

Functions on quasi-Poisson and quasi-symplectic groupoids

Marco Zambon

work in progress

joint with Cristian Ortiz (USP) and Gabriel Sevestre

Goal of the talk

Recall

M is a symplectic (or more generally Poisson) **manifold**

$\Rightarrow (C^\infty(M), \{, \})$ is a **Lie algebra**.

Question

On a quasi-symplectic or quasi-Poisson **groupoid**,
do functions form a "good" **Lie 2-algebra**?

"Good" means: preserved by Morita equivalence.

Remark

We consider "quasi" because symplectic groupoids and Poisson groupoids are not as well behaved under Morita equivalence.

Quasi-Poisson groupoids

Definition (IGLESIAS-PONTE, LAURENT-GENGOUX, Xu 2012)

A **quasi-Poisson groupoid** is a Lie groupoid $\Sigma \rightrightarrows M$ with

- $\Pi \in \mathfrak{X}_{\text{mult}}^2(\Sigma)$ (a multiplicative bivector field)
- $\phi \in \Gamma(\wedge^3 A)$

satisfying

$$\frac{1}{2}[\Pi, \Pi] = \overrightarrow{\phi} - \overleftarrow{\phi} \quad \text{and} \quad [\Pi, \overrightarrow{\phi}] = 0.$$

Here:

Π is **multiplicative** if the graph of the product is coisotropic w.r.t. $\Pi + \Pi + (-\Pi)$,

A is Lie algebroid of Σ ,

$\overrightarrow{\phi} \in \mathfrak{X}^3(\Sigma)$ the right-invariant extension of ϕ .

Gauge transformations

Remark [BONECHI, CICCOLI, LAURENT-GENGOUX, Xu 2022]

Given a Lie groupoid Σ ,

$$\oplus_{\bullet \geq -2} \Gamma(\wedge^{\bullet+2} A) \oplus \mathfrak{X}_{\text{mult}}^{\bullet+1}(\Sigma)$$

is a DGLA (differential graded Lie algebra).

A **Maurer-Cartan element** in this DGLA is a **quasi-Poisson** groupoid structure on Σ .

Remark [IGLESIAS-PONTE, LAURENT-GENGOUX, Xu 2012]

Let (Σ, Π, ϕ) be a quasi-Poisson groupoid.

For any $T \in \Gamma(\wedge^2 A)$, we get a new quasi-Poisson groupoid (Σ, Π^T, ϕ^T) where

$$\Pi^T = \Pi + \vec{T} - \overleftarrow{T}$$

$$\phi^T = \phi - [\Pi, \vec{T}]|_M - \frac{1}{2}[T, T]_A.$$

Example [pair groupoid]

Let $P \in \mathfrak{X}^2(M)$, denote $\phi := \frac{1}{2}[P, P] \in \mathfrak{X}^3(M)$. Then

$$(M \times M, \underbrace{P_1 - P_2}_{=: \Pi}, \phi)$$

is a quasi-Poisson groupoid.

The Lie 2-algebra $L_{\text{Pois}}(\Sigma, \Pi, \phi)$

Proposition (ALSO ÁLVAREZ, CUECA 2024; AFTER CHEN, LANG, LIU 2023)

The complex

$$C^\infty(M) \xrightarrow{\partial} C_{\text{mult}}^\infty(\Sigma)$$

is canonically a Lie 2-algebra.

The differential is $\partial := \mathbf{t}^ - \mathbf{s}^*$, the brackets*

$$\begin{aligned} l_2(\varphi, \varphi') &:= \{\varphi, \varphi'\}, \\ l_2(\varphi, f) &:= \{\varphi, \mathbf{t}^* f\}|_M, \\ l_3(\varphi, \varphi', \varphi'') &:= \langle \phi, d\varphi|_A \wedge d\varphi'|_A \wedge d\varphi''|_A \rangle. \end{aligned}$$

Here: a function φ is multiplicative if $\varphi(gh) = \varphi(g) + \varphi(h)$.

Proposition

Two quasi-Poisson groupoids are *Morita equivalent* \implies
the respective Lie 2-algebras L_{Pois} are *quasi-isomorphic*.

Quasi-symplectic groupoids

Definition (XU 2004; BURSZTYN, CRAINIC, WEINSTEIN, ZHU 2004)

A **quasi-symplectic groupoid** is a Lie groupoid $\Sigma \rightrightarrows M$ with

- $\omega \in \Omega^2_{\text{mult}}(\Sigma)$ (a multiplicative 2-form)
- $\Omega \in \Omega^3(M)$ a closed 3-form

such that writing $\partial := \mathbf{t}^* - \mathbf{s}^*$

$$d\omega = \partial\Omega$$

$$\ker \omega \cap \ker \mathbf{t}_* \cap \ker \mathbf{s}_* = \{0\}.$$

Here: ω is multiplicative if the graph of the product is isotropic w.r.t.
 $\omega + \omega + (-\omega)$

Remark

We have $\dim(\Sigma) = 2\dim(M)$.

The Bott-Shulman complex

Given a Lie groupoid $\Sigma \rightrightarrows M$, there is a double complex of differential forms on the nerve.

$$\begin{array}{ccccccc} C^\infty(\Sigma^{(2)}) & \xrightarrow{d} & \Omega^1(\Sigma^{(2)}) & \xrightarrow{d} & \dots \\ \partial \uparrow & & \partial \uparrow & & \partial \uparrow \\ C^\infty(\Sigma) & \xrightarrow{d} & \Omega^1(\Sigma) & \xrightarrow{d} & \Omega^2(\Sigma) & \xrightarrow{d} & \dots \\ \partial \uparrow & & \partial \uparrow & & \partial \uparrow & & \partial \uparrow \\ C^\infty(M) & \xrightarrow{d} & \Omega^1(M) & \xrightarrow{d} & \Omega^2(M) & \xrightarrow{d} & \Omega^3(M) & \xrightarrow{d} & \dots \end{array}$$

The Bott-Shulman complex is the total complex, with differential $D = d \pm \partial$.

Remark

Given forms $\omega \in \Omega^2(\Sigma)$ and $\Omega \in \Omega^3(M)$:

$$\omega + \Omega \text{ is } D\text{-closed} \Leftrightarrow$$

(Σ, ω, Ω) is a quasi-symplectic groupoid, except for non-degeneracy.

Gauge transformations

Remark

Let (Σ, ω, Ω) be a quasi-symplectic groupoid.

For any $\sigma \in \Omega^2(M)$, we get a new quasi-symplectic groupoid $(\Sigma, \omega^\sigma, \Omega^\sigma)$ where

$$\omega^\sigma = \omega + \partial\sigma$$

$$\Omega^\sigma = \Omega + d\sigma.$$

In other words:

$$(\omega^\sigma + \Omega^\sigma) = (\omega + \Omega) + D\sigma.$$

Example [pair groupoid]

Let $\sigma \in \Omega^2(M)$, denote $\Omega := d\sigma$. Then

$$(M \times M, \underbrace{pr_1^* \sigma - pr_2^* \sigma}_{=: \omega}, \Omega)$$

is a quasi-Poisson groupoid.

Example^[ALEKSEEV, MALKIN, MEINRENKEN 1998]

Let \mathfrak{d} be a Lie algebra with invariant inner product.

The transformation groupoid of the action of D on itself by conjugation

$$D \rtimes D \rightrightarrows D$$

is a quasi-symplectic groupoid, with the Cartan 3-form Ω on D .

"Hamiltonian" vector fields

Let $(\Sigma \rightrightarrows M, \omega, \Omega)$ be a quasi-symplectic groupoid.

The following chain map ω^\flat induces^[DEL HOYO, ORTIZ 2020] an isomorphism in cohomology:

$$\begin{array}{ccc} \mathfrak{X}_{\text{mult}}(\Sigma) & \xrightarrow{\omega} & \Omega^1_{\text{mult}}(\Sigma) \\ \partial \uparrow & & \partial \uparrow \\ \Gamma(A) & \xrightarrow{\iota \bullet \omega|_{TM}} & \Omega^1(M) \end{array}$$

Corollary

For any $\varphi \in C^\infty_{\text{mult}}(\Sigma)$ there are $\alpha \in \Omega^1(M)$ and $\xi \in \mathfrak{X}_{\text{mult}}(\Sigma)$ s.t.

$$d\varphi - \partial\alpha = \iota_\xi\omega.$$

We view ξ as a "Hamiltonian vector field" for φ .

The graded Lie algebra $\mathfrak{g}(\Sigma, \omega, \Omega)$

Proposition

There is a canonical *graded Lie algebra* structure on

$$C_{basic}^\infty(M)[1] \oplus \frac{C_{mult}^\infty(\Sigma)}{\partial C^\infty(M)}.$$

The brackets are

$$[\underline{\varphi}, \underline{\varphi'}] := \underline{\iota_\xi \iota_{\xi'} \omega}, \quad [\underline{\varphi}, f] := \xi|_M(f),$$

where the "Hamiltonian" vector field ξ of φ .

Remark

The above space is

$$H_d^0(\Sigma)[1] \oplus H_d^1(\Sigma)$$

(differentiable cohomology of the Lie groupoid Σ).

Remark

Two quasi-symplectic groupoids are **Morita equivalent** \implies the respective graded Lie algebras \mathfrak{g} are **isomorphic**.

Compatibility with product

Remark

$(H_d^0(\Sigma)[1] \oplus H_d^1(\Sigma))[-1]$ is actually a **graded Poisson algebra** of degree 1, w.r.t. the product

$$f_1 * f_2 := f_1 \cdot f_2, \quad f * \underline{\varphi} := \underline{\mathbf{t}^* f \cdot \varphi}.$$

First interpretation of g : from Dirac structures

Remark [ALSO GUALTIERI, MATVIICHUK, SCOTT 2020]

Let L be a Dirac structure of some Courant algebroid $E \rightarrow M$.

- $C_{\text{basic}}^\infty(M)$ is an abelian subalgebra of $(C_{\text{admissible}}^\infty(M, L), \{, \})$ (Casimirs)
- Every element of $\Gamma(L^*)$ is of the form

$$\lambda = \langle e, \cdot \rangle|_L \quad \text{for some } e \in \Gamma(E).$$

λ is d_L -closed $\Leftrightarrow [e, \cdot]_c$ preserves $\Gamma(L)$ ("symmetry of L ")

- \rightsquigarrow The Courant bracket induces a Lie bracket on $H^1(L)$.
- \rightsquigarrow The anchor induces a representation of $H^1(L)$ on $C_{\text{basic}}^\infty(M)$.

First interpretation of g : from Dirac structures

Quasi-symplectic groupoid $(\Sigma \Rightarrow M, \omega, \Omega)$

\rightsquigarrow **Dirac structure** $L \subset (TM \oplus T^*M)_\Omega$.

If Σ is s.s.c., have Van Est isomorphism

$$H_d^1(\Sigma) \cong H^1(L).$$

It preserves the Lie algebra structure and representation on $C_{\text{basic}}^\infty(M)$.

2nd interpretation of g : from quasi-Poisson groupoids

Let $(\Sigma \rightrightarrows M, \omega, \Omega)$ be a quasi-symplectic groupoid.

Choice of Lagrangian complement to the Dirac structure L

⇒ Quasi-Poisson groupoid structure [BURSZTYN, IGLESIAS, ŠEVERA 2009]

$$(\Sigma, \Pi, \phi).$$

$\Pi^\#$ and ω^\flat induce inverse maps in cohomology.

Remark

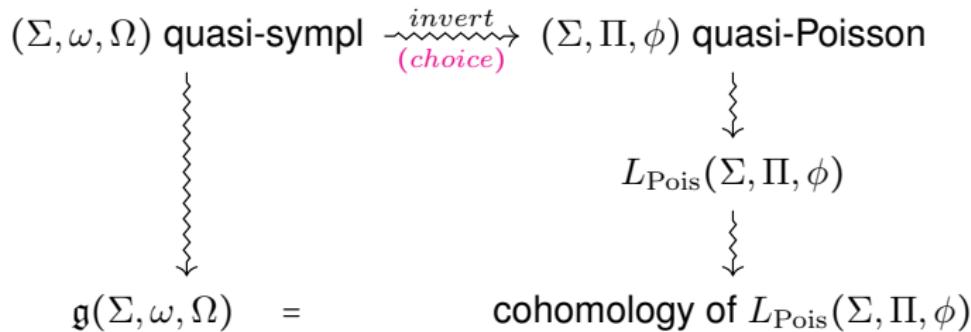
Two different choices of Lagrangian complement ⇒
Morita equivalent quasi-Poisson groupoid structures.

2nd interpretation of \mathfrak{g} : from quasi-Poisson groupoids

Proposition

The following graded Lie algebra structures on $C_{basic}^\infty(M)[1] \oplus \frac{C_{mult}^\infty(\Sigma)}{\partial C^\infty(M)}$ agree:

- $\mathfrak{g}(\Sigma, \omega, \Omega)$
- $H(L_{\text{Pois}}(\Sigma, \Pi, \phi))$, the cohomology of the Lie 2-algebra $L_{\text{Pois}}(\Sigma, \Pi, \phi)$.



Conclusion

To a quasi-symplectic groupoid we can associate various Lie 2-algebras of functions. They are all quasi-isomorphic, and the cohomology (a graded Lie algebra) is canonical.

A Lie 2-algebra on quasi-symplectic groupoids

Let (Σ, ω, Ω) be a quasi-symplectic groupoid.

Proposition

*There is a **Lie 2-algebra** structure on the complex*

$$\begin{array}{ccc} C^\infty(M) & \xrightarrow{(d, \partial)} & \underbrace{L_0}_{\substack{\subset C_{mult}^\infty(\Sigma) \oplus \Omega^1(M)}} \end{array}$$

where

$$L_0 := \{(\varphi, \alpha) : \exists \xi \in \mathfrak{X}_{mult}(\Sigma) \text{ s.t. } D(\varphi + \alpha) = \iota_\xi(\omega + \Omega)\}.$$

Remark

The above holds also for quasi-pre-symplectic groupoid, i.e. when the non-degeneracy condition on ω is omitted.

Remark

Two quasi-symplectic groupoids are **Morita equivalent** $\not\Rightarrow$ the respective Lie 2-algebras are quasi-isomorphic.

Our original motivation: Path space (heuristic)

Let M be a manifold, let $PM = \{[0, 1] \rightarrow M\}$ the path space.

- The diagram

$$\begin{array}{ccc} PM & & \\ \downarrow \downarrow ev_0 & & \\ M & & \end{array}$$

resembles a groupoid (but the concatenation of paths is not associative).

- The transgression map is

$$\tau: \Omega^k(M) \rightarrow \Omega^{k-1}(PM),$$

$$(\tau\alpha)_{\gamma}(v_1, \dots, v_{k-1}) = \int_0^1 \alpha(\dot{\gamma}(t), v_1(t), \dots, v_{k-1}(t)) \, dt.$$

It is not a chain map:

$$d \circ \tau + \tau \circ d = \partial := ev_1^* - ev_0^*.$$

Our original motivation: Path space (heuristic)

Let $\Omega \in \Omega_{\text{closed}}^3(M)$. Get

$$\omega := \tau(\Omega) \in \Omega^2(PM),$$

which satisfies

$$d\omega = \partial\Omega.$$

Further ω is multiplicative.

Conclusion:

$$(PM, \omega)$$

$$(M, \Omega)$$

resembles a quasi-pre-symplectic groupoid.

The BHR Lie 2-algebra

Let $\Omega \in \Omega_{\text{closed}}^3(M)$ be non-degenerate (i.e., **2-plectic**).

The Hamiltonian 1-forms

$$\Omega_{\text{ham}}^1(M, \Omega) := \{\alpha \in \Omega^1(M) \mid \exists X_\alpha \in \mathfrak{X}(M) \text{ s.t. } d\alpha = \iota_{X_\alpha} \Omega\}$$

carry a skew-symmetric bracket.

Proposition (BAEZ, HOFFNUNG, ROGERS 2010)

There is a Lie 2-algebra structure on the complex

$$C^\infty(M) \xrightarrow{d} \Omega_{\text{Ham}}^1(M, \Omega)$$

with higher brackets

- $l_2(\alpha, \beta) = \iota_{X_\alpha} \iota_{X_\beta} \Omega$
- $l_2(\alpha, f) = 0$
- $l_3(\alpha, \beta, \gamma) = \Omega(X_\alpha, X_\beta, X_\gamma),$

for $f \in C^\infty(M)$ and $\alpha, \beta, \gamma \in \Omega_{\text{ham}}^1(M, \Omega)$.

Relation of the BHR Lie 2-algebra and path space

The transgression τ gives an injective cochain map

$$\begin{array}{ccc} C^\infty(M) & \xrightarrow{d} & \Omega_{\text{ham}}^1(M, \Omega) \\ \downarrow & & \downarrow \tau \\ C^\infty(M) & \xrightarrow{\partial} & C_{\text{mult}}^\infty(PM) \end{array}$$

This suggests: Look for a Lie 2-algebra structure on $C^\infty(M) \xrightarrow{\partial} C_{\text{mult}}^\infty(PM)$, and similarly for quasi-pre-symplectic groupoids.

There is probably none, however:

Proposition

$$\begin{array}{ccc} C^\infty(M) & \xrightarrow{d} & \Omega_{\text{ham}}^1(M, \Omega) \\ \downarrow & & \downarrow (\tau, \text{Id}) \\ C^\infty(M) & \xrightarrow{(\partial, d)} & L_0(PM) \end{array}$$

is a strict Lie 2-algebra morphism.

References

- F. Bonechi, N. Ciccoli, C. Laurent-Gengoux, and P. Xu.
Shifted Poisson Structures on Differentiable Stacks.
International Mathematics Research Notices, 2022
- H. Bursztyn, D. Iglesias Ponte, and P. Ševera.
Courant morphisms and moment maps.
Math. Res. Lett., 16(2):215–232, 2009.
- H. Bursztyn, M. Crainic, A. Weinstein, and C. Zhu.
Integration of twisted Dirac brackets.
Duke Math. J., 123(3):549–607, 2004.
- D. Iglesias-Ponte, C. Laurent-Gengoux, and P. Xu.
Universal lifting theorem and quasi-Poisson groupoids.
J. Eur. Math. Soc. (JEMS), 14(3):681–731, 2012.
- P. Xu.
Momentum maps and Morita equivalence.
J. Differential Geom., 67(2):289–333, 2004.

Thank you for your attention