

Graded geometry and generalized reduction

Marco Zambon

based on joint work with
Henrique Bursztyn, Alberto Cattaneo, Rajan Mehta.

arXiv:2306.01508

Recall for a symplectic manifold (M, ω)

- **Coisotropic reduction:**

Let $N \subset M$ is coisotropic (i.e. $TN^\omega \subset TN$).

Then

$$\underline{N} := N/TN^\omega$$

is a symplectic manifold (if smooth). •

Algebraically:

$$C^\infty(\underline{N}) \cong \text{Nor}(I_N)/I_N$$

isomorphism of Poisson algebras, where

I_N = vanishing ideal of N

$\text{Nor}(I_N)$ consists of $f \in C^\infty(M)$ with $\{f, I_N\} \subset I_N$.

- A special case is **Hamiltonian reduction:**

If $G \curvearrowright (M, \omega) \xrightarrow{J} \mathfrak{g}^*$ hamiltonian action, then

$$J^{-1}(0)/G$$

is a symplectic manifold (if smooth).

Aim of the talk

- Carry out these reductions for **symplectic degree 2** manifolds.
- Obtain a reduction scheme for **Courant algebroids**.

Courant algebroids:

For instance $TM \oplus T^*M$, with bracket

$$[X + \alpha, Y + \beta] = [X, Y] + \mathcal{L}_X \beta - \iota_Y d\alpha.$$

Courant algebroids are where the following geometries “live”:

- Dirac geometry
(unifies presymplectic and Poisson geometry)
- Generalized complex geometry
(unifies symplectic and complex geometry)

A characterization of degree 2 manifolds

Let $\mathcal{M} = (M, C_{\mathcal{M}})$ be a degree 2 manifold (so “coordinates” are in degrees 0, 1, 2).

By Serre-Swan, there are vector bundles E_1 and \tilde{E} over M s.t.

- $(C_{\mathcal{M}})_1 \cong \Gamma_{E_1^*}$
- $(C_{\mathcal{M}})_2 \cong \Gamma_{\tilde{E}^*}$

Have $i: \wedge^2 E_1^* \hookrightarrow \tilde{E}^*$ since $(C_{\mathcal{M}})_1 \cdot (C_{\mathcal{M}})_1 \subset (C_{\mathcal{M}})_2$.

Proposition

There is a bijection (up to iso) between

- *degree 2 manifolds*
- *triples*

$$(E_1, \tilde{E}, \phi_E)$$

consisting of vector bundles and a surjective map $\tilde{E} \twoheadrightarrow \wedge^2 E_1$

Remark: Recover \mathcal{M} by

$$C_{\mathcal{M}} = \Gamma_{\wedge E_1^*} \otimes \Gamma_{S\tilde{E}^*} / \langle T \otimes 1 - 1 \otimes i(T) \rangle$$

for $T \in \Gamma_{\wedge^2 E_1^*}$.

Submanifolds

Definition

A sheaf of ideals $\mathcal{I} \subset C_{\mathcal{M}}$ is **regular** if

- a) $\mathcal{I}_0 =$ vanishing ideal of a subset N of M
- b) around each $x \in N$ there are coordinates (x_i, e_{μ}, p_J) for \mathcal{M} s.t. a subset of them generates \mathcal{I} .

Proposition

Fix a submanifold $N \subset M$. There is a bijection between

- submanifold \mathcal{N} of M with body N
- regular sheaves of ideals \mathcal{I} s.t. $\mathcal{I}_0 =$ (vanishing ideal of N in M)

Further

$$C_{\mathcal{N}} = \iota^{-1}(C_{\mathcal{M}}/\mathcal{I}).$$

Symplectic degree 2 manifolds

Let \mathcal{M} be a degree 2 manifold.

Definition

Let $\{\cdot, \cdot\}$ be a degree -2 Poisson bracket on $C_{\mathcal{M}}$.

We call it **symplectic** if at each $x \in M$ it induces an **isomorphism**

$$(T_x \mathcal{M})^* \rightarrow T_x \mathcal{M}, \quad [f] \mapsto \{f, \cdot\}_x.$$

Recall:

$(T_x \mathcal{M})^* \cong \mathcal{I}_{(x)} / \mathcal{I}_{(x)}^2$ where

$\mathcal{I}_{(x)} = \{\text{elements of the stalk of } C_{\mathcal{M}} \text{ at } x \text{ vanishing at } x\}.$

Symplectic degree 2 manifolds (cont.)

Theorem (ROYTENBERG 2001)

There is a bijection (up to iso) between

- *Symplectic degree 2 manifolds (\mathcal{M}, ω)*
- *Pseudo-euclidean vector bundles $(E, \langle \cdot, \cdot \rangle)$.*

Given (\mathcal{M}, ω) , define E so that

$$(C_{\mathcal{M}})_1 \cong \Gamma_{E^*} \text{ and } \langle \cdot, \cdot \rangle = \{ \cdot, \cdot \}|_{(C_{\mathcal{M}})_1 \times (C_{\mathcal{M}})_1}$$

Given $(E, \langle \cdot, \cdot \rangle)$, define \mathcal{M} so that

$$E_1^* = E^* \text{ and } \tilde{E}^* = \mathbb{A}_E.$$

Recall:

The **Atiyah Lie algebroid** $\mathbb{A}_E \rightarrow M$ is characterized by

$$\Gamma(\mathbb{A}_E) = \{ \phi: \Gamma(E) \rightarrow \Gamma(E) \text{ satisfying Leibniz rule and preserving } \langle \cdot, \cdot \rangle \}.$$

It fits in a short exact sequence of Lie algebroids

$$0 \longrightarrow \wedge^2 E^* \longrightarrow \mathbb{A}_E \longrightarrow TM \longrightarrow 0$$

Coisotropic submanifolds

Let (\mathcal{M}, ω) be a degree 2 symplectic manifold, corresponding to $(E, \langle \cdot, \cdot \rangle)$.

Definition

A submanifold \mathcal{N} of (\mathcal{M}, ω) is **coisotropic** if $\{\mathcal{I}, \mathcal{I}\} \subset \mathcal{I}$

Theorem

Coisotropic submanifolds are in bijection with (N, K, F, ∇) where •

- $N \subset M$ is a submanifold
- $K \rightarrow N$ is an isotropic subbundle of E
- F is an involutive distribution on N
- ∇ is a flat, metric partial F -connection on the vector bundle $K^\perp/K \rightarrow N$.

Given a quadruple, \mathcal{I} is given by:

- $\mathcal{I}_0 = I_N$
- $\mathcal{I}_1 = \Gamma_{E,K} := \{s \in \Gamma_E : s|_N \subset K\}$
- $\mathcal{I}_2 = \{(D, X) \in \mathbb{A}_E : X|_N \subset F, D \text{ preserves } \Gamma_{E,K} \text{ and } [D|_N] = \nabla_{X|_N}\}$

Example [Ševera 2005]

Lagrangian submanifolds are equivalent to lagrangian subbundles $K \rightarrow N$.

Coisotropic reduction

Proposition (Coisotropic reduction)

The following are equivalent:

- N/F is a smooth manifold and ∇ has trivial holonomy
- there is a *reduced symplectic degree 2 manifold* $\underline{\mathcal{N}}$
(s.t. $C_{\underline{\mathcal{N}}} \cong p_*\iota^{-1}(Nor(\mathcal{I})/\mathcal{I})$ as sheaves of Poisson algebras)

Remark:

$\underline{\mathcal{N}}$ corresponds to the pseudo-euclidean vector bundle on the right, where \sim is given by ∇ .

$$\begin{array}{ccc} K^\perp/K & \longrightarrow & (K^\perp/K)/\sim \\ \downarrow & & \downarrow \\ N & \xrightarrow{p} & N/F \end{array}$$

Courant algebroids

Definition (LIU-WEINSTEIN-XU 1997)

A **Courant algebroid** consists of

- a pseudo-euclidean vector bundle $(E, \langle \cdot, \cdot \rangle) \rightarrow M$
- a bundle map $\rho: E \rightarrow TM$
- a bilinear bracket $[\cdot, \cdot]$ on $\Gamma(E)$

such that $[\cdot, \cdot]$ satisfies the “Jacobi identity”, plus other axioms.

Definition

A **Courant function** on (\mathcal{M}, ω) is $\Theta \in C_3(\mathcal{M})$ s.t. $\{\Theta, \Theta\} = 0$.

Remark:

The hamiltonian vector field $\{\Theta, \cdot\}$ makes \mathcal{M} into a dg-manifold.

Theorem (ROYTENBERG 2001)

There is a bijection (up to iso) between

- *Courant algebroids E*
- *symplectic degree 2 manifolds (\mathcal{M}, ω) with a Courant function.*

Coisotropic reduction of Courant algebroids

Let $\mathcal{N} \subset \mathcal{M}$ be coisotropic, corresponding to (N, K, F, ∇) .

Proposition

A Courant function $\Theta \in C(\mathcal{M})_3$ is **reducible w.r.t. \mathcal{N}** (i.e., $\{\Theta, \mathcal{I}\} \subseteq \mathcal{I}$) iff

(R1) $\rho(K^\perp) \subseteq TN$,

(R2) $\rho(K) \subseteq F$,

(R3) $[\rho(\Gamma_{E, K^\perp}^{flat}), \cdot]$ preserves $\Gamma_{TM, F}$,

(R4) $\Gamma_{E, K^\perp}^{flat}$ is involutive w.r.t. Courant bracket.

Example [Ševera 2005]

If \mathcal{N} Lagrangian: $K \rightarrow N$ lagr. subbundle, $\rho(K) \subseteq TN$, and $\Gamma_{E, K}$ involutive.

Theorem (Coisotropic reduction of Courant algebroids)

Suppose that

- a) F is simple and ∇ has trivial holonomy
- b) conditions (R1)–(R4) above hold.

Then $(K^\perp/K)/\sim$ is a Courant algebroid.

Coisotropic reduction of generalized complex structures

Definition (HITCHIN 2003)

A **generalized complex (GC) structure** on a Courant algebroid E is an endomorphism

$$J: E \rightarrow E$$

such that J is orthogonal, $J^2 = -\text{Id}$ and the Nijenhuis torsion vanishes.

Remark [Grabowski 2006]

GC structures are equivalent to quadratic functions \mathcal{J} on \mathcal{M} satisfying

$$\{\{\Theta, \mathcal{J}\}, \mathcal{J}\} = -\Theta.$$

Corollary

In the previous theorem: \mathcal{J} is reducible $\Leftrightarrow J$ preserves $\Gamma_{E, K^\perp}^{\text{flat}}$.

In that case J induces a GC structure on the reduced Courant algebroid.

Moment maps

Let (\mathcal{M}, ω) be a degree 2 symplectic manifold.

Let

$$\tilde{\mathfrak{g}} := \mathfrak{h}[2] \oplus \mathfrak{a}[1] \oplus \mathfrak{g}$$

be a **graded Lie algebra** concentrated in degrees $-2, -1, 0$.

Definition

A **moment map** is a morphism of degree 2 manifolds $\tilde{\mu}: \mathcal{M} \rightarrow \tilde{\mathfrak{g}}^*[2]$, so that the induced map

$$\tilde{\mu}^\sharp: \tilde{\mathfrak{g}} \rightarrow C(\mathcal{M})[2]$$

is a morphism of graded Lie algebras.

Remark: Get a graded Lie algebra morphism (an infinitesimal action)

$$\tilde{\mathfrak{g}} \rightarrow \mathfrak{X}(\mathcal{M}), \quad \xi \mapsto \{\tilde{\mu}^\sharp \xi, \cdot\}.$$

Hamiltonian reduction

Corollary

- i) Suppose $0 \in \tilde{\mathfrak{g}}^*[2]$ is a regular value.
Then $\mathcal{N} := \tilde{\mu}^{-1}(0)$ is a coisotropic submanifold of (\mathcal{M}, ω) .
- ii) Under regularity conditions:
 $(\underline{\mathcal{N}}, \underline{\omega})$ is a degree 2 symplectic manifold.

Assume now further that

- \mathcal{M} has a **Courant function** Θ
- $\tilde{\mathfrak{g}}$ is a **DGLA**
- $\tilde{\mu}^\sharp: \tilde{\mathfrak{g}} \rightarrow (C(\mathcal{M})[2], \{\cdot, \cdot\}, \{\Theta, \cdot\})$ is a **DGLA morphism**

Corollary

Then $(\underline{\mathcal{N}}, \underline{\omega})$ inherits a Courant function.

Reason: $\Theta \in C(\mathcal{M})_3$ is reducible for \mathcal{N} (i.e., $\{\Theta, \mathcal{I}\} \subseteq \mathcal{I}$), since all $\xi \in \tilde{\mathfrak{g}}$

$$\{\Theta, \tilde{\mu}^\sharp \xi\} = \tilde{\mu}^\sharp(\delta \xi).$$

Moment maps in classical terms

Symplectic degree 2 manifold $(\mathcal{M}, \omega) \leftrightarrow$

pseudo-euclidean vector bundle $(E, \langle \cdot, \cdot \rangle)$

Graded Lie algebra $\tilde{\mathfrak{g}} \leftrightarrow$

- \mathfrak{g} Lie algebra
- \mathfrak{a} and \mathfrak{h} modules
- $\varpi: \mathfrak{a} \otimes \mathfrak{a} \rightarrow \mathfrak{h}$ symmetric and \mathfrak{g} -equivariant

Morphism of graded Lie algebras $\tilde{\mu}^\sharp: \tilde{\mathfrak{g}} \rightarrow C(\mathcal{M})[2] \leftrightarrow$

- $\mu: M \rightarrow \mathfrak{h}^*$ which is \mathfrak{g} -equivariant
- $\varrho: \mathfrak{a} \rightarrow \Gamma(E)$ which is \mathfrak{g} -equivariant
- $\varphi: \mathfrak{g} \rightarrow \Gamma(\mathbb{A}_E)$ Lie algebra map

\rightsquigarrow action $\mathfrak{g} \curvearrowright E$

s.t. $\mu^*(\varpi(a, a)) = \langle \varrho(a), \varrho(a) \rangle$.

Hamiltonian reduction in classical terms

$0 \in \tilde{\mathfrak{g}}^*[2]$ is a regular value $\leftrightarrow \dots$

Result: Coisotropic $\mathcal{N} := \tilde{\mu}^{-1}(0) \leftrightarrow$

(N, K, F, ∇) where

- $N = \mu^{-1}(0)$
- $K = \varrho(\mathfrak{a})|_N$
- $F = \text{tangent to the } \mathfrak{g}\text{-orbits on } N$
- $\nabla_{u_N} = [\varphi(u)|_N]$ (acting on $K^\perp/K \rightarrow N$)

Regularity conditions: have $G \curvearrowright E|_N$, free and proper on N .

Result: Reduced space $(\underline{\mathcal{N}}, \underline{\omega}) \leftrightarrow$

pseudo-euclidean vector bundle $\frac{K^\perp}{K}/G \rightarrow \mu^{-1}(0)/G$

Courant algebroid reduction

Courant function $\Theta \leftrightarrow$

E Courant algebroid

DGLA morphism $\tilde{\mu}^\sharp: \tilde{\mathfrak{g}} \rightarrow (C(\mathcal{M})[2], \{\cdot, \cdot\}, \{\Theta, \cdot\}) \leftrightarrow$

μ, ϱ, φ also satisfy

$$\begin{array}{ccccc} \mathfrak{h} & \xrightarrow{\delta} & \mathfrak{a} & \xrightarrow{\delta} & \mathfrak{g} \\ \mu^* \downarrow & & \downarrow \varrho & & \downarrow \varphi \\ C^\infty(M) & \xrightarrow{\rho^* d} & \Gamma(E) & \xrightarrow{\text{ad}} & \Gamma_{CA}(\mathbb{A}_E). \end{array}$$

Result: Reduced space $(\underline{\mathcal{N}}, \underline{\omega}, \underline{\Theta}) \leftrightarrow$

Courant algebroid $\frac{K^\perp}{K}/G \rightarrow \mu^{-1}(0)/G$

A special case: exact DGLAs

Exact DGLA $\tilde{\mathfrak{g}} := \mathfrak{h}[2] \oplus \mathfrak{a}[1] \oplus \mathfrak{g}$ \leftrightarrow

Exact Courant algebra: surjective, bracket-preserving map

$$p : \mathfrak{a} \rightarrow \mathfrak{g},$$

where \mathfrak{a} Leibniz algebra, \mathfrak{g} Lie algebra, s.t. $\mathfrak{h} := \ker p$ left-central.

Simplification: DGLA morphism $\tilde{\mu}^\sharp : \tilde{\mathfrak{g}} \rightarrow (C(\mathcal{M})[2], \{\cdot, \cdot\}, \{\Theta, \cdot\})$ \leftrightarrow

- $\mu : M \rightarrow \mathfrak{h}^*$ equivariant
- $\varrho : \mathfrak{a} \rightarrow \Gamma(E)$ bracket-preserving s.t. $[\![\varrho(\mathfrak{h}), \cdot]\!] = 0$

s.t. $\mu^*(\varpi(a, a)) = \langle \varrho(a), \varrho(a) \rangle$ and

$$\begin{array}{ccc} \mathfrak{h} & \xrightarrow{\delta} & \mathfrak{a} \\ \mu^* \downarrow & & \downarrow \varrho \\ C^\infty(M) & \xrightarrow{\rho^* d} & \Gamma(E) \end{array}$$

Remark: When E is an exact Courant algebroid, this recovers the extended actions of [Bursztyn-Cavalcanti-Gualtieri 2007]

Getting examples

Let $A \rightarrow M$ be a Lie algebroid. Then $E = A \oplus A^*$ is a Courant algebroid with the standard Courant bracket.

The corresponding degree 2 symplectic manifold is $\mathcal{M} = T^*[2]A[1]$.

Remark:

Graded analogue of the following \rightsquigarrow

exact DGLA and DGLA morphism $\tilde{\mu}^\sharp$ into $C(\mathcal{M})[2]$. •

Let N be a manifold, \mathfrak{g} a Lie algebra, \mathfrak{h} a module. Consider

- (i) $\eta: \mathfrak{g} \rightarrow \mathfrak{X}(N) = C_{lin}^\infty(T^*N)$ Lie algebra map
- (ii) $\nu: \mathfrak{g} \rightarrow C^\infty(N)$ satisfying

$$\nu([u_1, u_2]) = \mathcal{L}_{\eta(u_1)}(\nu(u_2)) - \mathcal{L}_{\eta(u_2)}(\nu(u_1)), \quad \forall u_1, u_2 \in \mathfrak{g}.$$

- (iii) $\mu: N \rightarrow \mathfrak{h}^*$ which is \mathfrak{g} -equivariant

\rightsquigarrow hamiltonian $\mathfrak{g} \ltimes \mathfrak{h}$ -action on (T^*N, ω_{can}) , with comoment map

$$\begin{aligned}\tilde{\mu}: \mathfrak{g} \ltimes \mathfrak{h} &\rightarrow C^\infty(T^*N) \\ (u, w) &\mapsto (\eta(u) + \pi^*(\nu(u))) + \pi^*(\mu^*w).\end{aligned}$$

References

- D. Roytenberg.
On the structure of graded symplectic supermanifolds and Courant algebroids
Contemp. Math. 315, pages 169-185, 2002.
- H. Bursztyn, G. Caalcani, M. Gualtieri
Reduction of Courant algebroids and generalized complex structures
Adv. Math., 211(2), pages 726-765, 2007.
- H. Bursztyn, A.S. Cattaneo, R.A. Mehta, M. Zambon
Graded geometry and generalized reduction
Arxiv:2306.01508.

Thank you for your attention