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Plan of the talk

• Poisson manifolds

• Coisotropic submanifolds

• Other interesting submanifolds: Pre-Poisson submanifolds

• Application to generalized complex geometry



Poisson manifolds

Def. A Poisson algebra is

- an associative, commutative algebra A

- a Lie bracket {·, ·} on A

satisfying the Leibniz identity

{a, bc} = {a, b}c + b{a, c}

(i.e. {a, ·} is a derivation of the product, ∀a ∈ A).

Def. M is a Poisson manifold if C∞(M) is a Poisson algebra.

Example. Any manifold M is a Poisson manifold setting

{·, ·} ≡ 0.

Example. Let (M, ω) be a symplectic manifold (i.e. ω ∈
Ω2(M) is closed, non-degenerate).

Then M is a Poisson manifold, with

{f, g} := ω(Xf , Xg),

where the vector field Xf is defined by ω(Xf , ·) = df .

The Jacobi identity holds because dω = 0.
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Example. G 	 (M, ω) free and proper action  M/G is a

Poisson manifold.

Indeed pr : M → M/G identifies C∞(M)G with

C∞(M/G), and C∞(M)G is closed under {·, ·}.

Example. g f.d. Lie algebra  g∗ (linear) Poisson manifold.

For all v, w ∈ g ⊂ C∞(g∗), define

{v, w} := [v, w]

and extend to arbitrary elements of C∞(g∗) by the Leibniz rule.
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Geometrically:
1) A Poisson manifold is (M, π) where π is a bivector field (a

section of ∧2TM) s.t. [π, π] = 0. We have

{f, g} = π(df, dg).

2) The image of

] : T
∗
M → TM, ξ 7→ π(ξ, ·)

is a singular integrable distribution on M , and π gives rise to a

symplectic form on each leaf. The symplectic foliation encodes

the Poisson bivector π.

Example. Any manifold M with bivector π = 0.

All symplectic leaves are points.

Example. The symplectic manifold (R2n,
Pn

i=1 dqi ∧ dpi)  
Poisson bivector π =

Pn
i=1

∂
∂qi

∧ ∂
∂pi

.

There is just one symplectic leaf.
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Example. Let g be a Lie algebra.

Basis e1, . . . , en of g  coordinates x1, . . . , xn on g∗. Then

g∗ has Poisson bivectorfield

π =
1

2

X
c

k
ijxk

∂

∂xi

∧
∂

∂xj

where [ei, ej] =
P

ck
ijek.

The symplectic leaves are the orbits of Ad∗ : G 	 g∗.

Sub-example. Take g = sl(2, R). There is a basis with

[e1, e2] = −e3, [e2, e3] = e1 [e3, e1] = e2.

The symplectic foliation on g∗ is
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The definition of Poisson manifold arises naturally. For any

manifold M consider the R[[ε]] -module

C
∞

(M)[[ε]] := {
∞X

n=0

fnε
n

: fn ∈ C
∞

(M)}.

Def. A star-product on a manifold M is an associative product

on C∞(M)[[ε]] s.t.

f ? g = fg +
P∞

n=1 Bn(f, g)εn ∀f, g ∈ C∞(M)

1 ? f = f ? 1 = f ∀f ∈ C∞(M),

where the Bn are bidifferential operators.

A star-product ? on M induces a Poisson structure on M

by

{f, g} :=
1

2
·
f ? g − g ? f

ε
mod(ε) ∀f, g ∈ C

∞
(M).

Interpretation: ? is a “deformation of the commutative product

on C∞(M) in direction of the Poisson bracket”.

Actually ? is equivalent to star product ?′ of the form

f ?′ g = fg + {f, g}ε + O(ε2).

Question (deformation quantization): given a Poisson

manifold (M, π), does there exist a star-product inducing

the given Poisson bracket on M?

Theorem (Kontsevich 1997). Yes.
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Coisotropic submanifolds

If M is any manifold and C a submanifold,

IC := {functions on M which vanish on C}

is a multiplicative ideal.

Def. C ⊂ (M, π) is a coisotropic submanifold if IC is a

subalgebra of (C∞(M), {·, ·}).

Geometrically: Denote for each x ∈ C

(TxC)
◦
:= {ξ ∈ T

∗
xM : ξ|TxC ≡ 0}.

C is coisotropic iff ]TC◦ ⊂ TC.

The singular distribution ]TC◦ integrates to a singular foliation

F , the characteristic foliation.

Example. If (M, ω) is a symplectic manifold, the C ⊂ M is

coisotropic iff TCω ⊂ TC.

Example. h ⊂ g a Lie subalgebra h◦ coisotropic submanifold

of g∗ (clear for linear functions).
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A map φ : (M1, π1) → (M2, π2) is called Poisson map

if the pullback of functions φ∗ : C∞(M2) → C∞(M1) is a

morphism of Poisson algebras, or equivalently if φ∗π1 = π2.

Example. A map φ : (M1, π1) → (M2, π2) is a Poisson map

if and only if graph(φ) ⊂ (M1×M2, π1−π2) is coisotropic.

Let C ⊂ (M, π) be coisotropic, denote by

N(IC) := {f ∈ C
∞

(M) : {f, IC} ⊂ IC}

the Poisson-normalizer of IC in C∞(M). Then

N(IC)/IC
∼= C

∞
(C)

inv
:= {functions on C constant along F}

is a Poisson algebra.

If smooth, C/F is a Poisson manifold! And it admits a

deformation quantization by Kontsevich’s theorem.

In general:

Theorem (Cattaneo-Felder). If the first and second Lie
algebroid cohomologies of TC◦ vanish, C∞(C)inv admits
a deformation quantization.

Example. Let h ⊂ g be a Lie subalgebra. Then

Pol(h
◦
)
inv ∼= S(g/h)

h
,

the functions invariant under the adjoint action of h on g/h.

Suppose g = h ⊕ k where k is adh-invariant. Then S(k)h

admits a deformation quantization.
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Pre-Poisson submanifolds

Question: Are there submanifolds of (M, π) which are not

coisotropic but can be threated as such?

Def. C ⊂ (M, π) is called pre-Poisson submanifold if

TC + ]TC◦ has constant rank along C.

Proposition (Cattaneo-Z). Let C ⊂ (M, π) be a pre-Poisson
submanifold.
Then there exists a submanifold M̃ such that

• M̃ inherits a Poisson structure π̃ from (M, π)

• C is a coisotropic submanifold of (M̃, π̃).

Further (M̃, π̃) is unique up to Poisson diffeomorphism.

Proof. Write R ⊕ (TC + ]TC◦) = TM , and extend C

“along R” to obtain M̃ . Then M̃ intersects transversely

the symplectic leaves of (M, π), and the intersections are

symplectic submanifolds of M̃ , so M̃ is Poisson.

Uniqueness: construction of explicit Poisson diffeomorphism

from M̃ to M̃ ′.
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Example. Let C be coisotropic in (M, π).

Then TC + ]TC◦ = TC obviously has constant rank, and

M̃ = open set in M

Example. Let C be a point x ∈ (M, π). Then the M̃ as

above are slices transvese to the symplectic leaf through x.

Example. Let (M, ω) be symplectic and i : C ↪→ M a

submanifold.

C is pre-Poisson iff ker(i∗ω) has constant rank.

Example. h ⊂ g Lie subalgebra and λ ∈ g∗  h◦ + λ pre-

Poisson submanifold of g∗.

Indeed one can show that if φ : (M1, π1) → (M2, π2)

is a submersive Poisson map then φ−1(Pre-Poisson) =

Pre-Poisson. Now take φ : g∗ → h∗ and pull back λ|h.

Corollary. If C is a pre-Poisson submanifold and the first
and second Lie algebroid cohomologies of TC◦ ∩ ]−1TC

vanish, then the Poisson algebra N(IC)/N(IC)∩IC admits
a deformation quantization.
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Coisotropic submanifolds in generalized
complex geometry

Def. A generalized complex structure on a manifold M is

J : TM ⊕ T
∗
M → TM ⊕ T

∗
M

with J2 = −Id and satisfying a certain integrability condition.

Example. Let I : TM → TM be a complex structure.

Then J =

„
I 0

0 −I∗

«
is a generalized complex structure.

Example. Let ω ∈ Ω2(M) be a symplectic form.

Then J =

„
0 −ω−1

ω 0

«
is a generalized complex

structure.

In general

J =

„
A π

ω −A∗

«
where A ∈ End(TM), ω ∈ Ω2(M) and π is a bivector.

J integrable  (M, π) is a Poisson manifold!
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Question: Are there submanifolds C ⊂ (M, J) such that

some quotient of C inherits a generalized complex structure?

Def. A brane is a submanifold C together with a F ∈
Ω2

closed(C) s.t. the following subbundle of (TM ⊕ T ∗M)|C
is J-invariant:

graph(F ) := {(X, ξ) ∈ TM⊕T
∗
M : X ∈ TC, ξ|TC = iXF}.

Since for (0, ξ) ∈ 0⊕ TC◦ ⊂ graph(F ) we have„
A π

ω −A∗

« „
0

ξ

«
=

„
πξ

−A∗ξ

«
∈ graph(F )

it follows that C is a coisotropic submanifold of (M, π).

We know that π descends to C/F , however A and ω do

not descend, not even pointwise

(i.e. Ax : TxM → TxM does not preserve TxC and Fx, so

it does not induce a map TxC/Fx → TxC/Fx).

Nevertheless:

Theorem (Z). When smooth, C/F inherits a generalized
complex structure.
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