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Goal of the talk

Recall
M is a symplectic (or more generally Poisson) manifold
⇒ (C∞(M),{ , }) is a Lie algebra.

Question

On a quasi-symplectic or quasi-Poisson groupoid,
do functions form a "good" Lie 2-algebra?

"Good" means: preserved by Morita equivalence.

Remark
We consider "quasi" because symplectic groupoids and Poisson groupoids
are not as well behaved under Morita equivalence.
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Quasi-Poisson groupoids

Definition (IGLESIAS-PONTE, LAURENT-GENGOUX, XU 2012)
A quasi-Poisson groupoid is a Lie groupoid Σ⇉M with

Π ∈ X2
mult(Σ) (a multiplicative bivector field)

φ ∈ Γ(∧3A)
satisfying

1

2
[Π,Π] = Ð→φ −←Ðφ and [Π,Ð→φ ] = 0.

Here:
Π is multiplicative if the graph of the product is coisotropic w.r.t. Π +Π + (−Π),
A is Lie algebroid of Σ,
Ð→
φ ∈ X3(Σ) the right-invariant extension of φ.



Gauge transformations

Remark [BONECHI, CICCOLI, LAURENT-GENGOUX, XU 2022]

Given a Lie groupoid Σ,

⊕●≥−2Γ(∧●+2 A) ⊕X●+1
mult(Σ)

is a DGLA (differential graded Lie algebra).
A Maurer-Cartan element in this DGLA is a quasi-Poisson groupoid structure
on Σ.

Remark[IGLESIAS-PONTE, LAURENT-GENGOUX, XU 2012]

Let (Σ,Π, φ) be a quasi-Poisson groupoid.
For any T ∈ Γ(∧2A), we get a new quasi-Poisson groupoid (Σ,ΠT , φT ) where

ΠT = Π +Ð→T −←ÐT

φT = φ − [Π,Ð→T ]∣M − 1

2
[T,T ]A.
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Example [pair groupoid]
Let P ∈ X2(M), denote φ ∶= 1

2
[P,P ] ∈ X3(M). Then

(M ×M, P1 − P2
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=∶Π

, φ)

is a quasi-Poisson groupoid.
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The Lie 2-algebra LPois(Σ,Π, φ)
Proposition (ALSO ÁLVAREZ, CUECA 2024; AFTER CHEN, LANG, LIU 2023)
The complex

C∞(M) ∂Ð→ C∞
mult(Σ)

is canonically a Lie 2-algebra.
The differential is ∂ ∶= t∗ − s∗, the brackets

l2(ϕ,ϕ′) ∶= {ϕ,ϕ′},
l2(ϕ, f) ∶= {ϕ, t∗f}∣M ,

l3(ϕ,ϕ′, ϕ′′) ∶= ⟨φ, dϕ∣A ∧ dϕ′∣A ∧ dϕ′′∣A⟩.

Here: a function ϕ is multiplicative if ϕ(gh) = ϕ(g) + ϕ(h).

Proposition
Two quasi-Poisson groupoids are Morita equivalent Ô⇒
the respective Lie 2-algebras LPois are quasi-isomorphic.
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Quasi-symplectic groupoids

Definition (XU 2004; BURSZTYN, CRAINIC, WEINSTEIN, ZHU 2004)
A quasi-symplectic groupoid is a Lie groupoid Σ⇉M with

ω ∈ Ω2
mult(Σ) (a multiplicative 2-form)

Ω ∈ Ω3(M) a closed 3-form
such that writing ∂ ∶= t∗ − s∗

dω = ∂Ω

kerω∩ker t∗ ∩ ker s∗ = {0}.

Here: ω is multiplicative if the graph of the product is isotropic w.r.t.
ω + ω + (−ω)

Remark
We have dim(Σ) = 2 dim(M).



The Bott-Shulman complex
Given a Lie groupoid Σ⇉M , there is a double complex of differential forms
on the nerve.

C∞(Σ(2)) Ω1(Σ(2)) . . .

C∞(Σ) Ω1(Σ) Ω2(Σ) . . .

C∞(M) Ω1(M) Ω2(M) Ω3(M) . . .

d d

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

The Bott-Shulman complex is the total complex, with differential D = d ± ∂.

Remark
Given forms ω ∈ Ω2(Σ) and Ω ∈ Ω3(M):

ω +Ω is D-closed ⇔
(Σ, ω,Ω) is a quasi-symplectic groupoid, except for non-degeneracy.

7 / 21



Gauge transformations
Remark
Let (Σ, ω,Ω) be a quasi-symplectic groupoid.
For any σ ∈ Ω2(M), we get a new quasi-symplectic groupoid (Σ, ωσ,Ωσ)
where

ωσ = ω + ∂σ
Ωσ = Ω + dσ.

In other words:
(ωσ +Ωσ) = (ω +Ω) +Dσ.

Example [pair groupoid]
Let σ ∈ Ω2(M), denote Ω ∶= dσ. Then

(M ×M, pr∗1σ − pr∗2σ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ω

, Ω)

is a quasi-Poisson groupoid.
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Example[ALEKSEEV, MALKIN, MEINRENKEN 1998]

Let d be a Lie algebra with invariant inner product.
The transformation groupoid of the action of D on itself by conjugation

D ⋊D ⇉D

is a quasi-symplectic groupoid, with the Cartan 3-form Ω on D.
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"Hamiltonian" vector fields

Let (Σ⇉M,ω,Ω) be a quasi-symplectic groupoid.
The following chain map ω♭ induces[DEL HOYO, ORTIZ 2020] an isomorphism in
cohomology:

Xmult(Σ) Ω1
mult(Σ)

Γ(A) Ω1(M)

ω

ι●ω∣TM
∂ ∂

Corollary
For any ϕ ∈ C∞

mult(Σ) there are α ∈ Ω1(M) and ξ ∈ Xmult(Σ) s.t.

dϕ − ∂α = ιξω.

We view ξ as a “Hamiltonian vector field” for ϕ.



The graded Lie algebra g(Σ, ω,Ω)
Proposition
There is a canonical graded Lie algebra structure on

C∞
basic(M)[1] ⊕ C∞

mult(Σ)
∂C∞(M) .

The brackets are

[ϕ,ϕ′] ∶= ιξιξ′ω, [ϕ, f] ∶= ξ∣M(f),

where the "Hamiltonian" vector field ξ of ϕ.

Remark
The above space is

H0
d(Σ)[1] ⊕H1

d(Σ)
(differentiable cohomology of the Lie groupoid Σ).

Remark
Two quasi-symplectic groupoids are Morita equivalentÔ⇒
the respective graded Lie algebras g are isomorphic.
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Compatibility with product

Remark
(H0

d(Σ)[1] ⊕H1
d(Σ))[−1] is actually a graded Poisson algebra of degree 1,

w.r.t. the product
f1 ∗ f2 ∶= f1 ⋅ f2, f ∗ ϕ ∶= t∗f ⋅ ϕ.
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First interpretation of g: from Dirac structures

Remark[ALSO GUALTIERI, MATVIICHUK, SCOTT 2020]

Let L be a Dirac structure of some Courant algebroid E →M .
C∞

basic(M) is an abelian subalgebra of (C∞
admissible(M,L),{ , })

(Casimirs)

Every element of Γ(L∗) is of the form

λ = ⟨e, ⋅⟩∣L for some e ∈ Γ(E).

λ is dL-closed ⇔ [e, ⋅]c preserves Γ(L) (“symmetry of L”)
↝ The Courant bracket induces a Lie bracket on H1(L).
↝ The anchor induces a representation of H1(L) on C∞

basic(M).
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First interpretation of g: from Dirac structures

Quasi-symplectic groupoid (Σ⇉M,ω,Ω)
↝ Dirac structure L ⊂ (TM ⊕ T ∗M)Ω.

If Σ is s.s.c., have Van Est isomorphism

H1
d(Σ) ≅H1(L).

It preserves the Lie algebra structure and representation on C∞
basic(M).
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2nd interpretation of g: from quasi-Poisson groupoids

Let (Σ⇉M,ω,Ω) be a quasi-symplectic groupoid.

Choice of Lagrangian complement to the Dirac structure L
↝ Quasi-Poisson groupoid structure [BURSZTYN, IGLESIAS, ŠEVERA 2009]

(Σ,Π, φ).

Π♯ and ω♭ induce inverse maps in cohomology.

Remark
Two different choices of Lagrangian complement ⇒
Morita equivalent quasi-Poisson groupoid structures.
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2nd interpretation of g: from quasi-Poisson groupoids
Proposition

The following graded Lie algebra structures on C∞
basic(M)[1] ⊕ C∞mult(Σ)

∂C∞(M) agree:

g(Σ, ω,Ω)
H(LPois(Σ,Π, φ)), the cohomology of the Lie 2-algebra LPois(Σ,Π, φ).

(Σ, ω,Ω) quasi-sympl (Σ,Π, φ) quasi-Poisson

LPois(Σ,Π, φ)

g(Σ, ω,Ω) = cohomology of LPois(Σ,Π, φ)

invert

(choice)

Conclusion
To a quasi-symplectic groupoid we can associate various Lie 2-algebras of
functions. They are all quasi-isomorphic, and the cohomology (a graded Lie
algebra) is canonical.
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A Lie 2-algebra on quasi-symplectic groupoids
Let (Σ, ω,Ω) be a quasi-symplectic groupoid.

Proposition
There is a Lie 2-algebra structure on the complex

C∞(M) (d,∂)ÐÐÐ→ L0
´¸¶

⊂ C∞mult(Σ)⊕Ω1(M)

where
L0 ∶= {(ϕ,α) ∶ ∃ξ ∈ Xmult(Σ) s.t. D(ϕ + α) = ιξ(ω +Ω)}.

Remark
The above holds also for quasi-pre-symplectic groupoid,
i.e. when the non-degeneracy condition on ω is omitted.

Remark
Two quasi-symplectic groupoids are Morita equivalent /Ô⇒
the respective Lie 2-algebras are quasi-isomorphic.



Our original motivation: Path space (heuristic)

Let M be a manifold, let PM = {[0,1] →M} the path space.
The diagram

PM

M

ev0

resembles a groupoid (but the concatenation of paths is not associative).
The transgression map is

τ ∶Ωk(M) → Ωk−1(PM),

(τα)γ(v1, . . . , vk−1) = ∫
1

0
α(γ̇(t), v1(t), . . . , vk−1(t)) dt.

It is not a chain map:

d ○ τ + τ ○ d = ∂ ∶= ev∗1 − ev∗0 .
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Our original motivation: Path space (heuristic)

Let Ω ∈ Ω3
closed(M). Get

ω ∶= τ(Ω) ∈ Ω2(PM),
which satisfies

dω = ∂Ω.

Further ω is multiplicative.

Conclusion:
(PM,ω)

(M,Ω)

resembles a quasi-pre-symplectic groupoid.
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The BHR Lie 2-algebra
Let Ω ∈ Ω3

closed(M) be non-degenerate (i.e., 2-plectic).
The Hamiltonian 1-forms

Ω1
ham(M,Ω) ∶= {α ∈ Ω1(M) ∣ ∃Xα ∈ X(M) s.t. dα = ιXαΩ}

carry a skew-symmetric bracket.

Proposition (BAEZ, HOFFNUNG, ROGERS 2010)
There is a Lie 2-algebra structure on the complex

C∞(M) dÐ→ Ω1
Ham(M,Ω)

with higher brackets
l2(α,β) = ιXαιXβΩ

l2(α, f) = 0

l3(α,β, γ) = Ω(Xα,Xβ ,Xγ),
for f ∈ C∞(M) and α,β, γ ∈ Ω1

ham(M,Ω).
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Relation of the BHR Lie 2-algebra and path space
The transgression τ gives an injective cochain map

C∞(M) Ω1
ham(M,Ω)

C∞(M) C∞
mult(PM)

d

τ

∂

This suggests: Look for a Lie 2-algebra structure on C∞(M) ∂Ð→ C∞
mult(PM),

and similarly for quasi-pre-symplectic groupoids.

There is probably none, however:

Proposition

C∞(M) Ω1
ham(M,Ω)

C∞(M) L0(PM)

d

(τ,Id)
(∂,d)

is a strict Lie 2-algebra morphism.
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