

Coisotropic submanifolds in b -symplectic geometry

Marco Zambon

joint work with
Stephane Geudens
ArXiv:1907.09251

Coisotropic submanifolds in Poisson geometry

Let (M, π) be a Poisson manifold.

Definition

A submanifold $C \subset (M, \pi)$ is **coisotropic**

$$\begin{aligned} &\Leftrightarrow \sharp(TC^\circ) \subset TC \\ &\Leftrightarrow \{\mathcal{I}, \mathcal{I}\} \subset \mathcal{I}. \end{aligned}$$

Properties:

(A) Given a map $f: M \rightarrow N$:

f is a **Poisson map** $\Leftrightarrow \text{graph}(f) \subset M \times \bar{N}$ is coisotropic.

(B) TC° is a **Lie subalgebroid** of T^*M

(C) **Poisson reduction**:

if $\underline{C} := C/\sharp TC^\circ$ is smooth, it inherits a Poisson structure.

b -geometry

Definition

- **b -manifold**: (M, Z) , where Z codimension 1 submanifold.
- **b -map**: $f: (M_1, Z_1) \rightarrow (M_2, Z_2)$ transverse to Z_2 , s.t. $f^{-1}(Z_2) = Z_1$.
- **b -submanifold**: submanifold N s.t. $N \pitchfork Z$.

(M, Z) a b -manifold \rightsquigarrow Lie algebroid bTM , with

$$\Gamma({}^bTM) \cong \{\text{vector fields on } M \text{ tangent to } Z\}.$$

Notation for anchor: $\rho: {}^bTM \rightarrow TM$.

Lemma

- i) Let D be a distribution on M that is tangent to Z .
Then there exists a **canonical splitting** of the anchor ρ ,

$$\sigma: D \rightarrow {}^bTM.$$

- ii) This induces a bijection between
 - distributions on M tangent to Z
 - subbundles of bTM intersecting trivially $\ker(\rho)$

b -Poisson manifolds

Definition

A Poisson manifold (M^{2n}, π) is **b -Poisson** if $\pi^n \pitchfork 0$ in $\wedge^{2n} TM$

π is symplectic outside of a codimension 1 submanifold Z . Locally

$$\pi = x_1 \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial y_2} + \dots$$

π lifts to a non-degenerate $\Pi \in \Gamma(\wedge^2({}^b TM))$

$$\begin{array}{ccc} {}^b T^* M & \xrightarrow[\cong]{\Pi^\sharp} & {}^b T M \\ \uparrow \rho^* & & \downarrow \rho \\ T^* M & \xrightarrow{\pi^\sharp} & T M \end{array}$$

Proposition (Guillemin-Miranda-Pires)

b -Poisson structures \longleftrightarrow *b -symplectic structures.*

A **b -symplectic form** on a b -manifold is a closed, non-degenerate b -2-form Ω .

b-coisotropic submanifolds

Let (M, Z, π) be a *b*-Poisson manifold.

Definition

A submanifold C is *b*-coisotropic

$\Leftrightarrow C \pitchfork Z$ and C is coisotropic

$\Leftrightarrow C \pitchfork Z$ and $({}^bTC)^\Omega$ is coisotropic in ${}^bTM|_C$.

Example (cf. (A)):

Let $f: (M_1, Z_1, \pi_1) \rightarrow (M_2, Z_2, \pi_2)$ be a Poisson map with $f(Z_1) \subset Z_2$.

The product $M_1 \times M_2$ is not *b*-Poisson, but^[Polishchuk, Gualtieri-Li]

$$X := Bl_{Z_1 \times Z_2}(M_1 \times M_2) \setminus (\overline{M_1 \times Z_2} \cup \overline{Z_1 \times M_2})$$

is, and the blow-down map $p: X \rightarrow M_1 \times \bar{M}_2$ is Poisson.

$graph(f) \subset M_1 \times M_2$ “lifts” to a *b*-coisotropic submanifold of X ,

$$\overline{\overline{graph(f)}}.$$

The b -Gotay theorem

If C is b -coisotropic, then $({}^b i)^* \Omega$ is **b -presymplectic form** (closed, const. rank). Conversely:

Theorem (b -Gotay theorem)

Let (C, Z_C, ω_C) be b -presymplectic.

- i) There is a **b -coisotropic embedding** of C into a b -symplectic manifold (M, Z, Ω) .
- ii) The embedding is **unique** up to b -symplectomorphism near C .

“ b -coisotropic” embedding ϕ means: $\phi(C)$ is b -coisotropic, $({}^b \phi)^* \Omega = \omega_C$.

Remark: This statement gives a **normal form** around b -coisotropic submanifolds. This is useful to study their **deformations**.

Remark: Statement was known for b -Lagrangian submanifolds [Kirchhoff-Lukat].

The proof

i) Let (C, Z_C, ω_C) be b -presymplectic. Let

$$E := \ker(\omega_C).$$

Choose a complement G ; this gives $j: E^* \hookrightarrow E^* \oplus G^* = {}^b T^* C$. Get a b -symplectic form on E^* (near C)

$$({}^b pr_C)^* \Omega_C + ({}^b j)^* \Omega_{can}$$

ii) Apply the Relative b -Moser theorem.

Proposition (Relative b -Moser theorem)

Let (M, Z) be a b -manifold, C a b -submanifold. Suppose Ω_0 and Ω_1 are b -symplectic forms on (M, Z) such that

$$\Omega_0|_C = \Omega_1|_C.$$

Then there exists a b -diffeomorphism φ between neighborhoods of C such that $\varphi|_C = Id$ and

$${}^b \varphi^* \Omega_1 = \Omega_0.$$

Lie subalgebroids

Lemma (cf. (B))

Let C be b -coisotropic. Then $({}^bTC)^\circ$ is a Lie subalgebroid of ${}^bT^*M$.

$$\begin{array}{ccc} ({}^bTC)^\circ & \xrightarrow[\cong]{\Pi^\sharp} & ({}^bTC)^\Omega \\ \rho^* \uparrow \cong & & \downarrow \rho \\ TC^\circ & \xrightarrow{\pi^\sharp} & TC \end{array}$$

Remark:

In general, the characteristic “distribution”

$$D := \pi^\sharp(TC^\circ) = \rho(({}^bTC)^\Omega)$$

does not have constant rank.

Definition

Let (M, Z, π) be a b -Poisson manifold.

Definition

A submanifold C is **strong b -coisotropic**

- $\Leftrightarrow C$ is coisotropic and $C \pitchfork$ (symplectic leaves)
- $\Leftrightarrow C$ is coisotropic and $\pi^\#|_{TC^\circ}$ injective.

It follows: $D = \pi^\#(TC^\circ)$ has constant rank.

Remark: $\dim(C) \geq n + 1$, i.e. C can not be Lagrangian.

Example: On \mathbb{R}^4 take $\pi = x_1 \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial y_2}$.
Then

- $\{y_2 = 0\}$ is strong b -coisotropic,
- $\{y_1 = 0\}$ is not (but is b -coisotropic).

Coisotropic reduction

Proposition (Coisotropic reduction, cf. (C))

Let C be strong b -coisotropic. Assume that $\underline{C} := C/D$ is smooth.

- i) The usual coisotropic reduction yields a b -Poisson structure on \underline{C} .
- ii) The corresponding b -symplectic structure $\underline{\Omega}$ satisfies, for $q : C \rightarrow \underline{C}$,

$$({}^b q^*) \underline{\Omega} = ({}^b i^*) \Omega.$$

Corollary

Let $G \circlearrowleft (M, Z, \pi) \xrightarrow{J} \mathfrak{g}^*$ an equivariant moment map, such that the G -action is free on $J^{-1}(0)$. Then

- $J^{-1}(0)$ is strong b -coisotropic,
- $J^{-1}(0)/G$ is b -Poisson.

Example: $G \circlearrowleft B \rightsquigarrow G \circlearrowleft ({}^b T^* B, \Omega_{can})$, with canonical moment map.

The coisotropic quotient is

$$({}^b T^*(B/G), \Omega_{can}).$$

Reverse engineering

Corollary

Let h be any smooth function on $\mathbb{C}P^1$ that vanishes transversely.

Consider $P: \mathbb{C}^2 \setminus \{0\} \rightarrow \mathbb{C}P^1$ and $\alpha := \bar{z}_1 dz_1 + \bar{z}_2 dz_2$.

(i) In a neighborhood of the unit sphere S^3 , there is a b -symplectic form:

$$\Omega = \frac{1}{r^2} \left(-1 + \frac{1}{P^* h} \right) \left(-\frac{i}{r^2} (\alpha \wedge \bar{\alpha}) + 2\sigma_{can} \right) + 2\sigma_{can}.$$

(ii) The unit sphere S^3 is a strong b -coisotropic submanifold, and the reduced b -symplectic manifold is $(\mathbb{C}P^1, \frac{1}{h} 2\sigma_{FS})$.

Example: Let h be the function on $\mathbb{C}P^1$ induced by $Im(\bar{z}_1 z_2)$ on S^3 . Then h vanishes transversely on a circle. The coefficient reads

$$\left(-\frac{1}{r^2} + \frac{1}{Im(\bar{z}_1 z_2)} \right).$$

References

- S. Geudens and M. Zambon
Coisotropic submanifolds in b -symplectic geometry.
ArXiv:1907.09251.
- M. Gotay
On coisotropic imbeddings of presymplectic manifolds.
Proc. Amer. Math. Soc. (1982)
- M. Gualtieri, S. Li
Symplectic groupoids of log symplectic manifolds.
Int. Math. Res. Not. IMRN 11 (2014)
- V. Guillemin, E. Miranda, A.R. Pires
Symplectic and Poisson geometry on b -manifolds.
Adv. Math. 264 (2014)

Thank you for your attention