

A super-geometric approach to the reduction of Poisson manifolds

Marco Zambon (C.R.M. Barcelona)
based on work in progress
joint with A. Cattaneo (Univ. Zürich)

Bilbao, June 2008

Plan of the talk

- The reduction problem in Poisson geometry
- The problem in super-geometric terms
- Translating back to Poisson geometry

Plan of the talk

- The reduction problem in Poisson geometry
- The problem in super-geometric terms
- Translating back to Poisson geometry

Poisson manifolds

Definition

M is a **Poisson manifold** if $C^\infty(M)$ is endowed with a Lie bracket $\{\bullet, \bullet\}$ satisfying $\{f, gh\} = \{f, g\}h + g\{f, h\}$.

Examples

- ▶ \mathfrak{g}^* the dual of a Lie algebra:
for $v, w \in \mathfrak{g} \subset C^\infty(\mathfrak{g}^*)$ define $\{v, w\} := [v, w]$.
- ▶ symplectic manifolds
(i.e. ω is a non-degenerate two-form with $d\omega = 0$).
We have $\{f, g\} := \omega(X_f, X_g)$.
Cotangent bundles T^*N are symplectic.

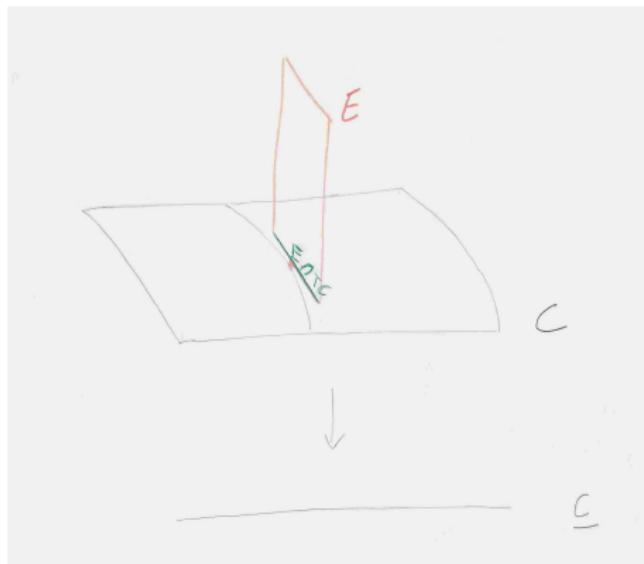
Are quotients of submanifolds Poisson?

Problem

Let M be a Poisson manifold. Given

- a submanifold C
- a subbundle $E \subset TM|_C$,

is there an induced Poisson bracket on $\underline{C} := C/(E \cap TC)$?



Plan of the talk

- The reduction problem in Poisson geometry
- The problem in super-geometric terms
- Translating back to Poisson geometry

Definition

Let $U_0 \subset \mathbb{R}^n$ open subset and $V = \bigoplus_i V_i$ a \mathbb{Z} -graded vector space.

The **local model for a graded manifold** consists of a pair

- ▶ U_0 (the “body”)
- ▶ $C^\infty(U_0) \otimes S^\bullet(V^*)$ (the graded comm. algebra of functions)

Fact

$E = \bigoplus_i E_i \rightarrow M$ a graded vector bundle \rightsquigarrow
graded manifold with body M and functions $\Gamma(S^\bullet E^*)$.

Example

W a usual vector space \rightsquigarrow

$W[1]$ concentrated in degree $-1 \rightsquigarrow$

graded manifold with body $\{pt\}$ and functions

$$S^\bullet(W[1])^* = S^\bullet(W^*[-1]) = \wedge^\bullet W^*.$$

Graded manifolds

Example

$T^*[1]M \rightsquigarrow$

graded manifold with body M and functions

$$\Gamma(S^\bullet(T[-1]M)) = \Gamma(\wedge^\bullet TM) = \{\text{multivector fields on } M\}.$$

x_j coordinates on $M \rightsquigarrow p_j$ coordinates on fibers of $T^*M \rightsquigarrow$
 θ_j degree 1 coordinates of fibers of $T^*[1]M$.

Examples of functions on $T^*[1]M$ are $g(x)\theta_1$, $\theta_1\theta_2 = -\theta_2\theta_1$.

Remark

$T^*[1]M$ has a symplectic form $\omega = dx_j \wedge d\theta_j$

\rightsquigarrow Poisson bracket of degree -1 : $\{\theta_j, x_k\} = \delta_{jk}$.

It is just the Schouten bracket on multivector fields.

The problem in super-geometric terms

Fact

*Poisson bracket $\{\bullet, \bullet\}$ on $M \leftrightarrow$
bivector field $\pi \in \Gamma(\wedge^2 TM)$ satisfying $[\pi, \pi] = 0 \leftrightarrow$
degree 2 function \mathcal{S} on $T^*[1]M$ satisfying $\{\mathcal{S}, \mathcal{S}\} = 0$.*

$$\pi = \pi_{ij}(x) \partial_{x_i} \wedge \partial_{x_j} \leftrightarrow \mathcal{S} = \pi_{ij}(x) \theta_i \theta_j.$$

Idea

Submanifold \mathcal{C} of $(T^*[1]M, \omega, \mathcal{S})$
 \rightsquigarrow quotient $\underline{\mathcal{C}}$ to which ω and \mathcal{S} descend.

The problem in super-geometric terms

More precisely:

- 1) \mathcal{C} presymplectic submanifold of $T^*[1]M \rightsquigarrow$
 $\underline{\mathcal{C}} := \mathcal{C}/\ker(i^*\omega)$ is a degree 1 graded symplectic manifold,
hence symplectomorphic to $T^*[1]X$ for some X .

Algebraically: Let

$$\mathcal{I}_{\mathcal{C}} = \{F : F|_{\mathcal{C}} = 0\} \subset C^\infty(T^*[1]M)$$

and

$$\mathcal{N}(\mathcal{I}_{\mathcal{C}}) = \{F : \{F, \mathcal{I}_{\mathcal{C}}\} \subset \mathcal{I}_{\mathcal{C}}\}.$$

It is clear that $\mathcal{N}(\mathcal{I}_{\mathcal{C}})/\mathcal{N}(\mathcal{I}_{\mathcal{C}}) \cap \mathcal{I}_{\mathcal{C}}$ has an induced Poisson bracket. Under regularity assumptions it is $C^\infty(\underline{\mathcal{C}})$ for some graded manifold $\underline{\mathcal{C}}$.

The problem in super-geometric terms

- 2) $\mathcal{S}|_{\mathcal{C}}$ is invariant along the distribution $\ker(i^*\omega) \rightsquigarrow$ degree 2 function $\underline{\mathcal{S}}$ on $\underline{\mathcal{C}} \cong T^*[1]X$.
If $\{\underline{\mathcal{S}}, \underline{\mathcal{S}}\} = 0$ then $\underline{\mathcal{S}}$ corresponds to a Poisson structure on X .

Algebraically: $\mathcal{S}|_{\mathcal{C}}$ is invariant $\Leftrightarrow \mathcal{S} \in \mathcal{N}(\mathcal{I}_{\mathcal{C}}) + \mathcal{I}_{\mathcal{C}}$.
A *sufficient* condition for $\{\underline{\mathcal{S}}, \underline{\mathcal{S}}\} = 0$ is clearly $\mathcal{S} \in \mathcal{N}(\mathcal{I}_{\mathcal{C}})$.
It turns out: the weaker condition $\{\mathcal{S}, (\mathcal{I}_{\mathcal{C}})_0\} \subset \mathcal{I}_{\mathcal{C}}$ is also sufficient.

Plan of the talk

- The reduction problem in Poisson geometry
- The problem in super-geometric terms
- Translating back to Poisson geometry

Lemma

- ▶ \mathcal{C} is presymplectic $\Leftrightarrow \mathcal{C} = E^\circ[1]$
where $E \rightarrow C$ is a subbundle of $TM \rightarrow M$ s.t. $E \cap TC$ is a constant rank, involutive distribution.
- ▶ In that case

$$\underline{\mathcal{C}} \cong T^*[1]\underline{C}$$

where $\underline{C} := C/(E \cap TC)$.

Proposition

Suppose

1. $(\mathcal{L}_{\Gamma(E \cap TC)} \pi)|_C \subset E \wedge TM|_C$.
2. $\sharp E^\circ \subset TC$

where \sharp denotes contraction with $\pi \in \Gamma(\wedge^2 TM)$.

Then C inherits a Poisson structure.

Statement 2

To obtain a statement with weaker assumptions we apply *reduction in stages*: let \mathcal{A} be a coisotropic submanifold of $T^*[1]M$ containing \mathcal{C} .

- ▶ Take the image of \mathcal{C} under the projection $\mathcal{A} \rightarrow \mathcal{A}/T\mathcal{A}^\omega$. Assuming that $T\mathcal{C} \cap T\mathcal{A}^\omega$ has constant rank, it is a presymplectic submanifold.
- ▶ Take its presymplectic quotient. It is (locally) symplectomorphic to $\underline{\mathcal{C}}$.

Statement 2

Theorem

Let $D|_C$ be a subbundle of $TM|_C$ with

$$\begin{aligned}(E \cap TC) &\subset D|_C \subset E \\ \sharp E^\circ &\subset TC + D|_C.\end{aligned}$$

Extend C to a submanifold A with $TA|_C = TC + D|_C$ and $D|_C$ to an integrable distribution D on A . Assume

$$(\mathcal{L}_{\Gamma(D)}\pi)|_C \subset E \wedge TM|_C.$$

Then C is a Poisson manifold.

Statement 2

