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Poisson manifolds

Definition
M is a Poisson manifold if C°°(M) is endowed with a Lie
bracket {e, o} satisfying {f,gh} = {f.g}h + g{f,h}.

Examples

» g* the dual of a Lie algebra:
for v,w € g C C*>(g*) define {v, w} := [v, w].
» symplectic manifolds
(i.e. w is a non-degenerate two-form with dw = 0).
We have {f, g} := w(Xy, X,).
Cotangent bundles T*N are symplectic.



Are quotients of submanifolds Poisson?

Problem
Let M be a Poisson manifold. Given

- a submanifold C
- asubbundle E C TM|c,
is there an induced Poisson bracketon C := C/(ENTC)?
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Graded manifolds

Definition
Let Uy C R™ open subset and V = @,V; a Z-graded vector
space.
The local model for a graded manifold consists of a pair
» Uy (the “body”)
» C(Uy) ® S*(V*) (the graded comm. algebra of functions)

Fact
E =@,FE; — M a graded vector bundle ~~
graded manifold with body M and functions T'(S*E*) .



Graded manifolds

Example

W a usual vector space ~

W 1] concentrated in degree —1 ~~

graded manifold with body {pt} and functions

S*(WL))* = S*(W*[-1]) = A*W™.



Graded manifolds

Example
T*[1|M ~
graded manifold with body A and functions

L(S*(T[-1]M)) = T(A*T M) = {multivector fields on M}.

x; coordinates on M ~» p; coordinates on fibers of T*M ~-
6; degree 1 coordinates of fibers of T[1]M .
Examples of functions on T*[1]M are g(z)60;, 6102 = —6206;.

Remark

T*[1]M has a symplectic form w = dx; A db;

~+ Poisson bracket of degree —1: {0, 1} = d;p.

It is just the Schouten bracket on multivector fields.



The problem in super-geometric terms

Fact

Poisson bracket {e,e} on M <«

bivector field = € T (A2T M) satisfying [r, 7] = 0 <
degree 2 function S on T*[1|M satisfying {S,S} = 0.

= WlJ(I)amZ VAN &L,j —S= Wl](ﬁﬂ)elej

Idea

Submanifold C of (T*[1]M,w, S)
~ quotient C to which w and S descend.




The problem in super-geometric terms

More precisely:

1) C presymplectic submanifold of 7*[1]M ~~
C :=C/ker(i*w) is a degree 1 graded symplectic manifold,
hence symplectomorphic to 7*[1] X for some X.

Algebraically: Let
Ie ={F : Flc =0} C C*(T*[1]M)
and
N(Ic) = {F : {F,Ic} C Ic}.

It is clear that N (Z¢) /N (Z¢) N Z¢ has an induced Poisson
bracket. Under regularity assumptions it is C>°(C) for some
graded manifold C.



The problem in super-geometric terms

2) S|c is invariant along the distribution ker(i*w) ~~
degree 2 function S on C = T*[1]X.
If {S,S} = 0then S corresponds to a Poisson structure on
X.

Algebraically: S|¢ is invariant & S € N (Z¢) + Zc.

A sufficient condition for {S,S} = 0 is clearly S € N'(Z¢).
It turns out: the weaker condition {S, (Z¢)o} C Z¢ is also
sufficient.
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Statement 1

Lemma

» C is presymplectic < C = E°[1]
where E — C' is a subbundle of TM — M s.t. ENTC is a
constant rank, involutive distribution.

» In that case
c=TH1)C
where C := C/(ENTC).



Statement 1

Proposition
Suppose
1. (Lrenreym)lc CENTM|c.
2. fE° CTC
where t denotes contraction with = € T(A2TM).
Then C inherits a Poisson structure.



Statement 2

To obtain a statement with weaker assumptions we apply
reduction in stages: let A be a coisotropic submanifold of
T*[1]M containing C.
» Take the image of C under the projection A — A/T.A%.
Assuming that T'C N T A has constant rank, it is a
presymplectic submanifold.

» Take its presympletic quotient. It is (locally)
symplectomorphic to C.



Statement 2

Theorem
Let D|c be a subbundle of T M| with

(ENTC)CD|cCE
fE° C TC + D|c.

Extend C' to a submanifold A withTA|c = TC + D|c and D|¢
to an integrable distribution D on A. Assume

(ﬁI’(D )|C C E/\TM‘C

Then C is a Poisson manifold.



Statement 2
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