

Poisson geometry and coisotropic submanifolds

Marco Zambon, Univ. Zürich

Mathematisches Kolloquium
Bern, 29.10.2007

Plan of the talk

- Poisson manifolds
- Coisotropic submanifolds
- Other interesting submanifolds: Pre-Poisson submanifolds
- Application to generalized complex geometry

Poisson manifolds

Def. A Poisson algebra is

- an associative, commutative algebra A
- a Lie bracket $\{\cdot, \cdot\}$ on A

satisfying the Leibniz identity

$$\{a, bc\} = \{a, b\}c + b\{a, c\}$$

(i.e. $\{a, \cdot\}$ is a derivation of the product, $\forall a \in A$).

Def. M is a Poisson manifold if $C^\infty(M)$ is a Poisson algebra.

Example. Any manifold M is a Poisson manifold setting $\{\cdot, \cdot\} \equiv 0$.

Example. Let (M, ω) be a symplectic manifold (i.e. $\omega \in \Omega^2(M)$ is closed, non-degenerate).

Then M is a Poisson manifold, with

$$\{f, g\} := \omega(X_f, X_g),$$

where the vector field X_f is defined by $\omega(X_f, \cdot) = df$.
The Jacobi identity holds because $d\omega = 0$.

Example. $G \curvearrowright (M, \omega)$ free and proper action $\rightsquigarrow M/G$ is a Poisson manifold.

Indeed $pr : M \rightarrow M/G$ identifies $C^\infty(M)^G$ with $C^\infty(M/G)$, and $C^\infty(M)^G$ is closed under $\{\cdot, \cdot\}$.

Example. \mathfrak{g} f.d. Lie algebra $\rightsquigarrow \mathfrak{g}^*$ (linear) Poisson manifold.

For all $v, w \in \mathfrak{g} \subset C^\infty(\mathfrak{g}^*)$, define

$$\{v, w\} := [v, w]$$

and extend to arbitrary elements of $C^\infty(\mathfrak{g}^*)$ by the Leibniz rule.

Geometrically:

1) A Poisson manifold is (M, π) where π is a bivector field (a section of $\wedge^2 TM$) s.t. $[\pi, \pi] = 0$. We have

$$\{f, g\} = \pi(df, dg).$$

2) The image of

$$\sharp : T^*M \rightarrow TM, \xi \mapsto \pi(\xi, \cdot)$$

is a singular integrable distribution on M , and π gives rise to a symplectic form on each leaf. The symplectic foliation encodes the Poisson bivector π .

Example. Any manifold M with bivector $\pi = 0$.
All symplectic leaves are points.

Example. The symplectic manifold $(\mathbb{R}^{2n}, \sum_{i=1}^n dq_i \wedge dp_i) \rightsquigarrow$
Poisson bivector $\pi = \sum_{i=1}^n \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$.
There is just one symplectic leaf.

Example. Let \mathfrak{g} be a Lie algebra.

Basis e_1, \dots, e_n of \mathfrak{g} \rightsquigarrow coordinates x_1, \dots, x_n on \mathfrak{g}^* . Then \mathfrak{g}^* has Poisson bivectorfield

$$\pi = \frac{1}{2} \sum c_{ij}^k x_k \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}$$

where $[e_i, e_j] = \sum c_{ij}^k e_k$.

The symplectic leaves are the orbits of $Ad^* : G \curvearrowright \mathfrak{g}^*$.

Sub-example. Take $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$. There is a basis with

$$[e_1, e_2] = -e_3, \quad [e_2, e_3] = e_1, \quad [e_3, e_1] = e_2.$$

The symplectic foliation on \mathfrak{g}^* is

The definition of Poisson manifold arises naturally. For any manifold M consider the $\mathbb{R}[[\varepsilon]]$ -module

$$C^\infty(M)[[\varepsilon]] := \left\{ \sum_{n=0}^{\infty} f_n \varepsilon^n : f_n \in C^\infty(M) \right\}.$$

Def. A star-product on a manifold M is an associative product on $C^\infty(M)[[\varepsilon]]$ s.t.

$$\begin{aligned} f \star g &= fg + \sum_{n=1}^{\infty} B_n(f, g) \varepsilon^n & \forall f, g \in C^\infty(M) \\ 1 \star f &= f \star 1 = f & \forall f \in C^\infty(M), \end{aligned}$$

where the B_n are bidifferential operators.

A star-product \star on M induces a Poisson structure on M by

$$\{f, g\} := \frac{1}{2} \cdot \frac{f \star g - g \star f}{\varepsilon} \bmod(\varepsilon) \quad \forall f, g \in C^\infty(M).$$

Interpretation: \star is a “*deformation of the commutative product on $C^\infty(M)$ in direction of the Poisson bracket*”.

Actually \star is equivalent to star product \star' of the form $f \star' g = fg + \{f, g\} \varepsilon + O(\varepsilon^2)$.

Question (deformation quantization): given a Poisson manifold (M, π) , does there exist a star-product inducing the given Poisson bracket on M ?

Theorem (Kontsevich 1997). *Yes.*

Coisotropic submanifolds

If M is any manifold and C a submanifold,

$$I_C := \{\text{functions on } M \text{ which vanish on } C\}$$

is a multiplicative ideal.

Def. $C \subset (M, \pi)$ is a coisotropic submanifold if I_C is a subalgebra of $(C^\infty(M), \{\cdot, \cdot\})$.

Geometrically: Denote for each $x \in C$

$$(T_x C)^\circ := \{\xi \in T_x^* M : \xi|_{T_x C} \equiv 0\}.$$

C is coisotropic iff $\sharp T C^\circ \subset T C$.

The singular distribution $\sharp T C^\circ$ integrates to a singular foliation \mathcal{F} , the characteristic foliation.

Example. If (M, ω) is a symplectic manifold, the $C \subset M$ is coisotropic iff $T C^\omega \subset T C$.

Example. $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra $\rightsquigarrow \mathfrak{h}^\circ$ coisotropic submanifold of \mathfrak{g}^* (clear for linear functions).

A map $\phi : (M_1, \pi_1) \rightarrow (M_2, \pi_2)$ is called Poisson map if the pullback of functions $\phi^* : C^\infty(M_2) \rightarrow C^\infty(M_1)$ is a morphism of Poisson algebras, or equivalently if $\phi_*\pi_1 = \pi_2$.
Example. A map $\phi : (M_1, \pi_1) \rightarrow (M_2, \pi_2)$ is a Poisson map if and only if $\text{graph}(\phi) \subset (M_1 \times M_2, \pi_1 - \pi_2)$ is coisotropic.

Let $C \subset (M, \pi)$ be coisotropic, denote by

$$N(I_C) := \{f \in C^\infty(M) : \{f, I_C\} \subset I_C\}$$

the Poisson-normalizer of I_C in $C^\infty(M)$. Then

$$N(I_C)/I_C \cong C^\infty(C)^{inv} := \{\text{functions on } C \text{ constant along } \mathcal{F}\}$$

is a Poisson algebra.

If smooth, C/\mathcal{F} is a Poisson manifold! And it admits a deformation quantization by Kontsevich's theorem.

In general:

Theorem (Cattaneo-Felder). *If the first and second Lie algebroid cohomologies of TC° vanish, $C^\infty(C)^{inv}$ admits a deformation quantization.*

Example. Let $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra. Then

$$Pol(\mathfrak{h}^\circ)^{inv} \cong S(\mathfrak{g}/\mathfrak{h})^\mathfrak{h},$$

the functions invariant under the adjoint action of \mathfrak{h} on $\mathfrak{g}/\mathfrak{h}$. Suppose $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{k}$ where \mathfrak{k} is $ad_{\mathfrak{h}}$ -invariant. Then $S(\mathfrak{k})^\mathfrak{h}$ admits a deformation quantization.

Pre-Poisson submanifolds

Question: Are there submanifolds of (M, π) which are not coisotropic but can be treated as such?

Def. $C \subset (M, \pi)$ is called pre-Poisson submanifold if $TC + \#TC^\circ$ has constant rank along C .

Proposition (Cattaneo-Z). *Let $C \subset (M, \pi)$ be a pre-Poisson submanifold.*

Then there exists a submanifold \tilde{M} such that

- \tilde{M} inherits a Poisson structure $\tilde{\pi}$ from (M, π)
- C is a coisotropic submanifold of $(\tilde{M}, \tilde{\pi})$.

Further $(\tilde{M}, \tilde{\pi})$ is unique up to Poisson diffeomorphism.

Proof. Write $R \oplus (TC + \#TC^\circ) = TM$, and extend C “along R ” to obtain \tilde{M} . Then \tilde{M} intersects transversely the symplectic leaves of (M, π) , and the intersections are symplectic submanifolds of \tilde{M} , so \tilde{M} is Poisson.

Uniqueness: construction of explicit Poisson diffeomorphism from \tilde{M} to \tilde{M}' . □

Example. Let C be coisotropic in (M, π) .

Then $TC + \sharp TC^\circ = TC$ obviously has constant rank, and $\tilde{M} = \text{open set in } M$

Example. Let C be a point $x \in (M, \pi)$. Then the \tilde{M} as above are slices transverse to the symplectic leaf through x .

Example. Let (M, ω) be symplectic and $i : C \hookrightarrow M$ a submanifold.

C is pre-Poisson iff $\ker(i^*\omega)$ has constant rank.

Example. $\mathfrak{h} \subset \mathfrak{g}$ Lie subalgebra and $\lambda \in \mathfrak{g}^* \rightsquigarrow \mathfrak{h}^\circ + \lambda$ pre-Poisson submanifold of \mathfrak{g}^* .

Indeed one can show that if $\phi : (M_1, \pi_1) \rightarrow (M_2, \pi_2)$ is a submersive Poisson map then $\phi^{-1}(\text{Pre-Poisson}) = \text{Pre-Poisson}$. Now take $\phi : \mathfrak{g}^* \rightarrow \mathfrak{h}^*$ and pull back $\lambda|_{\mathfrak{h}}$.

Corollary. *If C is a pre-Poisson submanifold and the first and second Lie algebroid cohomologies of $TC^\circ \cap \sharp^{-1}TC$ vanish, then the Poisson algebra $N(I_C)/N(I_C) \cap I_C$ admits a deformation quantization.*

Coisotropic submanifolds in generalized complex geometry

Def. A generalized complex structure on a manifold M is

$$J : TM \oplus T^*M \rightarrow TM \oplus T^*M$$

with $J^2 = -Id$ and satisfying a certain integrability condition.

Example. Let $I : TM \rightarrow TM$ be a complex structure.

Then $J = \begin{pmatrix} I & 0 \\ 0 & -I^* \end{pmatrix}$ is a generalized complex structure.

Example. Let $\omega \in \Omega^2(M)$ be a symplectic form.

Then $J = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$ is a generalized complex structure.

In general

$$J = \begin{pmatrix} A & \pi \\ \omega & -A^* \end{pmatrix}$$

where $A \in End(TM)$, $\omega \in \Omega^2(M)$ and π is a bivector.

J integrable $\rightsquigarrow (M, \pi)$ is a *Poisson manifold*!

Question: Are there submanifolds $C \subset (M, J)$ such that some quotient of C inherits a generalized complex structure?

Def. A brane is a submanifold C together with a $F \in \Omega_{closed}^2(C)$ s.t. the following subbundle of $(TM \oplus T^*M)|_C$ is J -invariant:

$$graph(F) := \{(X, \xi) \in TM \oplus T^*M : X \in TC, \xi|_{TC} = i_X F\}.$$

Since for $(0, \xi) \in 0 \oplus TC^\circ \subset graph(F)$ we have

$$\begin{pmatrix} A & \pi \\ \omega & -A^* \end{pmatrix} \begin{pmatrix} 0 \\ \xi \end{pmatrix} = \begin{pmatrix} \pi \xi \\ -A^* \xi \end{pmatrix} \in graph(F)$$

it follows that C is a coisotropic submanifold of (M, π) .

We know that π descends to C/\mathcal{F} , however A and ω do *not* descend, not even pointwise (i.e. $A_x : T_x M \rightarrow T_x M$ does not preserve $T_x C$ and \mathcal{F}_x , so it does *not* induce a map $T_x C/\mathcal{F}_x \rightarrow T_x C/\mathcal{F}_x$).

Nevertheless:

Theorem (Z). *When smooth, C/\mathcal{F} inherits a generalized complex structure.*