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Coisotropic submanifolds in Poisson geometry

Let (M,π) be a Poisson manifold.

Definition
A submanifold C ⊂ (M,π) is coisotropic

⇔ ](TC◦) ⊂ TC
⇔ {I, I} ⊂ I.

Properties:
(A) Given a map f : M → N :

f is a Poisson map⇔ graph(f) ⊂M × N̄ is coisotropic.
(B) TC◦ is a Lie subalgebroid of T ∗M

(C) Poisson reduction:
if C := C/]TC◦ is smooth, it inherits a Poisson structure.



b-geometry
Definition

b-manifold: (M,Z), where Z codimension 1 submanifold.
b-map: f : (M1, Z1)→ (M2, Z2) transverse to Z2, s.t. f−1(Z2) = Z1.
b-submanifold: submanifold N s.t. N t Z.

(M,Z) a b-manifold Lie algebroid bTM , with

Γ(bTM) ∼= {vector fields on M tangent to Z}.

Notation for anchor: ρ : bTM → TM .

Lemma
i) Let D be a distribution on M that is tangent to Z.

Then there exists a canonical splitting of the anchor ρ,

σ : D → bTM.

ii) This induces a bijection between
- distributions on M tangent to Z
- subbundles of bTM intersecting trivially ker(ρ)
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b-Poisson manifolds
Definition
A Poisson manifold (M2n, π) is b-Poisson if πn t 0 in ∧2nTM

π is symplectic outside of a codimension 1 submanifold Z. Locally

π = x1
∂

∂x1
∧ ∂

∂y1
+

∂

∂x2
∧ ∂

∂y2
+ . . . .

π lifts to a non-degenerate Π ∈ Γ(∧2(bTM))

bT ∗M
Π]

∼=
// bTM

ρ

��
T ∗M

ρ∗

OO

π]
// TM

Proposition (Guillemin-Miranda-Pires)

b-Poisson structures ←→ b-symplectic structures.

A b-symplectic form on a b-manifold is a closed, non-degenerate b-2-form Ω.
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b-coisotropic submanifolds
Let (M,Z, π) be a b-Poisson manifold.

Definition
A submanifold C is b-coisotropic

⇔ C t Z and C is coisotropic
⇔ C t Z and (bTC)Ω is coisotropic in bTM |C .

Example (cf. (A)):
Let f : (M1, Z1, π1)→ (M2, Z2, π2) be a Poisson map with f(Z1) ⊂ Z2.
The product M1 ×M2 is not b-Poisson, but[Polishchuk, Gualtieri-Li]

X := BlZ1×Z2
(M1 ×M2) \ (M1 × Z2 ∪ Z1 ×M2)

is, and the blow-down map p : X →M1 × M̄2 is Poisson.

graph(f) ⊂M1 ×M2 “lifts” to a b-coisotropic submanifold of X, •

graph(f).



The b-Gotay theorem
If C is b-coisotropic, then (bi)∗Ω is b-presymplectic form (closed, const. rank).
Conversely:

Theorem (b-Gotay theorem)
Let (C,ZC , ωC) be b-presymplectic.

i) There is a b-coisotropic embedding of C into a b-symplectic manifold
(M,Z,Ω).

ii) The embedding is unique up to b-symplectomorphism near C.

“b-coisotropic” embedding φ means: φ(C) is b-coisotropic, (bφ)∗Ω = ωC .

Remark: This statement gives a normal form around b-coisotropic
submanifolds. This is useful to study their deformations.
Remark: Statement was known for b-Lagrangian submanifolds[Kirchhoff-Lukat].
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The proof
i) Let (C,ZC , ωC) be b-presymplectic. Let

E := ker(ωC).

Choose a complement G; this gives j : E∗ ↪→ E∗ ⊕G∗ = bT ∗C. Get a
b-symplectic form on E∗ (near C)

(bprC)∗ΩC + (bj)∗Ωcan

ii) Apply the Relative b-Moser theorem.

Proposition (Relative b-Moser theorem)
Let (M,Z) be a b-manifold, C a b-submanifold. Suppose Ω0 and Ω1 are
b-symplectic forms on (M,Z) such that

Ω0|C = Ω1|C .

Then there exists a b-diffeomorphism ϕ between neighborhoods of C such
that ϕ|C = Id and

bϕ∗Ω1 = Ω0.
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Lie subalgebroids

Lemma (cf. (B))
Let C be b-coisotropic. Then (bTC)◦ is a Lie subalgebroid of bT ∗M .

(bTC)◦
Π]

∼=
// (bTC)Ω

ρ

��
TC◦

ρ∗ ∼=

OO

π]
// TC

Remark:
In general, the characteristic “distribution”

D := π](TC◦) = ρ((bTC)Ω)

does not have constant rank.
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Definition

Let (M,Z, π) be a b-Poisson manifold.

Definition
A submanifold C is strong b-coisotropic

⇔ C is coisotropic and C t (symplectic leaves)
⇔ C is coisotropic and π]|TC◦ injective.

It follows: D = π](TC◦) has constant rank.

Remark: dim(C) ≥ n+ 1, i.e. C can not be Lagrangian.

Example: On R4 take π = x1
∂
∂x1
∧ ∂
∂y1

+ ∂
∂x2
∧ ∂
∂y2

.
Then •

{y2 = 0} is strong b-coisotropic,
{y1 = 0} is not (but is b-coisotropic).



Coisotropic reduction
Proposition (Coisotropic reduction, cf. (C))
Let C be strong b-coisotropic. Assume that C := C/D is smooth.

i) The usual coisotropic reduction yields a b-Poisson structure on C.
ii) The corresponding b-symplectic structure Ω satisfies, for q : C → C,

(bq∗)Ω = (bi∗)Ω.

Corollary

Let G � (M,Z, π)
J→ g∗ an equivariant moment map, such that the G-action is

free on J−1(0). Then
J−1(0) is strong b-coisotropic,
J−1(0)/G is b-Poisson.

Example: G � B  G � (bT ∗B,Ωcan), with canonical moment map.
The coisotropic quotient is

(bT ∗(B/G),Ωcan).
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Reverse engineering
•

Corollary
Let h be any smooth function on CP 1 that vanishes transversely.
Consider P : C2 \ {0} → CP 1 and α := z̄1dz1 + z̄2dz2.

(i) In a neighborhood of the unit sphere S3, there is a b-symplectic form:

Ω =
1

r2

(
−1 +

1

P ∗h

)(
− i

r2
(α ∧ ᾱ) + 2σcan

)
+ 2σcan.

(ii) The unit sphere S3 is a strong b-coisotropic submanifold, and the
reduced b-symplectic manifold is (CP 1, 1

h2σFS).

Example: Let h be the function on CP 1 induced by Im(z̄1z2) on S3. Then h
vanishes transversely on a circle. The coefficient reads(

− 1

r2
+

1

Im(z̄1z2)

)
.
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