

Deformations of Lagrangian submanifolds in log-symplectic geometry

Marco Zambon

joint work with
Stephane Geudens

ArXiv:2009.01146

Lagrangian submanifolds in symplectic geometry

Weinstein's Lagrangian neighborhood theorem

Around a Lagrangian L ,

$$(M, \omega) \cong (T^*L, \omega_{can}).$$

In the local model (T^*L, ω_{can}) :

- For $\alpha \in \Omega^1(L)$:

$$\text{Gr}(\alpha) \text{ is Lagrangian} \Leftrightarrow d\alpha = 0$$

A linear condition

- $\text{Gr}(\alpha), \text{Gr}(\beta)$ related by Hamiltonian isotopy $\Leftrightarrow [\alpha] = [\beta]$ in $H^1(L)$. So

$$\mathcal{M}^{Ham}(L) = \text{open in } H^1(L).$$

Finite dimensional and smooth

Is the log-symplectic case also so nice?

Log-symplectic manifolds

Definition

(M^{2n}, π) is **log-symplectic** if $\wedge^n \pi : M \rightarrow \wedge^{2n} TM$ is transverse to the zero section.

π is symplectic away from hypersurface $Z := (\wedge^n \pi)^{-1}(0)$.

- $(Z, \pi|_Z)$ is corank-one Poisson structure.
- $(Z, \pi|_Z)$ has a Poisson vector field transverse to the symplectic leaves:

$$V_{mod}|_Z,$$

where V_{mod} is a modular vector field of M .

Example: When $\dim(M) = 2$: Radko surfaces

Example: On $(\mathbb{R}^{2n}, x_1, y_1, \dots, x_n, y_n)$:

$$\pi = \partial_{x_1} \wedge y_1 \partial_{y_1} + \sum_{i=2}^n \partial_{x_i} \wedge \partial_{y_i}.$$

Modular vector field is ∂_{x_1} . This is the local model around a point in Z .

Log-symplectic behaves like symplectic

Definition

${}^b TM$ is the Lie algebroid with sections $\{X \in \mathfrak{X}(M) : X \text{ tangent to } Z\}$

- [Guillemin-Miranda-Pires]

π log-symplectic \leftrightarrow b -symplectic form $\Omega \in {}^b\Omega^2(M)$

- [Marcut-Osorno]

If M is compact,

$\frac{\{\text{Poisson structures nearby } \pi\}}{\text{isotopy}} \cong \text{open in } {}^b H^2(M)$

- [Marcut-Osorno]

If M is compact, there is

$$c \in {}^b H^2(M)$$

s.t. $c^{n-1} \neq 0$, where $\dim(M) = 2n$.
So non-zero ${}^b H^2(M), \dots, {}^b H^{2n-2}(M)$.

Lagrangians in log-symplectic geometry

Definition

$L \subset (M, \pi)$ is **Lagrangian** if for all $p \in L$:

$T_p L \cap T_p S$ is a Lagrangian subspace of $(T_p S, (\omega_S)_p)$.

Here (S, ω_S) is the symplectic leaf through $p \in L$.

Lagrangian submanifolds are in particular coisotropic.

Example:

Assume Z has a compact leaf. Then Z is a **symplectic mapping torus**

$$Z = ([0, 1] \times S) / \sim$$

where S symplectic manifold, $\phi: S \rightarrow S$ symplectomorphism, and $(0, x) \sim (1, \phi(x))$.

Let $\ell \subset S$ Lagrangian such that $\phi(\ell) = \ell$. Then

$$L := ([0, 1] \times \ell) / \sim$$

is Lagrangian in Z .

Lagrangians in log-symplectic geometry

Let $L \subset (M^{2n}, Z, \pi)$ Lagrangian.

- If $L \pitchfork Z$: use b -symplectic geometry [Kirchhoff-Lukat]

Around L :

$$(M, \omega) \cong (^bT^*L, \Omega_{can}).$$

Hence $\mathcal{M}^{Ham}(L) = {}^bH^1(L) \cong H^1(L) \oplus H^0(L \cap Z)$.

- If $L \subset Z$ then

- ▶ if $\dim L = n - 1$: L lies inside a leaf of Z .
- ▶ if $\dim L = n$: L is transverse to the leaves of Z
 L inherits a foliation \mathcal{F}_L of corank 1, unimodular.

We focus on $L^n \subset Z \subset M^{2n}$.

Assumption: M is orientable

Normal form around L

Construct normal form in two steps: $L \subset (Z, \pi|_Z)$ and $Z \subset (M, \pi)$.

Step 1: General fact

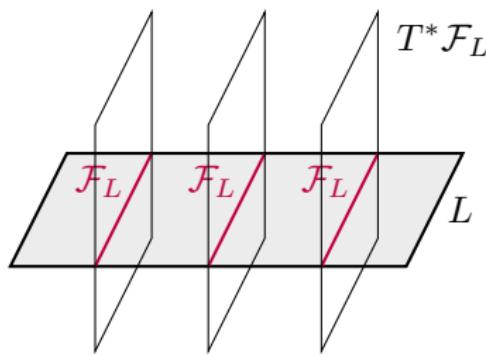
Let $L \subset (N, \pi)$ Lagrangian transverse to leaves. Then

- π is regular nearby $L \rightsquigarrow$ foliation \mathcal{F}_L on L .
- there is a canonical Poisson structure π_{can} on $T^*\mathcal{F}_L$ s.t.

$$T^*\mathcal{F}_L = \coprod_{B \in \mathcal{F}_L} (T^*B, \omega_{T^*B}).$$

- around L ,

$$(N, \pi) \cong (T^*\mathcal{F}_L, \pi_{can}).$$



Normal form around a Lagrangian

Step 2: $Z \subset (M, \pi)$ [Guillemin-Miranda-Pires]

Let (M, Z, π) be an orientable log-symplectic manifold.

The local model for (M, π) around Z is $Z \times \mathbb{R}$ with

$$V_{mod}|_Z \wedge t\partial_t + \pi|_Z.$$

Corollary (Normal form ad interim)

The local model around $L^n \subset Z \subset (M^{2n}, \pi)$ is $T^*\mathcal{F}_L \times \mathbb{R}$ with

$$V \wedge t\partial_t + \pi_{can}.$$

Here V is image of $V_{mod}|_Z$ under $(Z, \pi|_Z) \xrightarrow{\sim} (T^*\mathcal{F}_L, \pi_{can})$.

We can choose any representative of $[V] \in H^1_{\pi_{can}}(T^*\mathcal{F}_L)$.

Next: find a representative “compatible” with L .

Intermezzo: Symplectic vector fields on T^*N

Lemma

Let Y be a symplectic vector field on a cotangent bundle (T^*N, ω_{can}) .

- (i) There is $h \in C^\infty(T^*N)$ such that $Y + X_h$ is a **vertical** vector field.
- (ii) Suppose Y is vertical.

Then Y must be constant on each fiber.

When viewed as an element of $\Gamma(T^*N) = \Omega^1(N)$, it lies in

$$\Omega^1_{closed}(N)$$

Intermezzo: Poisson vector fields on $T^*\mathcal{F}_L$

Let (L, \mathcal{F}_L) be a foliated manifold. Denote

$$\mathfrak{X}(L)^{\mathcal{F}_L} := \{X \in \mathfrak{X}(L) : [X, \cdot] \text{ preserves } \Gamma(T\mathcal{F}_L)\}.$$

$X \in \mathfrak{X}(L)^{\mathcal{F}_L} \rightsquigarrow$ cotangent lift \rightsquigarrow Poisson vector field \tilde{X} on $(T^*\mathcal{F}_L, \pi_{can})$.

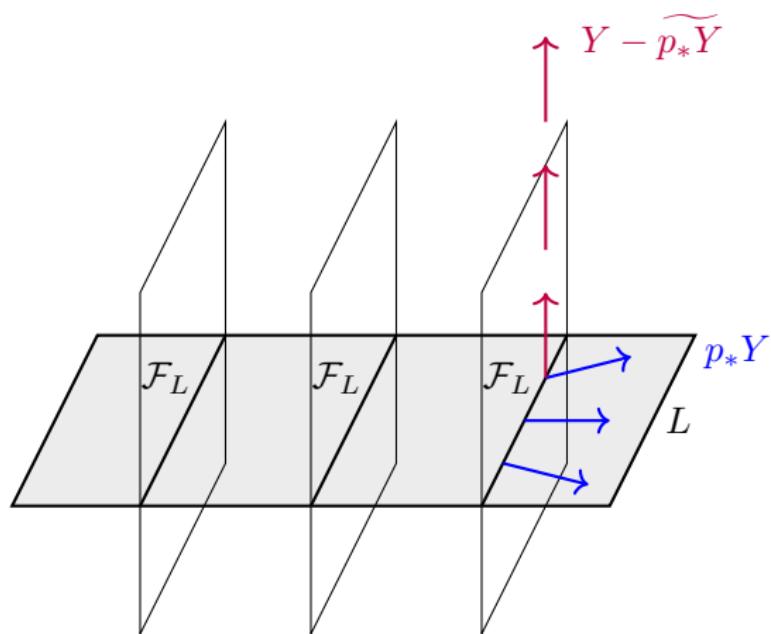
Lemma

Let (L, \mathcal{F}_L) be a foliated manifold. Fix a class in $H_{\pi_{can}}^1(T^*\mathcal{F}_L)$.
Then there exists a representative $Y \in \mathfrak{X}(T^*\mathcal{F}_L)$ such that

- (i) $p_*Y \in \mathfrak{X}(L)^{\mathcal{F}_L}$
- (ii) the vector field $Y - \widetilde{p_*Y}$ is vertical and constant on each fiber of p .
It corresponds to an element of

$$\Omega_{closed}^1(\mathcal{F}_L)$$

Intermezzo: Poisson vector fields on $T^*\mathcal{F}_L$



Normal form for log-symplectic structure around L

Proposition

The first Poisson cohomology of $(T^*\mathcal{F}_L, \pi_{can})$ is:

$$H_{\pi_{can}}^1(T^*\mathcal{F}_L) \cong \mathfrak{X}(L)^{\mathcal{F}_L}/\Gamma(T\mathcal{F}_L) \times H^1(\mathcal{F}_L) : \\ [\tilde{X} + \pi_{can}^\sharp(p^*\gamma)] \longleftrightarrow ([X], [\gamma]).$$

Take

$$\begin{aligned} \textcolor{red}{X} &\in \mathfrak{X}(L)^{\mathcal{F}_L} \\ \textcolor{red}{\gamma} &\in \Omega_{cl}^1(\mathcal{F}_L) \end{aligned}$$

such that $[V] \longleftrightarrow ([X], [\gamma])$

Corollary (Normal form)

The local model around $L^n \subset Z \subset (M^{2n}, \pi)$ is $T^*\mathcal{F}_L \times \mathbb{R}$ with log-symplectic structure

$$\underbrace{(\tilde{X} + \pi_{can}^\sharp(p^*\gamma)) \wedge t\partial_t + \pi_{can}}_{=:V}.$$

Lagrangian deformations

$T^* \mathcal{F}_L \times \mathbb{R}$ is a vector bundle over L .

Look at Lagrangian sections $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ in the local model

$$\left(T^* \mathcal{F}_L \times \mathbb{R}, \underbrace{(\tilde{X} + \pi_{can}^\sharp(p^* \gamma)) \wedge t \partial_t + \pi_{can}}_{=V} \right).$$

Proposition

The graph of a section $(\alpha, f) \in \Omega^1(\mathcal{F}_L) \times C^\infty(L)$ is Lagrangian exactly when

$$\begin{cases} d_{\mathcal{F}_L} \alpha = 0 \\ d_{\mathcal{F}_L} f + f(\gamma - \mathcal{L}_X \alpha) = 0 \end{cases}$$

Connectedness

Remark:

Deforming L into $\text{Gr}(\alpha, f)$ can be done in two steps:

- ① Deform L inside singular locus along $\alpha \in \Omega_{cl}^1(\mathcal{F}_L)$.
- ② Push $\text{Gr}(\alpha)$ out of singular locus along f .

I.e., concatenate these paths defined on $[0, 1]$:

- ① $t \mapsto (t\alpha, 0)$ and
- ② $s \mapsto (\alpha, sf)$.

Corollary:

$\{\text{Lagrangian sections of } T^*\mathcal{F} \times \mathbb{R}\}$ is connected.

The DGLA behind the deformation problem

Proposition

The deformation problem of the Lagrangian L is governed by a DGLA structure on

$$\Gamma(\wedge^\bullet(T^*\mathcal{F}_L \times \mathbb{R})) = \Gamma(\wedge^\bullet T^*\mathcal{F}_L \oplus \wedge^{\bullet-1} T^*\mathcal{F}_L) = \Omega^\bullet(\mathcal{F}_L) \oplus \Omega^{\bullet-1}(\mathcal{F}_L)$$

The structure maps d and $[\cdot, \cdot]$ are defined by

$$\begin{aligned}(\alpha, \beta) &\mapsto (-d_{\mathcal{F}_L} \alpha, -d_{\mathcal{F}_L} \beta - \gamma \wedge \beta), \\(\alpha, \beta) \otimes (\alpha', \beta') &\mapsto \left(0, \mathcal{L}_X \alpha \wedge \beta' - (-1)^{kl} \mathcal{L}_X \alpha' \wedge \beta\right).\end{aligned}$$

The equations for Lagrangian sections $(\alpha, f) \in \Gamma(T^*\mathcal{F}_L \times \mathbb{R})$ are the Maurer-Cartan equation of this DGLA:

$$\text{Gr}(\alpha, f) \text{ is Lagrangian} \Leftrightarrow d(\alpha, f) + \frac{1}{2}[(\alpha, f), (\alpha, f)] = 0.$$

The DGLA behind the deformation problem

This DGLA arises from the Cattaneo-Felder construction.

Theorem ([Cattaneo-Felder])

Let $E \rightarrow C$ be a vector bundle,

Π a fiberwise entire Poisson structure on E such that C is coisotropic.

- There is an L_∞ -algebra structure on $\Gamma(\wedge^\bullet E)$ with multibrackets

$$\xi_1 \otimes \cdots \otimes \xi_k \mapsto \pm P([\dots [[\Pi, \xi_1], \xi_2] \dots, \xi_k]) \quad (1)$$

where $P = pr_{vert} \circ |_C$. Here the ξ_i are seen as vertical fiberwise constant multivector fields on E

- For all $\alpha \in \Gamma(E)$:

$Graph(\alpha)$ is a coisotropic submanifold

$\Leftrightarrow \alpha$ satisfies the Maurer-Cartan equation.

Some geometric aspects of the deformation problem

- ➊ When do small deformations stay inside the singular locus?
- ➋ Is the deformation problem obstructed?

Remark:

When L is compact, there are two options:

- ➊ (L, \mathcal{F}_L) is the foliation of a fibration $L \rightarrow S^1$
- ➋ All leaves of (L, \mathcal{F}_L) are dense

Interlude: Morse-Novikov cohomology

Let M be a connected manifold, $\eta \in \Omega_{cl}^1(M)$.

Get differential

$$d^\eta := d + \eta \wedge$$

- The cohomology $H_\eta^\bullet(M)$ depends only on $[\eta]$.

-

$$H_\eta^0(M) \cong \begin{cases} \mathbb{R} & \text{if } \eta \text{ exact} \\ 0 & \text{otherwise} \end{cases}$$

Recall:

The graph of $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ is Lagrangian exactly when

$$\begin{cases} d_{\mathcal{F}_L} \alpha = 0 \\ d_{\mathcal{F}_L}^{\gamma - \mathcal{L}_X \alpha} f = 0 \end{cases}.$$

Deformations constrained to the singular locus

- 1 When do small deformations stay inside the singular locus?

Require that $H_{\gamma - \mathcal{L}_X \alpha}^0(\mathcal{F}_L) = 0$ for all small $\alpha \in \Omega_{cl}^1(\mathcal{F}_L)$.

Lemma

Assume L is compact. Let $\eta \in \Omega^1(\mathcal{F}_L)$ be leafwise closed.

- 1 If \mathcal{F}_L is given by fibration $p : L \rightarrow S^1$ then $H^1(\mathcal{F}_L) \cong \Gamma(\mathcal{H}^1)$, where

$\mathcal{H}^1 \rightarrow S^1$ vector bundle with fibers $\mathcal{H}_q^1 = H^1(p^{-1}(q))$.

Then

$$H_{\eta}^0(\mathcal{F}_L) \cong \{f \in C^{\infty}(S^1) : f \cdot [\eta] = 0\}.$$

- 2 If the leaves of \mathcal{F}_L are dense, then

$$H_{\eta}^0(\mathcal{F}_L) = \begin{cases} \mathbb{R} & \text{if } \eta \text{ is exact} \\ 0 & \text{otherwise} \end{cases}$$

Theorem

Suppose

$$[\gamma] = 0 \in H^1(\mathcal{F}_L)$$

(i.e. V can be chosen tangent to L).

Then there is a path of Lagrangian submanifolds L_s **not contained** in the singular locus for $s > 0$.

Example: The local model around a point of L .

At the opposite extreme, assuming L is compact:

Theorem

- 1 Suppose \mathcal{F}_L is given by a fibration $L \rightarrow S^1$. If for each leaf B of \mathcal{F}_L

$$[\gamma|_B] \neq 0 \in H^1(B)$$

then \mathcal{C}^1 -small deformations of L **stay inside** the singular locus.

- 2 Suppose \mathcal{F}_L has dense leaves, and $H^1(\mathcal{F}_L)$ is finite dimensional. If

$$[\gamma] \neq 0 \in H^1(\mathcal{F}_L)$$

then \mathcal{C}^∞ -small deformations of L **stay inside** the singular locus.

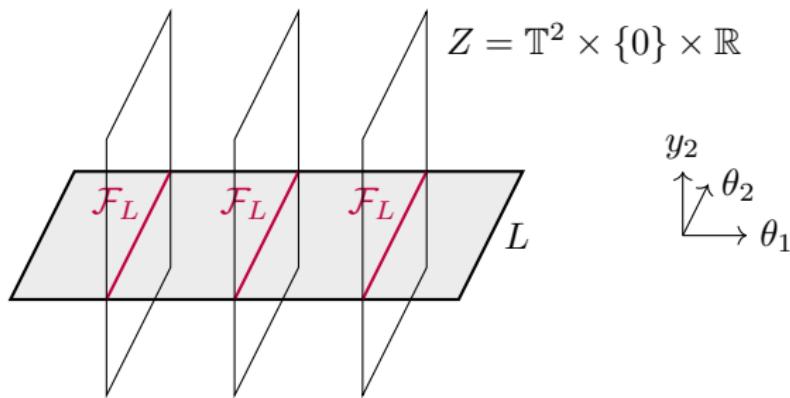
Example

Consider $(\mathbb{T}^2 \times \mathbb{R}^2, \theta_1, \theta_2, y_1, y_2)$ with log-symplectic structure

$$\pi = \left(g_X(\theta_1) \partial_{\theta_1} + g_\gamma(\theta_1) \partial_{y_2} \right) \wedge y_1 \partial_{y_1} + \partial_{\theta_2} \wedge \partial_{y_2}$$

Let $L = \mathbb{T}^2 \times \{(0,0)\}$.

So $\gamma = -g_\gamma(\theta_1) d\theta_2 \in \Omega^1(\mathcal{F}_L)$.



If g_γ has no zeros $\Rightarrow \mathcal{C}^1$ -small deformations of L stay inside the singular locus.

The Kuranishi criterion

Let $(W, d, [\![\cdot, \cdot]\!])$ be a DGLA.

Let $z(t)$ be a curve of Maurer-Cartan elements with $z(0) = 0$. Since

$$0 = d(z(t)) + \frac{1}{2} [\![z(t), z(t)]\!]$$

we have

$$\begin{aligned} d(z'(0)) &= 0 \\ [\![z'(0), z'(0)]\!] &= d(z''(0)). \end{aligned}$$

Definition

Let $w \in W_1$ with $dw = 0$ (infinitesimal deformation).

w is unobstructed if it is tangent to a curve of Maurer-Cartan elements.

The Kuranishi map is

$$Kr : H^1(W) \rightarrow H^2(W), \quad [w] \mapsto [\![w, w]\!].$$

Corollary (Kuranishi criterion)

$$w \text{ unobstructed} \Rightarrow Kr[w] = 0.$$

Obstructedness of infinitesimal deformations

② Is the deformation problem obstructed?

Recall:

The graph of $(\alpha', f') \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R}) = \Omega^1(\mathcal{F}_L) \times C^\infty(L)$ is Lagrangian iff

$$\begin{cases} d_{\mathcal{F}_L} \alpha' = 0 \\ d_{\mathcal{F}_L} f' + f'(\gamma - \mathcal{L}_X \alpha') = 0 \end{cases}$$

(α, f) is an infinitesimal deformation when

$$\begin{cases} d_{\mathcal{F}_L} \alpha = 0 \\ d_{\mathcal{F}_L} f + f\gamma = 0 \quad \leftarrow \text{depends on } \gamma \end{cases}$$

Remark:

- There exist obstructed infinitesimal deformations
- $(\alpha, 0)$ and $(0, f)$ are unobstructed:
 $t \mapsto (t\alpha, 0)$ and $t \mapsto (0, tf)$ are prolongations.

Criteria for unobstructedness

Lemma

If $[\mathcal{L}_X \alpha] = 0 \in H^1(\mathcal{F}_L)$ then (α, f) is unobstructed.

Reason:

$$f \in \{\text{cocycles for } d_{\mathcal{F}_L}^\gamma\} \leftrightarrow \{\text{cocycles for } d_{\mathcal{F}_L}^{\gamma - \mathcal{L}_X \alpha}\}$$

Example: The local model around a point of L , since $H^1(\mathcal{F}_L) = 0$ there.

Theorem

Let $(\alpha, f) \in \Omega^1(\mathcal{F}_L) \times C^\infty(L)$ be an infinitesimal deformation, where L compact. The following are equivalent:

- 1 (α, f) is smoothly unobstructed
- 2 $Kr[(\alpha, f)] = 0$
- 3 $\mathcal{L}_X \alpha$ is exact on $L \setminus \mathcal{Z}_f$
- 4 α extends to a closed one-form on $L \setminus \mathcal{Z}_f$ ← independent of X and γ

Example

Consider $(\mathbb{T}^2 \times \mathbb{R}^2, \theta_1, \theta_2, y_1, y_2)$ with log-symplectic structure

$$\pi = \left(g_X(\theta_1) \partial_{\theta_1} + \mathbf{g}_\gamma(\theta_1) \partial_{y_2} \right) \wedge y_1 \partial_{y_1} + \partial_{\theta_2} \wedge \partial_{y_2}$$

Let $L = \mathbb{T}^2 \times \{(0, 0)\}$.

So $\gamma = -\mathbf{g}_\gamma(\theta_1) d\theta_2 \in \Omega^1(\mathcal{F}_L)$.

Infinitesimal deformations are $(\alpha, f) \in \Omega^1(\mathcal{F}_L) \times C^\infty(L)$ such that

$$f = f(\theta_1) \text{ and } f \mathbf{g}_\gamma = 0.$$

The following are equivalent:

- (α, f) is unobstructed
- $\mathcal{L}_X \alpha$ is exact on $L \setminus \mathcal{Z}_f$
- On $L \setminus \mathcal{Z}_f$,

$$[\alpha] \in H^1(\mathcal{F}_L) \cong \Gamma(\mathcal{H}^1)$$

is a locally constant section of the vector bundle $\mathcal{H}^1 = \underline{\mathbb{R}} \rightarrow S^1$ (i.e. a flat section w.r.t. the Gauss-Manin connection).

Conclusions

Are deformations of Lagrangians $L^n \subset Z$ in log-symplectic geometry as nice as in the symplectic case?

Deformations: not as nice, but quite nice

- The Lagrangian condition is not linear, but quadratic.
- The space of nearby Lagrangians is connected.
- When the Kuranishi obstruction vanishes, infinitesimal deformations are unobstructed. Formality of the DGLA?

Moduli space \mathcal{M}^{Ham} smooth at L ?

- Not smooth in general:
 - ▶ $T_{[L]}\mathcal{M}^{Ham}$ typically infinite dimensional.
 - ▶ $T_{[L']}\mathcal{M}^{Ham}$ finite dimensional for Lagrangians L' in $M \setminus Z$.
- Smooth when \mathcal{C}^1 -small deformations of L stay inside Z :
 \mathcal{M}^{Ham} is open in $H^1(\mathcal{F}_L)$.

References

- **O. Radko**
A classification of topologically stable Poisson structures on a compact oriented surface.
J. Symplectic Geom. (2002)
- **V. Guillemin, E. Miranda, A.R. Pires**
Symplectic and Poisson geometry on b -manifolds.
Adv. Math. 264 (2014)
- **I. Marcut, B. Osorno Torres**
Deformations of log-symplectic structures.
J. of the London Math. Society (2014)
- **S. Geudens, M. Zambon**
Deformations of Lagrangian submanifolds in log-symplectic manifolds.
ArXiv:2009.01146.

Thank you for your attention