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Poisson manifolds

Definition
M is a Poisson manifold if C∞(M) is endowed with a Lie
bracket {•, •} satisfying {f, gh} = {f, g}h+ g{f, h}.

Examples

I g∗ the dual of a Lie algebra:
for v, w ∈ g ⊂ C∞(g∗) define {v, w} := [v, w].

I symplectic manifolds
(i.e. ω is a non-degenerate two-form with dω = 0).
We have {f, g} := ω(Xf , Xg).
Cotangent bundles T ∗N are symplectic.



Are quotients of submanifolds Poisson?

Problem
Let M be a Poisson manifold. Given

- a submanifold C
- a subbundle E ⊂ TM |C ,

is there an induced Poisson bracket on C := C/(E ∩ TC)?
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Graded manifolds

Definition
Let U0 ⊂ Rn open subset and V = ⊕iVi a Z-graded vector
space.
The local model for a graded manifold consists of a pair
I U0 (the “body”)
I C∞(U0)⊗ S•(V ∗) (the graded comm. algebra of functions)

Fact
E = ⊕iEi →M a graded vector bundle 
graded manifold with body M and functions Γ(S•E∗) .



Graded manifolds

Example
W a usual vector space 
W [1] concentrated in degree −1 
graded manifold with body {pt} and functions

S•(W [1])∗ = S•(W ∗[−1]) = ∧•W ∗.



Graded manifolds

Example
T ∗[1]M  
graded manifold with body M and functions

Γ(S•(T [−1]M)) = Γ(∧•TM) = {multivector fields on M}.

xj coordinates on M  pj coordinates on fibers of T ∗M  
θj degree 1 coordinates of fibers of T ∗[1]M .
Examples of functions on T ∗[1]M are g(x)θ1, θ1θ2 = −θ2θ1.

Remark
T ∗[1]M has a symplectic form ω = dxj ∧ dθj
 Poisson bracket of degree −1: {θj , xk} = δjk.
It is just the Schouten bracket on multivector fields.



The problem in super-geometric terms

Fact
Poisson bracket {•, •} on M ↔
bivector field π ∈ Γ(∧2TM) satisfying [π, π] = 0↔
degree 2 function S on T ∗[1]M satisfying {S,S} = 0.

π = πij(x)∂xi ∧ ∂xj ↔ S = πij(x)θiθj .

Idea

Submanifold C of (T ∗[1]M,ω,S)
 quotient C to which ω and S descend.



The problem in super-geometric terms

More precisely:
1) C presymplectic submanifold of T ∗[1]M  
C := C/ker(i∗ω) is a degree 1 graded symplectic manifold,
hence symplectomorphic to T ∗[1]X for some X.
Algebraically: Let

IC = {F : F |C = 0} ⊂ C∞(T ∗[1]M)

and
N (IC) = {F : {F, IC} ⊂ IC}.

It is clear that N (IC)/N (IC) ∩ IC has an induced Poisson
bracket. Under regularity assumptions it is C∞(C) for some
graded manifold C.



The problem in super-geometric terms

2) S|C is invariant along the distribution ker(i∗ω) 
degree 2 function S on C ∼= T ∗[1]X.
If {S,S} = 0 then S corresponds to a Poisson structure on
X.
Algebraically: S|C is invariant⇔ S ∈ N (IC) + IC .
A sufficient condition for {S,S} = 0 is clearly S ∈ N (IC).
It turns out: the weaker condition {S, (IC)0} ⊂ IC is also
sufficient.
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Statement 1

Lemma
I C is presymplectic⇔ C = E◦[1]

where E → C is a subbundle of TM →M s.t. E ∩ TC is a
constant rank, involutive distribution.

I In that case
C ∼= T ∗[1]C

where C := C/(E ∩ TC).



Statement 1

Proposition
Suppose

1. (LΓ(E∩TC)π)|C ⊂ E ∧ TM |C .
2. ]E◦ ⊂ TC

where ] denotes contraction with π ∈ Γ(∧2TM).
Then C inherits a Poisson structure.



Statement 2

To obtain a statement with weaker assumptions we apply
reduction in stages: let A be a coisotropic submanifold of
T ∗[1]M containing C.
I Take the image of C under the projection A → A/TAω.

Assuming that TC ∩ TAω has constant rank, it is a
presymplectic submanifold.

I Take its presympletic quotient. It is (locally)
symplectomorphic to C.



Statement 2

Theorem
Let D|C be a subbundle of TM |C with

(E ∩ TC) ⊂ D|C ⊂ E
]E◦ ⊂ TC +D|C .

Extend C to a submanifold A with TA|C = TC +D|C and D|C
to an integrable distribution D on A. Assume

(LΓ(D)π)|C ⊂ E ∧ TM |C .

Then C is a Poisson manifold.



Statement 2
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