For instance, consider the z-axis in the log-symplectic
manifold (R?, 29, A 8,); its saturation is {z < 0} U {(0,0)} U {z > 0}. Clearly,
this saturation doesn’t even contain a Poisson submanifold around the z-axis.

We now single out classes of submanifolds X C (M,II) that do satisfy this
property, i.e. whose saturation contains a Poisson submanifold around X.
Trivial examples of such submanifolds are transversals (whose saturation is
open, and therefore a Poisson submanifold) and Poisson submanifolds. These
are extreme cases of what we call regular submanifolds.

Definition 3.2.2. We call an embedded submanifold X C (M,II) regular if
the map prolIl* : T*M|x — TM|x/TX has constant rank.

Note that transversals and Poisson submanifolds are exactly those submanifolds
X C (M, 1) for which the map pr o IT* is of full rank resp. identically zero.

We will now list some more observations about regular submanifolds. For any
submanifold X C (M, II), we denote its [I-orthogonal by T X1 := IT#(T X?).
If z € X and L is the symplectic leaf through z, then T, X1 is the symplectic
orthogonal of T,, X NT,. L in the symplectic vector space (TmL7 (ML), 1). Various
types of submanifolds in Poisson geometry are defined in terms of their II-
orthogonal; see [CFM] and [Z] for a systematic overview.

a) Given a submanifold X C (M,1II), we get an exact sequence at points x € X:

oIt
0 — (T, x*+0)" — Trm 5 7, M/ T, X. (3.1)

In particular, X C (M, II) is regular exactly when TX - has constant rank.

b) We give an alternative characterization of regular submanifolds X C (M, II)
in Dirac geometric terms. Denote by Ly := {II*(a) + o : o € T*M} the
Dirac structure corresponding with II, and let i : X — (M,II) be any
submanifold. Then X is regular exactly when Ly N Ker(¢*) has constant
rank. Indeed, Ly; N Ker(i*) = Ker(IT*) N TX?, so for any = € X we have

dim (Ly; N Ker(i*)), = dim (7, X°) — dim (T, X ™).
In particular, if X C (M,II) is regular, then the Dirac structure Ly pulls
back to a smooth Dirac structure on X [B, Prop. 5.6].

We mention here that X being regular is not a necessary condition for Sat(X)
to contain a Poisson submanifold around X, as demonstrated by the following.
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Ezamples 3.2.3. i) Consider (s0(3)",20, A 0y + 0y A 0. + yd. A 8;) and
let X be the plane defined by z = 0. The symplectic foliation of s0(3)"
consists of concentric spheres of radius » > 0 centered at the origin, so
that Sat(X) = so(3)". However, TX*1" = Span{yd, — 20, } vanishes at
the origin, so X is not regular.

ii) Consider the regular Poisson manifold (R3,d, A 9,) and let X be defined
by the equation z = x3. Then the saturation Sat(X) is all of R?, but X is
not regular. Indeed, we have TX1 = Span{—3229,}, which drops rank
at points of the form (0,y,0) € X.

To construct a Poisson submanifold around the regular submanifold X C (M, II),
we use some contravariant geometry and some theory of dual pairs [CM],[FM1].

Definition 3.2.4. A Poisson spray on a Poisson manifold (M, II) is a vector
field x on the cotangent bundle 7*M satisfying:

i) dpr(x(¢)) = TI¥(¢) for all £ € T*M,

ii) mfx =tx for all t >0,
where pr : T*M — M is the projection map and m; : T*M — T*M denotes

fiberwise multiplication by t¢.

Poisson sprays x € X(T* M) exist on any Poisson manifold. Since x vanishes
along the zero section M C T*M, there exists a neighborhood ¥ C T*M of M
on which the flow ¢! is defined for all times ¢ € [0, 1]. One can then define the
contravariant exponential map exp, of x by

exp, : B CT*M — M : & — pr(¢) ().

This neighborhood ¥ C T*M also supports a closed two-form €2, which is
defined by averaging the canonical symplectic form we,, with respect to the
flow ¢§< of the Poisson spray x € X(T*M):

1
0, = /0 (64) Weandt.
As proved in [CM], , is non-degenerate along the zero zection M C T*M, so

shrinking ¥ C T*M if necessary, we can assume that €2, is symplectic on X.
By [FM1, Lemma 9], the symplectic manifold (X, (2,,) fits in a full dual pair

(M,IT) <2 (2,Q,) —2% (M, —II). (3.2)

That is, denoting by II, := Q7 I the Poisson structure corresponding with Qy,
the maps pr : (Z,Hx) — (M, 1I) and exp, : (E,Hx) — (M, —1II) are surjective
Poisson submersions with symplectically orthogonal fibers:

(ker dpr)*2x = kerd exp, -
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Both legs in the diagram (3.2) are symplectic realizations. We will need the
following lemma, which concerns the interplay between symplectic realizations
and regular submanifolds of a Poisson manifold.

Lemma 3.2.5. Let X C (M,II) be a regular submanifold and assume that
p:(3,9Q) — (M, 10) is a symplectic realization. Then (ker du)te N T(u=1(X))
has constant rank, equal to the corank of TX+" C TM|x.

Proof. Denote by Il := Q~! the Poisson structure corresponding with . For
¢ € p1(X), we have

(ker dp)g® = (@)~ ((ker du)) = I ((dp)i T M).

Since for any § € T;(E)M’ we have

(el ((dp)2B) € T X & IF(B) € Ty X
& Be (TugXx ™),
we obtain
(ker du)g® N Te(u™ (X)) = (kerdp)g® N (dp)g ' (Tu)X)
=1, () (T X 1)°) (3.3)

So, the rank of (ker cl,u)€LQ NTe(p (X)) is equal to dim M — rk(TX+m). O

We now prove that for a regular submanifold X C (M,II), there exists
an embedded Poisson submanifold of (M,II) containing X that lies in the
saturation Sat(X). This Poisson submanifold is in fact the saturation of X in
a neighborhood (U, II|y) of X.

Theorem 3.2.6. Let X C (M,1II) be a regular submanifold.

1. There is an embedded Poisson submanifold (P,I1p) C (M,II) containing
X that lies inside the saturation Sat(X).

2. Shrinking P if necessary, there is a neighborhood U of X in M such that
(P,I1p) is the saturation of X in (U,I|y).
Proof. We divide the proof into four steps.
Step 1: Construction of the embedded submanifold P C M.

Choose a Poisson spray x € X(7*M) and denote by exp, : X C T"M — M
the corresponding contravariant exponential map. Note that the restriction
exp, : X|x — M takes values in Sat(X). To prove this, it is enough to show



THE SATURATION OF A REGULAR SUBMANIFOLD 159

that pr(§) and exp, (§) lie in the same symplectic leaf of (M,1I), for each
¢ € ¥|x. This in turn follows if we prove that pr(§) € X and exp, (§) are
connected by a cotangent path [CF2, Section 1]. To this end, consider the

curve (t) := pr(¢} (£)), which satisfies ¥(0) = pr(£) and (1) = exp, (). Using
property i) in Definition 3.2.4, we have

d
0= (mlage (5406)) = (r)s o (4,(60) = T (46D
showing that ¢ — (¢! (£),7(t)) is a cotangent path. So exp, (¥]x) C Sat(X).

Choosing a complement to X1 in TM|x, we get an inclusion of (7X+1)* into
T*M]|x. The restriction of the exponential map exp, : (TX+ )" NY|lx - M
fixes points of X, and its differential along X reads [FM1, Lemma 8§]:

(dexpy)e : To X @ (T, X 1) — T M = (v,€) = v+ IE(€).

This map is injective. Indeed, if we would have that IT% (¢) = —v € T, X, then
e (Hi)_l(T$X) = (T, X*1)° and therefore ¢ € (T, X+1)* N (T, X+1)° = {0}.
Theorem 3.8.1 and Remark 3.8.2 in the Appendix now imply that the map
exp, : (TX+m)*NY|x — M is an embedding, shrinking ¥ if necessary. Setting

P :=exp, ((TXLH)* N E|X),
this is an embedded submanifold of M containing X that lies inside Sat(X).

Step 2: Shrinking ¥ if necessary, we have P = exp, (X|x).

To see this, denote for short Xx := ¥|x C T*M|x and Sy o= (TX+1)* N Y.
First, we claim that the restriction epr|ZX has constant rank, equal to the

rank of expx‘g. Indeed, using the self-dual pair (3.2), we have that
ker (d (exp, |5y )) = ker(dexp, ) N T(pr~ (X)) = ker(dpr)=x N T(pr~ (X)),

which has constant rank equal to corank(TX+1") by Lemma 3.2.5. Hence, the
rank of epr|EX is equal to dim X + rk(TX+1), which is the rank of expx|§;.

Using the previous claim, we now assert that expx(i\;) = exp, (Xx), shrinking
> if necessary. It is enough to prove that every point £ € ¥ x has a neighborhood
V& C Xy such that exp, (V¢) C exp, (¥x). We keep in mind the diagram

Sx C (TX1n) ——— Sy c T*M|x

€XPy IQ}:JN [GXPX ‘ZX .

exp, (Xx) M
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Pick ¢ € i; C Xx. Since exp,, |s5 has constant rank, there is an open
neighborhood U¢ C Xy of ¢ such that epr(Uf) C M is an embedded

submanifold. Since exp, is an embedding on i;, also eXpX(UE N i)_(/) C M is
an embedded submanifold. Since dimexp, (U¢NXx) = dimexp, (U¢) by the
previous claim, the inverse function theorem implies that epr(U £NXy) is
open in epr(Ug). Since the map exp, [y« : U¢ — epr(Uf) is continuous, we
get that exp, |E§(epr(U5 N i})) is open in U¢, and therefore in Y. Setting
VE = exp, |E§(epr(U5 N f;)) proves the assertion. This finishes Step 2.

Step 3: P is a Poisson submanifold of (M, II).
We use the previous step, which states that P = epr(E x). Pick a point
r € P and let £ € ¥x be such that exp, (§) = z. We have to show that
I1*(T,, P°) = {0}. Making use of the dual pair (3.2), we have

I (T, P°) = {(dexpx)g o (II%), o (dexpx)z} (T,.P),
so it is enough to show that

(ch)g ((dexp, )i (T P%)) C ker(dexp, )¢ = (ch)f(ker dpr)g.

To see that this inclusion holds, note that (kerdpr). C T¢Xx and
(dexp, )e(TeXx) C T, P, which implies that

(dexpx)z(TEPo) C TeX% C (ker dpr)g.
So P C (M,1I) is a Poisson submanifold, and Step 3 is done.
Step 4: Construction of the neighborhood U of X.

The idea is to extend exp, : (TX1)* NX|x — M to a local diffeomorphism,
using the same reasoning as in the proof of Proposition 3.8.1 in the Appendix.
Choosing a complement

TM|x =TX o IIY(TX* )" @ C,
and a linear connection V on T'M, we obtain a map
¢V C((TX ) @ C) = M: (§,¢) = expy (TTexp(16)C),

which is a diffeomorphism onto an open neighborhood of X. Here V is a
suitable convex neighborhood of the zero section, and TTcpr(tg) denotes parallel
transport along the curve ¢ — exp, (t§) for ¢t € [0,1]. Note that 1 satisfies
¥(£,0) = exp, (§). Consequently, shrinking P if necessary, we can assume that

P=u (Vo ((Tx*n) o {o})).
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Setting U :=1(V'), we check that P is the Poisson saturation of X in (U,II|y).
On one hand, since (TX11)* is closed in (TX11)* @ C, also P is closed in
U. Since properly embedded Poisson submanifolds are saturated, it follows
that the saturation of X in (U,II|y) is contained in P. On the other hand,
if exp, (§) = ¥(§,0) € P C U, then also exp, (t§) € U for t € [0,1] since V
is convex. Consequently, the path ¢ — (rj);(f),expx (t€)) is a cotangent path
covering a path in U that connects exp, (€) with a point in X. This shows that
exp, () is contained in the Poisson saturation of X in (U, II|y). O

Theorem 3.2.6 shows that the saturation of a regular submanifold X C (M, II) in
some neighborhood (U, II|y) of X is an embedded Poisson submanifold. Clearly,
one cannot take U to be all of M in general, see for instance Example 3.2.9
below. In this respect, we have the following sufficient condition.

Corollary 3.2.7. Let X C (M, ) be a regular submanifold. If the submanifold
P constructed in Theorem 3.2.6 is open in Sat(X) for the induced topology,
then Sat(X) is an embedded submanifold of M.

Proof. Recall the following fact [CFM]: if {N;};ez is a collection of embedded
submanifolds of M, all of the same dimension, such that N; N N; is open in N;
for all 4,5 € Z, then N := U;czN; has a natural smooth structure for which the
inclusion N < M is an immersion. The smooth structure is uniquely determined
by the condition that the maps N; — N are smooth open embeddings.

We want to apply this fact to the collection {(ﬁ&f (P): feCx(0,1] x M)},
where gb%(f denotes the time 1-flow of the Hamiltonian vector field associated
with the compactly supported function f € C°([0,1] x M). We have to check
that % (P) N ¢ (P) is open in ¢} (P). To this end, note that both ¢, (P)
and q%(g (P) are open in Sat(X), since P is open in Sat(X) and z;%(f,qb}(g are
diffeomorphisms preserving Sat(X). Hence, also qﬁﬁ(f (P)N @(9 (P) is open in
Sat(X), so there exists an open V' C M such that

ok, (P) N6k, (P) = V 1 Sai(X).
Since also (b%(f (P) = U N Sat(X) for some open U C M, we obtain
ok, (P) N ok (P) = ok, (P) N ek, (P)NU = VN (UNSat(X)) = V gk, (P),
which shows that ¢}(f (P)N gb}(g (P) is open in ¢}(f (P).

So we can apply the fact mentioned above, which gives Sat(X) a smooth
structure for which Sat(X) < M is an immersion. But since the topology of
this smooth structure is generated by open subsets of the submanifolds (Z)%(f (P),
it coincides with the induced topology on Sat(X). Consequently, Sat(X) is an
embedded submanifold of M. O
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In general, one cannot apply the argument in the proof of Corollary 3.2.7 to
obtain a smooth structure on Sat(X). See for instance Example 3.2.9 below.

Remark 3.2.8. We comment on the condition in Corollary 3.2.7 stating that
P = exp, (¥]x) needs to be open in Sat(X) for the induced topology. This
occurs exactly when we are able to find a small transversal 7 C (M, II) to the
leaves such that 7N Sat(X) = X.

To see that then exp, (X[x) is indeed open in Sat(X) with respect to the
induced topology, we note that exp, : Y| = M is a submersion, shrinking ¥ if
necessary. Indeed, at points p € 7, the differential

(dexp,)p : T, @ Ty M — T,M : (v, &) = v +1I5(€)

is surjective since 7 C (M,II) is a transversal. Hence exp,, is of maximal
rank in a neighborhood of 7 C X|.. In particular, shrinking ¥ if needed,
we have that exp, (E|T) C M is open. It now suffices to remark that
exp, (X[ x) = exp, (X[+) N Sat(X). The forward inclusion is clear, since X C 7
and exp, (¥|x) C Sat(X). For the backward inclusion, let (p,§) € X[, be such
that exp, (§) € Sat(X). Since p lies in the same leaf as exp, (§) € Sat(X) and
Sat(X) is saturated, it follows that p € Sat(X). Hence, p € 7N Sat(X) = X.
This shows that exp, (¥|x) = exp, (X];) N Sat(X) is open in Sat(X) for the
induced topology.

In the particular case where X is a point, then Sat(X) is just the leaf through
X, which is well-known to possess a natural smooth structure. Indeed, each
leaf of a Poisson manifold is an initial submanifold, so in particular it possesses
a unique smooth structure that turns it into an immersed submanifold. For an
arbitrary regular submanifold X, its saturation does not have a natural smooth
structure, as illustrated in the following example.

Example 3.2.9. We look at the manifold (R® x S* x,y,2,6) with Poisson
structure IT = 9, A 9p. Consider the curve 3 : R — R3 : t — (sin(2t), sin(t),t),
which is a “figure eight” coming out of the xy-plane. Denote its image by
C C R?, and let Cpqse be the projection of C onto the xy-plane. The submanifold
X :=Cx S' C R3 x S! is embedded, and we claim that it is regular. To see
this, we only have to check that dim(7, X NT,L) is constant for p € X, where
L denotes the leaf through p. Since at a point p = (5(to),6p) we have

T, X = Span{ 0y|,, , 2 cos(2to) Oz, + cos(to) Oy, + 0:1,},

it is clear that 7, X NT,L = Span{dy|,}, since cos(tg) and cos(2ty) cannot
be zero simultaneously. This confirms that X C (R? x S1,1I) is regular. Its
saturation is given by Sat(X) = Cpase X R x S*, and this doensn’t have a natural
smooth structure for which the inclusion X — Sat(X) is smooth. Indeed, for
the two obvious smooth structures on Sat(X) induced by those on the “figure
eight”; the inclusion X < Sat(X) is not even continuous.
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Coming back to the proof of Corollary 3.2.7, let’s look at the figure below.
We removed the S'-factor, which is not essential to the spirit of the example.
The embedded submanifold P in this case is obtained by slightly thickening
the curve in vertical direction. One can take a Hamiltonian flow gbﬁ(f such
that qﬁﬁ(f (P) N P consists of vertical segments of the line in which the surface
intersects itself, which is not an open subset of P. So we cannot apply the
general fact mentioned in the proof of Corollary 3.2.7.

—~

\
N——
Figure 3.1: The regular submanifold X and its saturation Sat(X). This is the

picture in R3; the S'-factor is omitted for the sake of depiction.

As a consequence of Theorem 3.2.6, we obtain an alternative characterization of
regular submanifolds. The two extreme examples — Poisson submanifolds and
transversals — turn out to be the building blocks of any regular submanifold.

Proposition 3.2.10. A submanifold X C (M,II) is regular iff. X is the
intersection of a Poisson submanifold P C (M,1I) with a transversal T C (M, 1I).

A transversal 7 C (M, 1I) is also transverse to Poisson submanifolds P C (M, II),
since the intersection of P with any leaf of (M, II) is open in the leaf. Indeed, if
p € P and L is the leaf through P, then

T,M=T,r+T,L=T,7+T,(PNL) CT,r+1T,P,
which shows that 7 i P. In particular, the intersection 7 N P is smooth.

Proof of Prop. 3.2.10. First assume that X C (M,II) is a regular submanifold.
Theorem 3.2.6 then gives a Poisson submanifold P C (M, II) containing X, and
the proof shows that

TP|x =TX oI (TX* )" (3.4)
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Choose a complement TM|x = TX @ II* (TXJ-H)* @ E. We now define a
transversal 7 C (M, II) by thickening X in direction of F; using an exponential
map for instance, we can define 7 C M to be a submanifold containing X, such
that Tr|x = TX @ E. For small enough 7, we have 7N P = X. Moreover,

TM|x =TX®I*(TX' ) @ F = (TX +Im(Il*|x))  E = Im(IT*|x)) + T'7 | x,

which shows that 7 is a transversal along X. Shrinking 7 if necessary, this
implies that 7 is a transversal in (M, II). This proves the forward implication.

For the converse, assume that X = 7 N P is a submanifold of M, where
P C (M,1I) is a Poisson submanifold and 7 C (M,II) is a transversal. Then
TX =Tr|x NTP|x, so that TX° = T7|% + TP|%. Using that P is a Poisson
submanifold, we get X+ = IT¥(T'7|% ). Since 7 is a transversal, the restriction
Hﬁ|TTo is injective, which shows that X is regular. O

In what follows, we denote by (P,IIp) the Poisson submanifold containing
X that was constructed in Theorem 3.2.6. We refer to (P,IIp) as the local
Poisson saturation of X. Since X is transverse to the leaves of (P,IIp), the
work of Bursztyn-Lima-Meinrenken [BLM] gives a normal form for (P,IIp)
around X. We will recover this normal form, continuing our argument from
Theorem 3.2.6.

3.3 The local model

This section introduces the local model for the local Poisson saturation (P,I1p)
of a regular submanifold X C (M,II). The local model is defined on the
vector bundle (T X+1)* which is indeed isomorphic with the normal bundle
of X in P. An explicit isomorphism is obtained by choosing an embedding
(TX+m)* < T*M|x and then applying the bundle map IT#, see equation (3.4).
The local model involves some extra choices, which we now explain.

Let X C (M,II) be a regular submanifold, and choose a complement W to
TX*1 inside TM|x. It yields an inclusion map j : (TXJ-H)* < T*M|x. Define
skew-symmetric bilinear forms o € T(A?TX*1) and 7 € T'(T*X ® TX11) on
the restricted tangent bundle T'((TX*7)*)|x = TX & (T X*+™)* by the formulas

o(&1,&) = 1(j(&1),5(6)),
7((v1,61), (v2,&2)) = (v1,5(£2)) — (v2,j(&1)), (3.5)

for &,& € (TxXlH)* and vy,v2 € T, X. Denote by Ew(—o — 7) the set of
all closed two-forms 7, defined on a neighborhood of X C (TX+1)*, whose
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restriction to the zero section X C (TX+1)* equals
Nx =-0@ 1700 T(NTX ) e T(T*X @ TX ) @ T(A’T*X). (3.6)

We refer to a two-form n € Ew(—o — 7) as a closed extension of —o — 7.
Closed extensions of —o — 7 exist, see for instance [Wel, Extension Theorem].
The local model for the local Poisson saturation of the regular submanifold

X < (M, 1) is now defined as follows: pull back the Dirac structure i* Ly on
X to (TX+m)* under pr : (I'X+1)* — X and gauge transform by a closed
extension 17 € Ew(—o — 7). The obtained Dirac structure (pr*(i*Ly))" indeed
defines a Poisson stucture in a neighborhood of X C (T X+1)*, as we now show.

Proposition 3.3.1. Let X C (M,II) be a regular submanifold. Fix a
complement W to TX*1, define 0 € T(A2TX*1) and 7 € T(T*X @ TX 1) by
the formulas (3.5) and let n € Ew (—o — 1) be any closed extension. The Dirac
structure (pr*(i*Ly))" is Poisson on a neighborhood U of X C (TXJ‘H)*.

Proof. Tt suffices to show that (pr*(i* L))" is transverse to T(TXL“)* along
X. Because of (3.1), we have i* Ly = {II*(a) + i*a: a € (TX*1)°}, so that

(pr*(i* L))" | x = {IF(@)+&+pr™ (iFa)tims oy 4 = @ € (TXM), € € (TXT)" )

Assume that IT* (o) +¢& € T(TX+)* | xN(pr*(i* L))" | x for some o € (T X+1)0)
£ € (TX+m)*. Then pr*(i*a) + tmz(a)+¢n = 0, which implies the following:

e ForallveTX, we get
a(v) +n(IF (@) +&,v) = 0= a(v) + (j(£),v) = 0.

So a + j(¢) € TX?, and therefore IT#(a + j(€)) € TX 1.
e Forall B e (TX*1)* we get

n(IF(a) +&,8) = 0=T1(j(£),5(B)) + (IT*(a),§(B)) =0
= (I (a +4(9)),4(8)) = 0.

Since j((TX*)*) = W?, this shows that II*(a + j(£)) lies in W.

We now have IT*(a + j(§)) € TX* 1 NW = {0}. So II*(j(§)) = ~I*(a) € TX,
which implies that j(&) € (TX*1)% again using exactness of the sequence (3.1).
But then j(¢) € WO N (TX+1)° = {0}, so that & = 0, which in turn implies
that also IT¥(a) = 0. This finishes the proof. O
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We denote the Poisson manifold from Proposition 3.3.1 by (U, I(w, 77)), and
we refer to it as the local model corresponding with W and 7. A priori,
the construction depends on a choice of complement W and closed extension 7.
We now show that different choices produce isomorphic local models.

Proposition 3.3.2. Any two local models (U,H(Wo,no)) and (V, H(Whm))
for the local Poisson saturation of a regular submanifold X C (M,II) are
isomorphic around X, through a diffeomorphism that restricts to the identity
along X.

Proof. The idea of the proof is to construct this diffeomorphism in two stages,
where each stage relies on a Moser argument. We first map the local model
(U,I(Wy,m0)) to an intermediate local model (V’,II(W1,n})), which is defined
in terms of the complement W;. Then we pull (V/,II(W;,7})) to the second
local model (V,II(Wy,n;)). Throughout, we shrink the neighorhoods on which
the models are defined, whenever necessary.

We interpolate smoothly between the complements Wy, Wy to TX 1 in TM|y,
as follows. Decomposing W in the direct sum TM|x =TX 10 @ Wy, we find
A € T (Hom(Wy, TX+m)) such that Wy = Graph(A). Setting W; := Graph(tA)
for t € [0,1], the family {W;};c(0,1) consists of complements to TX*o ie.
TM|x = TX*" @ W;, and it interpolates between W, and W;. Denote by
q : TM|x — TX*" and j; : (TXJ-H)Hk — T*M]|x the projection and inclusion,
respectively, induced by the complement W,. We first determine the bilinear
forms o, € T(A?TX*1) and 7, € T(T*X ® TX 1), which are defined by the
formulas (3.5) using the inclusion j;, in terms of o¢ and 7p.

Step 1: We compute o; and ;.
For e +w € TX11 & Wy = TM|x, we have
qle+w) = g (e — tA(w) + w + tA(w))
=e—tA(w)
= qo(e+w) — tA(Id — qo)(e + w).
This shows that g = go — tA(Id — qo) and therefore j; = jo — t(Id — jo)A*. We
now compute for vy, ve € T, X and &;,& € (T, X+1)*:
7 ((v1, &), (v2,&2)) = (v1, 1(&2)) — (v2, 5 (&)
= (v1,J0(&2)) — tvr, (Id — jo)A™E2)
— (v2,J0(&1)) + t{v2, (Id — jo) A&1)
= 70((v1,£1), (v2,£)) + t{A(Id — qo)va, 1)
—t(A(Id — qo)v1,&2)- (3.7)
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Similarly, we obtain

a1(1,62) = (a(I1*(j(£1))), &2)
([(a0 — tAId = q0))TT* (jo — t(Id = jo) A7)] (&1), &2)
= 00(€1,62) — t (@I (1d — jo)A™) (€1), &2)
—t{(A(Id — qo)IT%jo) (1), &2)
+ 1% ((A(Id — qo)TI*F(Id — jo) A*) (&1), &2) - (3-8)

Step 2: Get closed extensions, smoothly varying in ¢ € [0, 1], for

—0;® -1 @0 € TN TX ) @ T(T*X @ TX 1) @ T(A*T* X).

Thanks to [Wel, Extension Theorem| and [Wel, Relative Poincaré Lemmal, we
find a one-form f31, defined on a neighborhood of X C (T'X+1)* such that

51|X :07
dﬁﬂx S F(T*X®TXJ‘H),

dBilx ((v1,61), (v2,&2)) = (A(ld — qo)v1, &2) — (A(ld — qo)v2, &),

for (v1,£1), (v, &) € T X @ (TzXJ-“)*. Similarly, we find one-forms fs, 53
defined around X C (TX*1)* satisfying

62|X = 07
dﬂ2|X S 1—‘(/\2/1—7)(J‘1_I)7

dB2|x (&1, &) = ((qoI*(Id — jo)A*)(&1), &) + ((A(Id — qo)IT%jo) (€1), &2)

and
B3lx =0,
dﬂg,lx S F(/\2TXJ‘H),

dBs|x (&1, &) = ((A(Id — qo)T*(Id — jo)A*) (&1), &),
for &,& € (TIXJ-“)*. Using (3.7) and (3.8), we see that

(o + tdBy + tdBs — t7dPs)|x = 0y ® -7, 0. (3.9)

Step 3: The Moser trick pulls (U, (W, 7)0)) to (V/, (W1, mo+dS +d527d53)).
By Proposition 3.3.1, we get a path of Dirac structures

5 — 2 -
Ht — (pr*(i*LH))no-Hdﬁl-Ftdﬁz t“df3
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for t € [0, 1], where II; is Poisson on a neighborhood Uy of X in (TXJ-H)*. Note
that the set ;i 1;{t} x U: is open, since it consists of the points (¢,z) for
which (II;), is Poisson. The Tube Lemma [Mun] implies that U := (,c(o. 1 Ut
is an open neighborhood of X on which II; is Poisson for all ¢ € [0,1]. Now,
these Poisson structures are related by gauge transformations:

d dBa—t%d,
1—[1‘/:11?J B1+tdB2—t"df3

)

where p
77 (tdpy + tdfs — t*dBs) = —d(2tBs — B2 — 1)

A Poisson version of Moser’s theorem (e.g. [Me, Theorem 2.11]) shows that
the flow ®; of the time-dependent vector field IT#(2t8;5 — B2 — B1) satisfies
(®4).I1; = Iy, whenever it is defined. Moreover, since the primitive 2t83— 82— 31
vanishes along X, the flow ®; fixes all points in X. Now set ¢ := <I>1_1. Shrinking
U if necessary, we can assume that ¢ : U — V' where V' := ¢(U). We then
have

¢ (UIL(Wo,m0)) = (V/,II(W1,n0 + dp1 + dB2 — dPs)), Blx =1d.

Step 4: Another Moser argument pulls (V’, TI(W1,n0 + dB1 + dfs — dﬁg)) to
the model (V,IL(Wy,m1)).

Both n; and ng + df; + dfB2 — df3s are closed extensions of
—01 @ -1 @0 DA TX ) o T(T* X @ TX 1) © T(A*T*X),

see equation (3.9). So their difference 71 — (o + df1 + dB2 — dfs) is exact
around X with a primitive v that vanishes along X, by the Relative Poincaré
Lemma. Denote

H6 — (pT*(Z-*LH))TI0+dﬂ1+d,@’2—dﬂ3 7 H; — (Hg)td’y7

for ¢ € [0,1]. Since IIj is Poisson on V'’ and dy|x = 0, we see that II; is Poisson
on a neighborhood V/ of X in (TX*1)*. Using the Tube Lemma as in Step
3, we find a neighborhood O of X in (TX+1)* such that II} is Poisson on O
for all ¢t € [0,1]. The Moser Theorem [Me, Theorem 2.11] implies that the
flow ¥, of the time-dependent vector field —(IT})*(y) satisfies (¥;).IT}, = I},
whenever it is defined. Moreover, since y|x = 0, the flow ¥, fixes all points of
X. Now set ¢ := \Ilfl. Shrinking both V' and V if necessary, we can assume
that ¢ : V! — V. We then have

¢ (VL II(Wy,mo + dBy + dBa — dBs)) = (V,IL(Wy,m)), Y|x =1d.
The diffeomorphism v o ¢ now satisfies the criteria: it fixes points in X and

bod: (UIL(Wo,m)) = (V.II(W1,m1)). Cl
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It is now justified to call (U, I(w, n)) the local model for the local Poisson
saturation of the regular submanifold X C (M,II).

3.4 The normal form

We now proceed by showing that the local Poisson saturation of a regular
submanifold X C (M, II) is isomorphic around X to the local model (U, IL(W, n))
constructed in Proposition 3.3.1. We will use the theory of dual pairs in Dirac
geometry, as developed in [FM2]. We first need a lemma, which describes how
to obtain a weak Dirac dual pair out of the self-dual pair (3.2)

(M,II) +— (2,0 ) = (M, -11),

given a regular submanifold X C (M,II). Recall from the proof of Theorem
3.2.6 that the local Poisson saturation (P,Ilp) of X C (M,II) is given by
epr(E| x)-

Lemma 3.4.1. Leti: X < (M,II) be a regular submanifold with local Poisson

saturation (P,11p). Then the following is a weak Dirac dual pair, in the sense
of [FM2]:

(X,i*Ly) «— (Z|X,GT(Q |X)) (P,—Lmu,).

This means that Q|x is a closed two-form on X|x, that pr and exp,, are
surjective forward Dirac submersions and

(2lx)(51,82) =0, (3.10)
rk(Sy N K N Sy) = dim | x — dim X — dim P, (3.11)
where S7 := ker dpr, So := kerdexp, and K := ker (QX|X),

Proof. It is clear that pr is a surjective submersion. The fact that exp,
is a surjective submersion follows from the proof of Theorem 3.2.6. Also
the property (3.10) is automatic, since (3.2) is a dual pair. To see that
r: (2|x, Gr(Qy|x)) — (X,i*Ln) is forward Dirac, consider the following
commutative diagram of Dirac manifolds and smooth maps:

(Z]x, Gr(|x)) —2— (X,i*Ln)
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The maps ¢ on the left and ¢ on the right are backward Dirac by definition, and
the bottom map pr is forward Dirac because of the dual pair (3.2). Since the
bottom map pr is a submersion, we can apply [FM3, Lemma 3] to obtain that
also the map at the top pr: (3|x,Gr(Qy|x)) — (X,i*Ly) is forward Dirac.

Similarly, we get that exp, : (¥|x,Gr(Qy|x)) = (P, —Lm,) is forward Dirac
considering the diagram
exp,

(Zlx, Gr(Qy|x)) ——— (P, —Lm,)

exp,,

(Z,Gr(Qy)) ————— (M, —Ln)

Here the map i’ is backward Dirac, the map 4 is backward (and forward) Dirac,
and the bottom map exp, is forward Dirac because of the dual pair (3.2). Again,
the map exp, on the bottom is a submersion, so we can apply [FM3, Lemma 3]
to obtain that also exp, : (X|x, Gr(Qy|x)) = (P, —L,) is forward Dirac.

It remains to check that the property (3.11) holds. For (x,&) € ¥|x, we have
—1 . 0 «
K= (D) (Tag)(T"M|x))" N T ) (T* M| x)

= TE ((dpr)fy o TeX") O T (T" M x).
Consequently, we obtain
(S1) (@6) N K(ag) =TI, ((dpr)a,f) (T X" Nker Hi)) 7

using that the left leg of the dual pair (3.2) is a Poisson map. The equality
(3.3) in the proof of Lemma 3.2.5 shows that

(82w = T ((dpr) . (T X)) |
so we obtain
(510 N Kw) N (S2)e) = T ((dpr)fs ) (ToX° NkerTEE) ).
Consequently,
rk(S1 N K N S) ;¢ = dim (T, X° Nker ITE)

= dim(T, X°) — dim(T, X )
= (dim M — dim X) — (dim P — dim X)
=dim¥|x — dim X — dim P.

So also the property (3.11) holds, and this finishes the proof. O
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We are now ready to state the main result of this section.

Theorem 3.4.2. Let X C (M,II) be a regular submanifold with local Poisson
saturation (P,I1p). Choose a complement W to TX11 in TM|x and denote
by j : (TX+1)* — T*M|x the inclusion. Then —j*(Qy|x) € Ew(—0 — 7).
Moreover, the corresponding local model (U,H(VV, —j*(QX|X))) 18 isomorphic
with (P,I1p) around X. FExplicitly, a Poisson diffeomorphism onto an open
neighborhood of X is given by

exp, oj « (U IL(W, —j*(Qy[x))) = (P, 1Lp).
We will denote by pras and prx the bundle projections T*M|x — X and
(TXJ-H)* — X, respectively. So prysoj = prx.

Proof. We first check that —j*(Qy|x) € Ew (—o — 7). The fact that —j*(Q, | x)
restricts along X C (T X+1)* as required in (3.6) is an immediate consequence
of the following equality [FM1, Lemma 8]:

Qy ((v1,&), (v2,&)) = (v1, &) — (v2, &) + (&1, &),
where (v1,&1), (v2,&) € To(T*M) =T, M & T M for x € M.

To prove the second statement, we apply [FM2, Proposition 6] to the weak dual
pair constructed in Lemma 3.4.1:

e r exp,
(X, L) ¢ (Z]x,Cr(Q|x)) — (P, —Ln,),
and we get the following equality of Dirac structures on X|x:
(prag (" L)~ = exp} L.

Since j : (T X+1)* < T*M|x is transverse to the leaves of this Dirac structure,
we can pull it back to j71(X|x) = j(TX+1)* N Y| x, and we obtain

(expy 05) Lty = 5 [(prs (i L)) =]
= [(prar 0 4)* (i L)) 1Y)

= (pri(i* L)) 7" (X0, (3.12)

The Dirac structure (3.12) corresponds with a Poisson structure on a
neighborhood U C j~1(X|x) C (TX*1)* where it defines the local model
(U, H(W, —j*(QX|X))). Moreover, by the proof of Theorem 3.2.6, we know that
exp, oj takes 7~ Y(Z|x) diffeomorphically onto P. So we obtain that

exp, oj : (U,H(W, —j*(QX|X))) — (P, HP)

is a Poisson diffeomorphism onto an open neighborhood of X C (P,IIp). O
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Remark 3.4.3. As we mentioned before, our normal form is consistent with
another normal form result that already appeared in the literature. In [BLM],
[FM2] one proves that, given a Dirac manifold (M, L) and a transversal 7 C M,
the pullback Dirac structure on 7 determines L in a neighborhood of 7, up
to diffeomorphisms and exact gauge transformations. In our case, a regular
submanifold X C (M,II) is a transversal in its local Poisson saturation, and
our normal form for (P,IIp) around X agrees with the above result.

3.5 Some particular cases

We proved that the local model (U, (W, 17)) described in Proposition 3.3.1 does
not depend on the choice of complement W to TX'1 in TM |x, nor on the
choice of closed extension 7. We now show that, for certain classes of regular
submanifolds X C (M, 1II), a good choice of complement and/or closed extension
simplifies the normal form considerably. Some of our results recover well-known
normal form and rigidity statements around distinguished submanifolds in
symplectic and Poisson geometry.

3.5.1 Submanifolds in symplectic geometry

Recall that, if (M,w) is a symplectic manifold and N C M is any submanifold,
then the restriction of w to TM|y determines the symplectic form w on a
neighborhood of N (see [We2, Theorem 4.1]). We can recover this result from
our normal form, as follows.

In case IT = w™! is symplectic, any submanifold X C (M,II) is regular since
TX+1 =TX4e where TX+~ = {v € TM|x : w(v,w) =0 Yw € TX} denotes
the symplectic orthogonal of X. Next, the local Poisson saturation (P,IIp) of
X is an embedded submanifold of M of dimension dim X + rk (IT*(TX+m)*), by
the equality (3.4). So if II is symplectic, then P C M is an open neighborhood
of X. At last, the Poisson structure II(W,n) = (pr* (i*LH))n from the local
model is determined by the restriction II|x, as the pullback i* Ly and 7|x only
depend on H”(Txin)o and H”(TXLH)*, respectively.

In conclusion, our normal form shows that, for any submanifold X of the
symplectic manifold (M, IT), the restriction II| x determines IT on a neighborhood
of X C M, which recovers the aforementioned result in symplectic geometry.
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3.5.2 Poisson transversals

A submanifold X of a Poisson manifold (M,II) is called a Poisson transversal if
it meets each symplectic leaf transversally and symplectically, that is

TX ®@TX't" =TM)|x.

In the local model of Proposition (3.3.1), we can take TX as a canonical
complement to T7X*" in TM|x. The inclusion j : (TX*1)* — T*M|x
induced by it identifies (TX+1)* with TX°. The following simplifications occur
in the local model:
e The pullback i* L of the Dirac structure Ly to X defines a Poisson
structure on X [FM1, Lemma 1], which we denote by IIx € I'(A2TX).

o Consider o € I(A?2TX*1) and 7 € T'(T*X ® TX*1) defined in (3.5):

o(&1,&2) = 1(j(&1), (&),
7((v1,61), (v2,&2)) = (v1,5(62)) — (v2,5(&1)),

for &1,& € (T, X+1)* and vy, vy € T, X. Since j ((TXL“)*) =TX° we
have 7 = 0, and since the restriction of II to the conormal bundle TX° is
fiberwise non-degenerate, we get a symplectic vector bundle ((TX+1)*, o).

Moreover, since X is a transversal, its local Poisson saturation (P,IIp) is in
fact an open neighborhood of X in M. In conclusion, our normal form shows
that an open neighborhood of X in (M, II) is Poisson diffeomorphic with a
neighborhood of X in (TX+1)* endowed with the Poisson structure

(pr*(Lmy))",

where 7) is a closed extension of —¢. This is the normal form proved in [FM1].

3.5.3 Regular coisotropic submanifolds

Recall that a submanifold N of a symplectic manifold (M, w) is called coisotropic
if its symplectic orthogonal TN1« is contained in TN. Gotay’s theorem [G]
provides a normal form for w around NN, which is obtained as follows. Choose
a complement to TN+« inside TN, and denote by j : (I'N+«)* < T*N the
induced inclusion. On the total space of the vector bundle pr : (ITN+«)* — N,
one gets a closed two-form

where i*w is the pullback of w to N and w,gy, is the canonical symplectic form
on T*N. This two-form is non-degenerate on a neighborhood of the zero section



174 THE POISSON SATURATION OF REGULAR SUBMANIFOLDS

N C (I'N*«)*, and (M,w) is isomorphic with ((TN*«)*, pr*(i*w) + j*wean)
around N. In particular, the pullback i*w € T'(A?T*N) determines w on a
neighborhood of N C M.

More generally, recall that a submanifold X of a Poisson manifold (M,1I) is
coisotropic if TX+" C TX. In this subsection, we prove a Poisson version
of Gotay’s theorem by specializing our normal form to regular submanifolds
X C (M, 1) that are coisotropic. First, we want to find a convenient complement
to TX+1 in TM|x.

Lemma 3.5.1. Let X C (M,1II) be a regular coisotropic submanifold. For any
choice of splitting TX = TX* 1 & G, there is a splitting TM|x = TX*+" @ Wqg
such that

MWe) cWg  and WenNTX =G.
Proof. We divide the proof into four steps.

Step 1: IT*(G°) has constant rank, equal to twice the rank of TX*m.
Note that ker IT# C (TX*1)% and therefore
ker IIFNG° = ker IF N (TX1M)°NGY = ker IF N (TX T +G)° = ker ITFNTX°,

Since X is regular, the latter has constant rank, which shows that also IT*(G°)
has constant rank. Explicitly,

rk(T1*(G0)) = dim M — 7k(G) — rk(ker IT N G°)
= dim M — 7k(G) — rk(ker II* N TX?)
=dim M —rk(G) — (dim M — dim X — rk(TX"™))
= 2rk(TX*m).

Step 2: (Hﬁ(GO),w) is a symplectic vector bundle, where
w(IT (), T1*(8)) := (e, B).

We first check that IT*(G°) NG = {0}. If @ € G° and [T*(a) € G C TX,
then o € (TX+1)Y because of the exact sequence (3.1). But we then have
that « € GON (TX*1)° = (G 4+ TX+1)° = TX? so that IT*(a) € TX 1.
Consequently, II*(a) € GNTX 1 = {0}.

It now follows that w is non-degenerate: if IT¥(a) € kerw for a € G°, then for
all B € G° we get (IT¥(a), B) = 0, which implies that IT#(a) € G. So we obtain
¥ () € T#(G%) N G = {0}, which shows that w is non-degenerate.
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Step 3: TX*1 C (Hﬁ(GO), w) is a Lagrangian subbundle.

Since G C TX, we have TX? C G° and therefore TX*1 C II*(G°). By Step
1, the rank of TX 1 is half the rank of TI*(G°), so we only have to show that
TX+n C (Hﬁ(GO),w) is an isotropic subbundle. This is clearly the case, since
for o, € TX? we have

w(I¥ (), IF(8)) = (II¥(a), B) = 0,
using that IT¥(a) € TX*1 C TX.

Step 4: Let V C (IT*(G°),w) be a Lagrangian complement of TX 1, and choose
a subbundle H C TM|x such that TM|x = TX't o (Ve Go H).
Then Wg :=V & G & H satisfies the criteria.

We check that TI#(W2) C Wg. If a € W2, then in particular o € V0N GY, so
for all v € V we get
0= (a,v) = w(v, IT*(a)).

This shows that IT#(a) lies in the symplectic orthogonal V1« which is equal
to V because V is Lagrangian. So IT*(a) € V C Wg. At last, the fact that
We NTX = G follows immediately from the decomposition

TM|x =TX"" o (VeOGoH) =TX ®V & H. O

Corollary 3.5.2 (Poisson version of Gotay’s Theorem). Let i : X — (M,1I)
be a regular coisotropic submanifold. Pick a complement TX = TX* " @G, and
let j: (TX+1)* < T*X be the induced inclusion. The local Poisson saturation
of X is Poisson diffeomorphic around X with the model

(U, (pr*(i*Ln))j*wm”) : (3.13)

where U C (TX11)* is an open neighborhood of X and wea, denotes the
canonical symplectic form on T*X.

Proof. Tt suffices to show that the expression (3.13) is diffeomorphic with a
local model for the local Poisson saturation of X. By Lemma 3.5.1, we know
that the splitting TX = TX*1 @ G induces a splitting TM|x = TX*1 & W,
where

W) cWg and WenTX =G.

Denote by j : (TX+1)* < T*M|x the inclusion induced by the complement
We; it embeds (TX+m)* into T*M|x as (Wg)°. Consider o € T'(A2TX+n)
and 7 € I'(T*X ® TX*1) as defined in (3.5):

o(é1,&) =1(j(&%). 1 (&),
7((v1,&1), (v2,62)) = (v1,7(&2)) — (v2,5(&1)),
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for &1,& € (TmXJ-“)* and vy,vy € T, X. Since Hﬁ(Wg) C Wg, we have o0 = 0,
and since Wg NTX = G, we have

7((v1,61), (v2,&2)) = (v1,5(£2)) — (v2,5(&1))
= (v1,5(&2)) — (v2,5(&1))
= (j*wcan”X ((’Ulvgl)’(U%f?))

for £1,& € (T, X+1)* and vy, vy € T, X. This shows that (U,H(Wg, fj*wcan))
is a local model for the local Poisson saturation of X, where U C (TX11)* is a
suitable neighborhood of X. Note that the Dirac structure (3.13) still differs
by a sign from this model; we now show that changing the sign produces a
diffeomorphic Dirac structure. Shrinking U if necessary, we can assume that U
is invariant under fiberwise multiplication by —1. Denoting this map by m_1,
we have

mil ((pr*(i*LH))j*wmn> _ ((prom_l)*i*LH)(jomfl) Wean _ (pr*(i*LH))*j*“’wn,

Since the latter is the Poisson structure (U, I(Weg,—j *wcan)), we are done. [

In particular, the pullback Dirac structure ¢+* Ly determines a neighborhood
of X in its local Poisson saturation. If (M,II) is symplectic, then the above
corollary indeed recovers Gotay’s theorem.

3.5.4 Regular pre-Poisson submanifolds

Recall that, given a symplectic manifold (M,w), a submanifold i : N — (M, w)
is said to be of constant rank if the pullback ¢*w has constant rank. Marle’s
constant rank theorem [Ma] states that a neighborhood of a constant rank
submanifold i : N — (M, w) is determined by the pullback i*w together with
the restriction of w to the symplectic vector bundle TN+« /(TN+« NTN).

Generalizing this notion to Poisson geometry, a submanifold X of a Poisson
manifold (M, 1) is called pre-Poisson if TX +7 X1 has constant rank [CZ1]. Tt
is equivalent to ask that the bundle map proll* : TX? — TX10 — TM|x/TX
has constant rank. Examples include Poisson transversals (in which case pr o IT*
is an isomorphism) and coisotropic submanifolds (in which case pr o IT* is the
zero map). If X is regular pre-Poisson, i.e. TX " has constant rank, then its
characteristic distribution 77X+ N TX also has constant rank.

In this subsection, we prove a Poisson version of Marle’s theorem by specializing
our normal form to regular pre-Poisson submanifolds X C (M, II). We will need
the following result, which generalizes Lemma 3.5.1.
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Lemma 3.5.3. Let X C (M,II) be a regular pre-Poisson submanifold. For any
choice of splittings TX = (TX*"NTX)®G and TX* " = (TX " NTX) H,
there exists a complement TM|x = (TX " NTX)® H ® Wg i such that

e ((H + WG,H)O) CWen and WeynTX =G.

Proof. We have in particular
TX +TX* 1 = (TX"NTX)®a G H. (3.14)

The proof is divided into four steps, which generalize those of Lemma 3.5.1.
Step 1: IT* ((G+ H)?) has constant rank, equal to twice the rank of TX+1NTX.
Since ker IT* C (TX+1)? ¢ (TX+1 NTX)?, we have
ker ITP N (G 4+ H)? = ker IF N (TX " N TX)° N (G + H)°

— ker I N (TX 0 NTX) + G+ H)’

=ker I N (TX + TX+m)°

=kerIF NTX% N (TX1m)°

=ker II* N T'X".

Since X is regular, the latter has constant rank, showing that also II* ((G +H )O)
has constant rank. Explicitly,

rk (I ((G+ H)°)) = dim M — rk(G + H) — rk(ker II* 0 (G + H)")

=dimM —rk(TX + TX* ") 4 rk(TX " NTX)
—rk(kerII N TX°)

=dim M — rk(TX + TX*") 4 rk(TX " NTX)
— (dim M — dim X — rk(TX "))

= rk(TX) + rk(TX*1) —rk(TX + TX*m)
+rk(TX" N TX)

= 2rk(TX' " NTX).

Step 2: (1_[Tj ((G + H)O),w) is a symplectic vector bundle, where

w(IT(a), ITF(8)) := Il(av, ).
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We first show that IT*((G+ H)°) N (G + H) = {0}. Assume that v € (G+H)" is
such that II*(y) = g+h € G+ H. Since h € TX*1, we can write h = II*(3) for
some 3 € TX°, and we obtain that II*(y — 8) = g € TX. By (3.1), we then get
that v — 8 € (TX+1)° and therefore v € TX? + (TX+1)0 = (TX N TX+m)0.
Hence,

ye(TXNTX TN (G+ H) = (TX +TXt") =T7Xn(TX+m)0,

using (3.14) in the first equality. This implies that IT*(y) € TX+1 N TX, so
we obtain that II*(y) € (TX1t" NTX)N (G + H) = {0}. This shows that
I ((G+ H)*) N (G + H) = {0}.

It now follows that w is non-degenerate: if IT#(a) € kerw for a € (G + H)?, then
for all B € (G + H)® we get (II*(«), B) = 0, which shows that II*(a) € G + H.
By what we just proved, we then get IT*(a) € II*((G + H)°) N (G + H) = {0},
which shows that w is non-degenerate.

Step 3: TX+1 NTX C (I*((G+ H)°),w) is a Lagrangian subbundle.
Since G+H C TX +TX"*1, we have (TX +TX*1)? C (G+ H)° and therefore
TX " NTX =IF(TX°N(TX*)°) = IF(TX +TX*™)°) c I ((G + H)?).

By Step 1, we know that the rank of II*((G + H)°) is twice the rank of
TX11NTX, so we only have to check that TX 1 NTX C (Hn ((G + H)O),w)
is an isotropic subbundle. This is clearly the case, for if a, 3 € TX N (T X+1)°
then

w(IF(a), I () = (IF¥(a), B) = 0.

Here we use that IT¥(a) € TX since o € (TXL“)O, and that 3 € TXO.

Step 4: Let C' C (II*((G+H)"),w) be a Lagrangian complement of TX7NTX,
and choose any subbundle Y C TM|x such that

TM|x =(TX"NTX)s(HeGaCaY).

Then the subbundle W¢ g := G & C @Y satisfies the criteria.
fae(H+G+C+Y)? then a € (G+ H)" and a € C°. So for all ¢ € C,

0= (a,¢) = w(c,I*(a)),

so that IT*(a) € Ct« = C C G+ C +Y. Hence, II*((H + We,n)°) C Wa n.
The fact that Wg g NTX = G follows immediately from the decomposition

TM|x = (TX""NTX) o HoWey=TXOHaCOY. O
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Corollary 3.5.4 (Poisson version of Marle’s theorem). Ifi: X — (M,II) is a
reqular pre-Poisson submanifold, then its local Poisson saturation is completely

determined around X by the pullback Dirac structure i* Ly and the restriction
of I to (TX+1)* /(TX N TX)*.

Proof. We show that any local model for the local Poisson saturation of X
defined in terms of a complement as specified in Lemma 3.5.3 only depends
on the data mentioned in the statement. Lemma 3.5.3 implies that there is a
splitting TM|x = (TX " NTX)®V & W, satisfying

TX " = (TX " NTX)®V and IF((V+W)°) cW. (3.15)

We get inclusion maps j; : (T X 0NTX)* — T*M|x, jo : (TX11)* — T*M|x
and j: (TX1t0NTX)* — (TX11)* satisfying

ji=j20j,  p((TXNTX))=V+W)? and j((TX 1)) =WP.
This implies that, for &, € (TX1 NTX)* and & € (TX+1)*:

(j2((£1)), J2(&2)) = T (j1(€1), j2(€2)) = 0,

using the inclusion (3.15). So the local model in Proposition 3.3.1 only depends
on the pullback i* Ly and the restriction of IT to (TX+1)*/(TX+ 1 NTX)*. O

The corollary shows that the local Poisson saturation of a regular pre-
Poisson submanifold is determined by less data than that of a general regular
submanifold, since it uses a quotient of (7 X*1)* rather than all of (T X*m)*.
The exception are those pre-Poisson submanifolds X for which TX+1NTX = 0;
these are exactly the regular Poisson-Dirac submanifolds of (M,II) (see [CF1]).
In [BFM], they are called coregular.

Corollary 3.5.4 indeed recovers Marle’s constant rank theorem when IT = w ™!

is symplectic, since then the following map is — up to sign — an isomorphism of
symplectic vector bundles

I : ((TX*H)*/(TX* nTX)* 1) S (TX 5 /(TX NTX),w).

In some detail, fix a decomposition TM|x = (TX*» NTX)® H S W as in
Lemma 3.5.3. Since II*((H + W)°) C W, we have IT*(W°) C H+W. Moreover,
for 8 € W we have that I1¥(3) € H exactly when IT*(8) € T X+, which in turn
is equivalent with 8 € TX?. So there is an induced map II* : WoNTX° — H.
At last, since W +TX = W + (TX1~ NTX), we have WO NTX° = H* so
that ITI¥ induces an isomorphism H* = H:

- TX+ O\ o~y TX
\TXLeNTX TXLeNTX'
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Clearly, this map intertwines —II and w since w = II7!, so it becomes an
isomorphism of symplectic vector bundles, up to sign.

Remark 3.5.5. For the different classes of regular submanifolds X C (M, II)
considered in this section, we summarize the data that determine the local
Poisson saturation (P,IIp) near X.

H Type of submanifold ‘ (P, 1Ip) locally determined by H
X C (M,II) Poisson transversal "Ly and I ximys
X C (M,1I) regular coisotropic i* L
X C (M, 1I) regular pre-Poisson | "Ly and Hfipxtny-/(rxtnnrx)-

3.6 Coisotropic embeddings of Dirac manifolds in
Poisson manifolds

As an application of Corollary 3.5.2, we look at the following question, which
was considered by Cattaneo and Zambon [CZ2] and by Wade [Wal: Given a
Dirac manifold (X, L), when can it be embedded coisotropically into a Poisson
manifold (M, II)? That is, when does there exist an embedding ¢ : X < (M, II)
such that i*Lyy = L and i(X) is coisotropic in (M,II)? Moreover, to what
extent is such an embedding unique?

The question on the existence of coisotropic embeddings (X, L) < (M, 1II) is
settled in [CZ2, Theorem 8.1]: such an embedding exists exactly when L is
co-regular, i.e. L NTX has constant rank. The construction of (M,II) in that
case is carried out as follows: a choice of complement V to LNTX in TX
gives an inclusion j : (LNTX)* < T* X one takes M to be the total space of
pr: (LNTX)* — X and one shows that the Dirac structure (pr*L)7 “can on
M is in fact Poisson on a neighborhood of X C M. A different proof of the
existence result is given in [Wa, Theorem 4.1].

The question on the uniqueness of coisotropic embeddings (X, L) — (M,II) is
still open. In [Wal, one claims (without proof) that uniqueness can be obtained
if LNTX defines a simple foliation on X. In [CZ2] one conjectures that, if
(X, L) is embedded coisotropically in two different Poisson manifolds, then these
must be neighborhood equivalent around X, provided that they are of minimal
dimension dim X + rk(L NTX). However, a proof of this uniqueness statement
is only given under the additional regularity assumption that the presymplectic
leaves of (X, L) have constant dimension [CZ2, Proposition 9.4].
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We now show that this extra assumption can be dropped. Using Corollary 3.5.2,
we prove that the model (U, (pr*L)? @) constructed in [CZ2] is minimal,
thereby obtaining the uniqueness result in full generality. In the proof below,
given an embedding i : X < (M, II), we may assume that it is the inclusion
map by identifying X with ¢(X).

Proposition 3.6.1. Let (X, L) be a Dirac manifold for which L NTX has
constant rank, and denote by pr: (LNTX)* — X the bundle projection.

i) Any coisotropic embedding i : (X, L) — (M,II) into a Poisson manifold
(M, 1) factors through the local model (U, (pr¥L)7"wean). That is, we have
a diagram

(X,L) ——— (M, 1I)

|~

(U, (pr Lo
where v : (U, (pr*L)j*“’C“") — (M,II) is a Poisson embedding.

it) In particular, if (Mq,111) and (Ma,Ils) are Poisson manifolds of minimal
dimension dim X + rk(L N TX) in which (X, L) embeds coisotropically,
then (My,111) and (M2, 112) are Poisson diffeomorphic around X .

Proof. i) The assumptions imply that X C (M,II) is a regular coisotropic
submanifold, since

TX =19 (TX% = (i*Lg) NTX = LNTX. (3.16)

Denote by (P, I1p) the local Poisson saturation of X C (M, II). By Corollary
3.5.2, there is a neighborhood U C (LNTX)* of X and a Poisson embedding

(b : (Ua (pT*L)j*wwn) — (Pa HP)
Since (P,IIp) is an embedded submanifold of (M, II), we are done.

ii) By what we just proved, there exist a neighborhood U C (LNTX)* of X
and two Poisson embeddings

b1 - (U7 (pr*L)J’*wwn) (P, I0p,),

bo : (U, (pr*L)i*wcan) — (Po,1lp,),

where (P1,IIp, ) and (P»,Ilp,) denote the local Poisson saturations of X
in (M;,I1;) and (Ma,II5), respectively. The assumption implies that, for
l=1,2:

dim P, = dim7TX 1™ = dim X + rk(L N TX) = dim M;,
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where we used the equality (3.16). Since P, C M; is an embedded
submanifold, this shows that P, C M; is an open neighborhood of X, for
Il =1,2. So the composition ¢s o ¢1_1 is a Poisson diffeomorphism between
open neighborhoods of X in (M1,11;) and (Ma,Il5), respectively. O

3.7 Regular submanifolds in Dirac geometry

We now discuss how the results that we obtained in Sections 3.2, 3.3 and 3.4
can be generalized to the setting of Dirac manifolds. The relevant tools are
developed in [FM2], from which we adopt the terminology and notation. For
background on Dirac geometry, see e.g. [B].

Definition 3.7.1. We call an embedded submanifold X of a Dirac manifold
(M, L) regular if the map prr : L|x — TM|x/TX, which is obtained
composing the anchor prr : L — TM with the projection to the normal
bundle, has constant rank.

Given any submanifold i : X < (M, L), we have at points € X that

L rr(Lg) + T X
pTT(Lz):%,

and therefore
X C (M, L) is regular < prp(L) + TX has constant rank
< ker(i*) N L has constant rank,
where the last equivalence holds since ker(i*) N L = (pre(L) + TX)°. In

particular, the Dirac structure L can be pulled back to a regular submanifold
X Cc (M,L) [B, Prop. 5.6].

We recall some results about sprays and dual pairs in Dirac geometry [FM2].

Definition 3.7.2. Let L C TM ¢ T*M be a Dirac structure on M, and let
s : L — M denote the bundle projection. A spray for L is a vector field
V € X(L) satisfying

i) s.(V,) = prr(a) for all a € L,

ii) mfV = tV, where m; : L — L denotes fiberwise multiplication by t # 0.
Sprays exist on any Dirac structure. The condition ii) implies that the spray
V vanishes along the zero section M C L, so that there exists a neighborhood

Y C L of M on which the flow ¢, of V is defined for all times € € [0,1]. We can
then define the Dirac exponential map associated with the spray V as

expy : X — M :a— s(pi(a)).
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Moreover, this neighborhood ¥ C L supports a two-form w defined by

1
w::/ @:((prT*)*wcan)de,
0

where prp« : L — T* M is the projection and w.s, is the canonical symplectic
form on T*M. It is proved in [FM2] that, shrinking 3 C L if necessary, these
data fit into a Dirac dual pair:

(M, L) +— (3,Cr(w)) —=2% (M,—L). (3.17)

This means that both legs in the diagram (3.17) are surjective, forward Dirac
submersions, and we have the additional requirements that w(V, W) = 0 and
VNKNW =0, where V = kers,, W = ker(expy,). and K = kerw.

We need the following lemma, which serves as a substitute for Lemma 3.2.5 in
the Dirac setting. The statement is not exactly the Dirac analog of Lemma
3.2.5; we address this in Remark 3.7.4 below.

Lemma 3.7.3. Consider a Dirac dual pair
(Mo, Ly) +—— (%, Gr(w)) —4— (M, —Ly),

and let X C (My, L) be a reqular submanifold. As before, we denote V' := ker s,
W :=kert, and K := kerw. Then W N s;1(TX) has constant rank, equal to
the rank of pro (TX) C Lo|x.

Proof. Consider the following diagram of vector bundle maps:

W|571(X) 547*) TM0|X/TX

R_,J Wm : (3.18)

Ry (Wls-1(x)) — Lo|x

Here R, is an injective bundle map defined by
R,:W—=>TE®T*'Y : wr— W+ tyw.

The map ¢ : R,(W) — Lo is defined by setting ¢ (w + t,w) 1= si(w) + B,
where § is uniquely determined by the relation s*(3) = t,w. Note that ¢ is
well-defined: existence of S follows from the fact that w(V, W) =0, and f is
unique since s is a submersion. Since the map s : (¥, Gr(w)) — (Mo, Lo) is
forward Dirac, we see that ¥(w + t,w) = s.(w) + B is indeed contained in Lg.
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Moreover, we claim that the map 1 is an isomorphism. To see that 1) is injective,
assume that ¢¥(w + tyw) = s.(w) + S = 0 for some w € W. Then § = 0, and
therefore ¢,,w = s*(8) = 0, so that w € W N K. But also s.(w) = 0, so that
w € V. Hence w € VN K NW =0, which shows that v is injective. Since the
rank of R, (W) is given by

rk(R,(W)) =rk(W) = dim ¥ — dim M; = dim My = rk(Lo),

it follows that ¢ : R,(W) — Lg is a vector bundle isomorphism. Since the
diagram (3.18) commutes, it follows that

rk(ss : Wls—1x) = TMo|x /TX) = rk(prr : Lo|x — TMo|x/TX)
= dim My — rk(przil(TX)).
This gives the conclusion of the lemma:
rk(W ns; Y (TX)) = rk(W) — dim Mo + rk(pr7 (TX)) = rk(pry(TX)). O

Remark 3.7.4. For completeness, we state here the Dirac geometric analog of
Lemma 3.2.5. Recall that a forward Dirac map ¢ : (My, Lo) — (M1, L1) is
strong if Ly Nkery, = 0. When Lg is the graph of a closed 2-form, then the
map ¢ is called a presymplectic realization of (M;, L1). One can show that
the following is true:

“Let s: (X, Gr(w)) = (M, L) be a strong forward Dirac submersion, and assume
that X C (M, L) is a reqular submanifold. If V := ker s, then Vv N s;H(TX)
has constant rank, equal to the rank of pr* (TX).

We won’t address this in more detail, since we want to use the legs of the
diagram (3.17) and these are in general not presymplectic realizations. Indeed,
using expressions for w|ys that appear in [FM2], one can check that

(Gr(w)Nkers) |y =0 LNTM CTM @ L,

(Gr(w) Nker(expy) s« = {(—v,v) ;v e LNTM}yCTM @ L,
so that both legs are presymplectic realizations only when the Dirac structure
L is Poisson. In that case, w is non-degenerate along M C X, so that shrinking

Y if necessary, the diagram (3.17) is a full dual pair. In particular, the legs of
the diagram (3.17) are symplectic realizations.

We obtain the following generalization of Theorem 3.2.6.
Theorem 3.7.5. Let X C (M, L) be a regular submanifold.

1. There is an embedded invariant submanifold (P,Lp) C (M, L) containing
X that lies inside the saturation Sat(X).
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2. Shrinking P if necessary, there is a neighborhood U of X in M such that
(P, Lp) is the saturation of X in (U, L|y).

Proof. The proof is divided into four steps, like the proof of Theorem 3.2.6.
Step 1: Construction of the submanifold P C M.

Choose a spray V € X(L) and denote by expy, : ¥ C L — M the corresponding
Dirac exponential map. Let s : L — M denote the bundle projection. Note
that expy,(a) and s(a) lie in the same presymplectic leaf of (M, L), for all a € L.
Indeed, the path t — ¢;(a) is an A-path for the Lie algebroid A = (L7 [, -]],prT),
covering the path ¢ — s(¢;(a)) which connects s(a) with expy,(a). In particular,
we have that expy,(Z|x) C Sat(X).

Since X C (M, L) is regular, we have that pr.*(TX) is a subbundle of L|x,
being the kernel of the constant rank bundle map prp : Lix — TM|x/TX.
Choose a complement L|x = pr;l(TX ) @ C' and consider the restriction
expy : CNX|x — M. It fixes points of X, and its differential along X reads
[FM2, Lemma 7]:

(dexpy)y : TuX ® Cpy — TuM : (u,a) — u+ pro(a).

This map is injective, and therefore the map expy, : C N XE|x — M is an
embedding by Prop. 3.8.1, shrinking ¥ if necessary. Set P := expy,(C' N X|x).

Step 2: Shrinking ¥ if necessary, we have that P = expy,(X|x).

It is enough to show that the restriction of exp,, to X|x has constant rank,
equal to the rank of expy, [(cnx|x). To see this, we apply Lemma 3.7.3 to the
self-dual pair (3.17), and we obtain that

ker (d(expv ‘Elx)) = ker(d expy,) N s; H(TX)

has constant rank, equal to the rank of pr,'(TX) C L|x. This implies that the
rank of expy, |5, is constant, equal to

rk(expy |y ) = dim X + rk(L) — rk(pry (T X))
=dim X + rk(C)

= rk(expy |(cnzx))-

Step 3: The submanifold P C (M, L) is invariant.

We have to check that the characteristic distribution prp(L) of L is tangent to
P, ie. that prT(LCva(a)) C (dexpy)a(TuX|x) for all a € X|x. We will first
show that

prr (LeXPv(a)) = (d eXpV)a(WLw%
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where W denotes ker(expy,). as before. To see this, first pick u + ¢ € Lexp,,(a)-
Then v — & € —L, and since the map expy, : (2, Gr(w)) — (M, —L) is forward
Dirac, there exists v € T, such that v 4 t,w is expy,-related with u — ¢, i.e.

{va = expiy(—€),
u = (dexpy)q(v).

This implies that v € W« so pro(u+ &) = u = (dexpy,)q(v) is contained in
(dexpy,)q(WL+). Conversely, assume v € T, % lies in W, Then t,w = exp,(€)
for some £ € T7, ) M. This implies that (dexpy,)a(v) +§ is expy-related with
v+ t,w € Gr(w), and since the map expy, : (¥, Gr(w)) — (M, —L) is forward
Dirac, we get that (dexpy)q(v) +& € —L, i.e. (dexpy)q(v) — € € L. It follows

that (dexpy)q(v) € prr (chpv(a))'

Consequently, we obtain that

Pr7 (Lexpy, (a) =

a(TaE‘X); (319)

where the second equality uses [FM2, Lemma 3|, and the third equality holds
because W = ker(expy,)« and V = kers, C s;'(TX). This proves Step 3.

Step 4: Construction of the neighborhood U of X.

The proof is completely analogous to the proof of Step 4 in Theorem 3.2.6. We
want to extend the map expy, : CNE|x — M to a local diffeomorphism. To do
so, we choose a complement

TM|X =TX® (pT‘T(C) ©® E)
and a linear connection V on T'M. We obtain a map
Y:0C(CBE)— M: (a,e)— expy (Trcxpv(m)e) ,

which is a diffeomorphism onto an open neighborhood of X. Here O is a
suitable convex neighborhood of the zero section, and Treyp,, (tq) denotes parallel
transport along the curve ¢ — expy,(ta) for ¢t € [0,1]. Since 1 (a,0) = expy(a),
shrinking P if necessary, we can assume that P = (O N (C & {0})). Setting
U :=9(O) finishes the proof. O

In the following, we denote by (P,Lp) the Dirac manifold constructed in
Theorem 3.7.5; we refer to it as the local Dirac saturation of X. By the
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normal form around Dirac transversals [BLM], [FM2], this Dirac manifold is
determined around X by the pullback of L to X C (M, L), up to diffeomorphisms
and exact gauge transformations. We will reprove this result, continuing the
argument of Theorem 3.7.5. We first obtain a Dirac version of Lemma 3.4.1.

Lemma 3.7.6. Leti: X — (M, L) be a reqgular submanifold with local Dirac
saturation (P, Lp). Then the following is a weak Dirac dual pair, in the sense
of [FM2]:

(X,i* L) «+*— (Zx, Gr(w|x)) —2 (P,~Lp). (3.20)

This means that w|x is a closed two-form on X|x, that s and exp,, are surjective
forward Dirac submersions and

wlx (81, 82) =0, (3.21)
rk(S; N KN Ss) =dim |x — dim X — dim P, (3.22)
where Sy := kers,, Sy := ker(expy,), and K := ker(w|x).
Proof. The only non-trivial part is that the equality (3.22) holds. The other

claims are proved exactly like in Lemma 3.4.1, so we don’t address them here.

To prove (3.22), note that S; N K NSy =V N (s71(TX))L* N W, where V, W
are the vertical distributions of the original dual pair (3.17). Note that for any
subspace U, C (T,X, w,), we have

dim(U}+) = dim(7,%) — dim(U,) + dim(U, N K,),

where K := kerw. It follows that a family U C TY of linear subspaces has
constant rank if both U+« and U N K have constant rank. On one hand, we

have
VnE T TX)NW)NK =0,

since VN K NW =0. On the other hand, we have

(VAT HTX) S n W)™ = Vi 4 ((s71(TX)) )™ + we
=Vt 4T TX) + K + W
=Vt 471 TX) + W
=WH+VNK+s;' (TX)+V+WNK
=W+s;  (TX)+V
=W +s;4TX).
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In the fourth equality,~we use [FM2, Lemma 3|. Using Lemma 3.7.3, we have
now proved that S; N K NSy =V N (s;H(TX))* NW has constant rank. The
rank is given by
rk(V N (s;H(TX) ™ nW) =rk(TS) — rk(W + s, (TX))
= rk(TY) — k(W) — rk(s; {(TX))
+rk(W Ns; 1 (TX))
=dim(L) — rk(W) — dim(X) — rk(V)
+ rk(pry ! (TX)
= dim(M) — dim(expy(Z|x)) + rk(L) — rk(V)
= dim(X) — rk(V) — dim(expy, (2| x))
= dim(X|x) — dim(X) — dim(expy,(Z|x)).

This is exactly the rank condition (3.22), so the proof is finished. O

Corollary 3.7.7. Let i : X — (M, L) be a regular submanifold, choose a
complement L|x = pr"(TX) @ C and let j : C < L|x denote the inclusion.
The local Dirac saturation (P,Lp) of X is diffeomorphic with

(CNY|x, (s* (L)~ X)),

In particular, (P, Lp) is determined by the pullback Dirac structure i*L, up to
diffeomorphisms and exact gauge transformations.

Proof. Applying [FM2, Prop.6] to the diagram (3.20), we have the following
equality of Dirac structures on X|x:

(s*(i L)) ™% = (expy)" L.

Since j is transverse to the leaves of this Dirac structure, we can pull it back to
C N X|x, and we obtain

(s"(" L))" “Ix = (expy o) "L,

which is an equality of Dirac structures on CN¥|x. We showed in Theorem 3.7.5
that expy, oj is a diffeomorphism from C'NX|x onto P, which proves the first
statement. Moreover, since —j*w]|x is closed and its pullback to X ¢ C'NX|x
vanishes, it is exact on a neighborhood of X, by the relative Poincaré lemma.
This implies the second statement of the corollary. O
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Remark 3.7.8. As mentioned before, Corollary 3.7.7 agrees with the normal form
around Dirac transversals [BLM],[FM2]. Note indeed that X is a transversal in
(P, Lp) since

TP|X =TX -l—p?"T(C) =TX +pTT(L|X) =TX +pTT(Lp|X).

Here the last equality holds since prr(L|x) C TP|x. This implies that, if
u+¢ € L|x, then u+1*§ € Lp|x where ¢ : P < M is the inclusion. So indeed,
prr(Llx) = prr(Lp|x).

3.8 Appendix

3.8.1 Some differential topology

We prove a result in differential topology that may be of independent interest.
It should be standard, but we could not find a reference in the literature. The
statement is well-known under the stronger assumption that the derivative of
the map is an isomorphism along the zero section [Muk, Lemma 6.1.3]. Our
strategy is to reduce the proof to this case.

Proposition 3.8.1. Let E — N be a vector bundle, and let ¢ : E — M be a
smooth map satisfying

{cp|N is an embedding (3.23)

(de)p is injective Vp € N
Then there is a neighborhood U C E of N such that |y is an embedding.

Proof. We get a vector subbundle dy|n(E) C TM|,ny which has trivial
intersection with T@(NN). Choose a complement C to dp|n(FE) & Te(N) in
TM|Lp(N)’ ie.

TM|<p(N) = TQD(N) D d<p|N(E) ¢ C.

Fix a linear connection V on T'M, and define a map
Y E® (p|n)"C — M:(e,c) = expy (Tr¢(te)c),

where T,y denotes parallel transport along the curve ¢ — ¢(te) for t € [0, 1].
We slightly abuse notation, since the map % is only defined on a small enough
neighborhood of the zero section N. Clearly, 1 satisfies the following properties:

o 1 restricts to ¢|y along the zero section N.
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 For p € N and a vertical tangent vector (e,c) € T,(E @ (¢|n)*C), we
have

(@)ples) = | B(se,0)+ o

s=0 ds

(0, sc)

s=0

expy (sc)

d
— eXpPy (0¢(se)) + % »

s=0

ds
a
ds
= (de)p(e) +c,

which shows that di is an isomorphism at points of the zero section.

o We have that ¢(e,0) = ¢(e), i.e. the following diagram commutes:

E & (¢|n)*C

/ Jw (3.24)

E—F M

Using the first and second bullet point above, the inverse function theorem for
submanifolds (e.g. [Muk, Lemma 6.1.3]) shows that 1 is an embedding on a
neighborhood of N. Also the inclusion E — E & (¢|n)*C on the left in (3.24)
is an embedding, so that ¢ is an embedding on a neighborhood of N in E. [

Remark 3.8.2. If amap ¢ : U C E — M satisfying the assumptions (3.23) of
Proposition 3.8.1 is only defined on a neighborhood U C E of N, then the
conclusion of the proposition still holds. This can be obtained, for instance, by
constructing a smooth map p : F — E such that u(F) C U and p = Id near N
(see [H, Chapter 4, §5]). By Proposition 3.8.1, the composition po pu: E — M
is an embedding on a neighborhood of N, hence the same holds for ¢.

3.8.2 Relation with other normal forms

In Corollary 3.5.2, we found a normal form for the local Poisson saturation of a
regular coisotropic submanifold X of any Poisson manifold (M, II). This result
relates with other normal forms in the previous chapters. We show that Corollary
3.5.2 recovers the normal form around Lagrangians transverse to the symplectic
leaves (Proposition 2.2.9), as well as the b-Gotay theorem (Proposition 1.3.15)
in case the b-coisotropic submanifold is strong (see Definition 1.4.1).
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Lagrangians transverse to the leaves

If L C (M,1I) is a Lagrangian submanifold transverse to the symplectic leaves,
then L is in particular regular coisotropic. Corollary 3.5.2 implies that a
neighborhood of L in (M,II) is Poisson diffeomorphic with the model

(U c (TL*m), (pr*(i*LH))j*wcan)7 (3.25)

where U is a neighborhood of the zero section of pr : (I'L*1)* — L and the
inclusion j : (TL*1")* < T*L comes from a complement TL = TL*" & G. We
show that this local model is nothing else but

(U - T*]:Lancan)a
so that we recover the normal form of Proposition 2.2.9.

« Since L is Lagrangian, we have TL'" = T Fy, where F, is the foliation
induced on L. So the model (3.25) lives on the vector bundle 7% Fr..

e The pullback Dirac structure ¢*Ly is just Fp, which is clear when
thinking of Dirac structures in terms of their presymplectic foliations. The
underlying foliation of ¢* Ly is F and the presymplectic forms, which
are obtained pulling back the symplectic forms on the leaves of II, vanish
since L is Lagrangian. Hence pr*(¢* L) = pr*Fr.

o To conclude that the model (3.25) coincides with the canonical Poisson
structure Il.,, on T*Fy, it remains to check that the pullback of j*wean
to the leaves of pr*Fp reads

k
> dw; Ady;, (3.26)
i=1
in cotangent coordinates (x1,...,2Zn,Y1,...,Yn) coming from a foliated
chart (z1,...,%,) in which plaques of Fy, are level sets of (zx11,...,2Zn).

To see that this is the case, we decompose
TL = Span{0y,,...,0, } ® Span{0y, ;.. 0z, }

and since the complement G is transverse to the first summand, there
exists a fiberwise linear map ® such that

G = Graph(® : Span{0,,,,,...,05,} — Span{0,,,...,0,,})
= Span{0,,., + ®(0r\.\),- -0, + P(0s,)}-
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Let us write for j =k+1,...,n

k

i=1

We then obtain for ¢ = 1,...,k that

< (dx;), 2": >: <dzi,2k:gz($)3xl - Zn: gl(x)@(é‘ml)>
=1 1=1

I=k+1
n k
(dzi, > @), = > 3 fr@a(@)on, )
l=k+1 a=1
n
= gi(x) = > fl@)a(x)
I=k+1
This shows that
j(dz;) = dz; — Z fi(x)da.
I=k+1
In particular, expressing the map j : T*F; — T*L in the cotangent
coordinates (Z1,...,Zn,Y1,--.,Yn), We have
T;jo0j =ux; fori=1,...,n
Yioj =y fori=1,...,k

Therefore,

k n
j*wcanzzdxiAdyi'i_ Z dxl/\d(yloj)

=1 i=k+1

Pulling back to leaves of pr*Fr,, we indeed obtain the expression (3.26).

b-Gotay for strong b-coisotropic submanifolds

Assume that (M, Z,1I) is a log-symplectic manifold, and let C C (M, Z,II) be
a strong b-coisotropic submanifold. In particular, C is regular since TC*1 has
constant rank equal to codim(C) (see Proposition 1.4.2). Below, we denote by
p:YTM — TM the anchor map of the b-tangent bundle *TM.

e On one hand, Corollary 3.5.2 implies that a neighborhood of C' C (M, Z,1I)
is Poisson diffeomorphic with

(U c @esmy, ri @ Lu)yiere), (3.27)
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where pry : (TC*1)* — C is the projection and j; : (TC*1)* < T*C is
the inclusion corresponding with a choice of complement T7C' = TC 1 @ V.
This model is log-symplectic, being Poisson diffeomorphic with II, and
we claim that its singular locus is exactly pr;*(C' N Z). To see why, note
that by (3.1),

pro(i* L) = I (TC+1)°,
and
Ker(I¥) N (TCH™)? = (Im(11%) + TC+1)° = (Im(11)) .
So prr(i* L) drops rank exactly along C'N Z, which proves the claim.

« On the other hand, first notice that the splitting 7C' = TC+1 & V gives
a canonical splitting
bTC =°TC¥ @ G, (3.28)

where G := p~ (V). It is clear that G C *T'C; the fact that it is indeed a
smooth subbundle follows from p being transverse to V:

TM|cnz =TZ|cnz +TClonz
=TZ|cnz + TC " cnz + Vienz
=Im(plcnz) + p(("TC))|cnz + Vienz
=Im(plonz) + Vienz-

Note that G intersects (*T'C)* trivially because p((*TC)*) = TC*n.
We now apply the b-Gotay theorem (Proposition 1.3.15) for the choice
of splitting (3.28). Denoting by w € *Q?(M) the b-symplectic form
corresponding with IT, we obtain that a neighborhood of C in (M, Z, w)
is b-symplectomorphic with

(v € CTCy Pprs(we) + i wor-c))- (3.29)
Here pry : ("TC%)* — C is the projection and jp : (*TC®)* — *T*C is

the inclusion induced by the splitting (3.28).

The models (3.27) and (3.29) are canonically isomorphic around C. In fact, we
claim that the map

@ (TCHm)* — (PTC*)*
dual to the map p : °T'C* — TC+1 is a b-symplectomorphism between them.

To see why, first notice that

prop=pops:TC — TC*, (3.30)
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where p; : TC' — TC*1 and p, : *TC — *T'C® are the projections in the direct
sums TC = TCH1 @V and *TC = *TC¥ & G, respectively. Indeed, for all
v € *TC, we have
p1(p(v)) = pr(p(p2(v)) + p(v — p2(v)))
= p1(p(p2(v)))
= p(p2(v)),

using in the second equality that p(v — pa(v)) € V and in the third equality
that p(p2(v)) € TCH. This proves that (3.30) holds. Taking duals in that
equality, we obtain a commutative diagram

(TCLH)* % (bTOw)*

L

T°C — 2 vpeC
Consequently, pulling back (3.29) along ® gives
0" (*pri(we) + is (wereoy)) = Ppri(we) + (0" 0 1) (werecy)-

This is a b-symplectic form with singular locus pry 1(C N Z), just like the one in
(3.27). To see that they are equal, it is enough to check that their symplectic
forms on the complement of pr; 1(C' N Z) agree. Clearly they do, because they
are both given by

pri(welevenz)) + 31 (Wr-clr-e\T+Clonz))-

This proves that the models (3.27) and (3.29) are isomorphic around C.
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