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Lagrangian submanifolds in symplectic geometry

Weinstein’s Lagrangian neighborhood theorem
Around a Lagrangian L,

(M,ω) ∼= (T ∗L, ωcan).

In the local model (T ∗L, ωcan):
For α ∈ Ω1(L):

Gr(α) is Lagrangian ⇔ dα = 0

A linear conditon
Gr(α),Gr(β) related by Hamiltonian isotopy⇔ [α] = [β] in H1(L). So

MHam(L) = open in H1(L).

Finite dimensional and smooth

Is the log-symplectic case also so nice?



Log-symplectic manifolds
Definition
(M2n, π) is log-symplectic if ∧nπ : M → ∧2nTM is transverse to the zero
section.

π is symplectic away from hypersurface Z := (∧nπ)−1(0).
(Z, π|Z) is corank-one Poisson structure.
(Z, π|Z) has a Poisson vector field transverse to the symplectic leaves:

Vmod|Z ,

where Vmod is a modular vector field of M .

Example: When dim(M) = 2: Radko surfaces

Example: On (R2n, x1, y1, . . . , xn, yn):

π = ∂x1 ∧ y1∂y1 +

n∑
i=2

∂xi ∧ ∂yi .

Modular vector field is ∂x1 . This is the local model around a point in Z.
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Log-symplectic behaves like symplectic

Definition
bTM is the Lie algebroid with sections {X ∈ X(M) : X tangent to Z}

[Guillemin-Miranda-Pires]

π log-symplectic ↔ b-symplectic form Ω ∈ bΩ2(M)

[Marcut-Osorno]

If M is compact,

{Poisson structures nearby π}
isotopy

∼= open in bH2(M)

[Marcut-Osorno]

If M is compact, there is
c ∈ bH2(M)

s.t. cn−1 6= 0, where dim(M) = 2n.
So non-zero bH2(M), . . . , bH2n−2(M).

3 / 25



Lagrangians in log-symplectic geometry
Definition
L ⊂ (M,π) is Lagrangian if for all p ∈ L:

TpL ∩ TpS is a Lagrangian subspace of (TpS, (ωS)p).

Here (S, ωS) is the symplectic leaf through p ∈ L.

Lagrangian submanifolds are in particular coisotropic.

Example:
Assume Z has a compact leaf. Then Z is a symplectic mapping torus

Z = ([0, 1]× S)/ ∼

where S symplectic manifold, φ : S → S symplectomorphism, and
(0, x) ∼ (1, φ(x)).
Let ` ⊂ S Lagrangian such that φ(`) = `. Then

L := ([0, 1]× `)/ ∼

is Lagrangian in Z.
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Lagrangians in log-symplectic geometry

Let L ⊂ (M2n, Z, π) Lagrangian.
If L t Z: use b-symplectic geometry[Kirchhoff-Lukat]

Around L:
(M,ω) ∼= (bT ∗L,Ωcan).

HenceMHam(L) = bH1(L) ∼= H1(L)⊕H0(L ∩ Z).

If L ⊂ Z then
I if dimL = n− 1: L lies inside a leaf of Z.
I if dimL = n: L is transverse to the leaves of Z

L inherits a foliation FL of corank 1, unimodular.

We focus on Ln ⊂ Z ⊂M2n.

Assumption: M is orientable
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Normal form around L
Construct normal form in two steps: L ⊂ (Z, π|Z) and Z ⊂ (M,π).

Step 1: General fact
Let L ⊂ (N, π) Lagrangian transverse to leaves. Then

π is regular nearby L  foliation FL on L.
there is a canonical Poisson structure πcan on T ∗FL s.t.

T ∗FL =
∐
B∈FL

(T ∗B,ωT∗B).

around L,
(N, π) ∼= (T ∗FL, πcan).

L
FL

T ∗FL

FLFL



Normal form around a Lagrangian

Step 2: Z ⊂ (M,π)[Guillemin-Miranda-Pires]

Let (M,Z, π) be an orientable log-symplectic manifold.
The local model for (M,π) around Z is Z × R with

Vmod|Z ∧ t∂t + π|Z .

Corollary (Normal form ad interim)
The local model around Ln ⊂ Z ⊂ (M2n, π) is T ∗FL × R with

V ∧ t∂t + πcan.

Here V is image of Vmod|Z under (Z, π|Z)
∼→ (T ∗FL, πcan).

We can choose any representative of [V ] ∈ H1
πcan

(T ∗FL).
Next: find a representative “compatible” with L.
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Intermezzo: Symplectic vector fields on T ∗N

Lemma
Let Y be a symplectic vector field on a cotangent bundle (T ∗N,ωcan).

(i) There is h ∈ C∞(T ∗N) such that Y +Xh is a vertical vector field.
(ii) Suppose Y is vertical.

Then Y must be constant on each fiber.
When viewed as an element of Γ(T ∗N) = Ω1(N), it lies in

Ω1
closed(N)

8 / 25



Intermezzo: Poisson vector fields on T ∗FL

Let (L,FL) be a foliated manifold. Denote

X(L)FL := {X ∈ X(L) : [X, ] preserves Γ(TFL)}.

X ∈ X(L)FL  cotangent lift Poisson vector field X̃ on (T ∗FL, πcan).

Lemma
Let (L,FL) be a foliated manifold. Fix a class in H1

πcan
(T ∗FL).

Then there exists a representative Y ∈ X(T ∗FL) such that
(i) p∗Y ∈ X(L)FL

(ii) the vector field Y − p̃∗Y is vertical and constant on each fiber of p.
It corresponds to an element of

Ω1
closed(FL)

9 / 25



Intermezzo: Poisson vector fields on T ∗FL

L
FL

p∗Y

Y − p̃∗Y

FLFL
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Normal form for log-symplectic structure around L
Proposition
The first Poisson cohomology of (T ∗FL, πcan) is:

H1
πcan

(T ∗FL) ∼= X(L)FL/Γ(TFL)×H1(FL) :

[X̃ + π]can(p∗γ)] ←− ([X], [γ]).

Take

X ∈ X(L)FL

γ ∈ Ω1
cl(FL)

such that [V ]←→ ([X], [γ])

Corollary (Normal form)
The local model around Ln ⊂ Z ⊂ (M2n, π) is T ∗FL × R with log-symplectic
structure

(X̃ + π]can(p∗γ)︸ ︷︷ ︸
=:V

) ∧ t∂t + πcan.

11 / 25



Lagrangian deformations

T ∗FL × R is a vector bundle over L.
Look at Lagrangian sections (α, f) ∈ Γ(T ∗FL × R) in the local model(

T ∗FL × R, (X̃ + π]can(p∗γ)︸ ︷︷ ︸
=V

) ∧ t∂t + πcan

)
.

Proposition
The graph of a section (α, f) ∈ Ω1(FL)× C∞(L) is Lagrangian exactly when{

dFL
α = 0

dFL
f + f(γ − LXα) = 0



Connectedness

Remark:
Deforming L into Gr(α, f) can be done in two steps:

1 Deform L inside singular locus along α ∈ Ω1
cl(FL).

2 Push Gr(α) out of singular locus along f .

I.e., concatenate these paths defined on [0, 1]:
1 t 7→ (tα, 0) and
2 s 7→ (α, sf).

Corollary:
{Lagrangian sections of T ∗F × R} is connected.
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The DGLA behind the deformation problem

Proposition
The deformation problem of the Lagrangian L is governed by a DGLA
structure on

Γ
(
∧•(T ∗FL × R)

)
= Γ(∧•T ∗FL ⊕ ∧•−1T ∗FL) = Ω•(FL)⊕ Ω•−1(FL)

The structure maps d and [[·, ·]] are defined by

(α, β) 7→ (−dFL
α,−dFL

β − γ ∧ β) ,

(α, β)⊗ (α′, β′) 7→
(
0,LXα ∧ β′ − (−1)klLXα′ ∧ β

)
.

The equations for Lagrangian sections (α, f) ∈ Γ(T ∗FL × R) are the
Maurer-Cartan equation of this DGLA:

Gr(α, f) is Lagrangian ⇔ d(α, f) +
1

2
[[(α, f), (α, f)]] = 0.
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The DGLA behind the deformation problem

This DGLA arises from the Cattaneo-Felder construction.

Theorem ([Cattaneo-Felder])
Let E → C be a vector bundle,
Π a fiberwise entire Poisson structure on E such that C is coisotropic.

There is an L∞-algebra structure on Γ (∧•E) with multibrackets

ξ1 ⊗ · · · ⊗ ξk 7→ ±P ([. . . [[Π, ξ1], ξ2] . . . , ξk]) (1)

where P = prvert ◦ |C . Here the ξi are seen as vertical fiberwise constant
multivector fields on E
For all α ∈ Γ(E):

Graph(α)is a coisotropic submanifold
⇔ α satisfies the Maurer-Cartan equation.
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Some geometric aspects of the deformation problem

1 When do small deformations stay inside the singular locus?
2 Is the deformation problem obstructed?

Remark:
When L is compact, there are two options:

1 (L,FL) is the foliation of a fibration L→ S1

2 All leaves of (L,FL) are dense



Interlude: Morse-Novikov cohomology

Let M be a connected manifold, η ∈ Ω1
cl(M).

Get differential
dη := d + η∧

The cohomology H•η (M) depends only on [η].

H0
η (M) ∼=

{
R if η exact
0 otherwise

Recall:
The graph of (α, f) ∈ Γ(T ∗FL × R) is Lagrangian exactly when{

dFL
α = 0

dγ−LXα
FL

f = 0
.
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Deformations constrained to the singular locus
1 When do small deformations stay inside the singular locus?

Require that H0
γ−LXα

(FL) = 0 for all small α ∈ Ω1
cl(FL).

Lemma
Assume L is compact. Let η ∈ Ω1(FL) be leafwise closed.

1 If FL is given by fibration p : L→ S1 then H1(FL) ∼= Γ(H1), where

H1 → S1 vector bundle with fibers H1
q = H1(p−1(q)).

Then
H0
η (FL) ∼= {f ∈ C∞(S1) : f · [η] = 0}.

2 If the leaves of FL are dense, then

H0
η (FL) =

{
R if η is exact
0 otherwise
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Theorem
Suppose

[γ] = 0 ∈ H1(FL)

(i.e. V can be chosen tangent to L).
Then there is a path of Lagrangian submanifolds Ls not contained in the
singular locus for s > 0.

Example: The local model around a point of L.
At the opposite extreme, assuming L is compact:

Theorem
1 Suppose FL is given by a fibration L→ S1. If for each leaf B of FL

[γ|B ] 6= 0 ∈ H1(B)

then C1-small deformations of L stay inside the singular locus.
2 Suppose FL has dense leaves, and H1(FL) is finite dimensional. If

[γ] 6= 0 ∈ H1(FL)

then C∞-small deformations of L stay inside the singular locus.
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Example
Consider (T2 × R2, θ1, θ2, y1, y2) with log-symplectic structure

π =
(
gX(θ1)∂θ1 + gγ(θ1)∂y2

)
∧ y1∂y1 + ∂θ2 ∧ ∂y2

Let L = T2 × {(0, 0)}.
So γ = −gγ(θ1)dθ2 ∈ Ω1(FL).

L θ1

y2
θ2FL

Z = T2 × {0} × R

FLFL

If gγ has no zeros⇒ C1-small deformations of L stay inside the singular locus.
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The Kuranishi criterion
Let (W,d, [[·, ·]]) be a DGLA.
Let z(t) be a curve of Maurer-Cartan elements with z(0) = 0. Since

0 = d(z(t)) +
1

2
[[z(t), z(t)]]

we have

d(z′(0)) = 0

[[z′(0), z′(0)]] = d(z′′(0)).

Definition
Let w ∈W1 with dw = 0 (infinitesimal deformation).
w is unobstructed if it is tangent to a curve of Maurer-Cartan elements.

The Kuranishi map is

Kr : H1(W )→ H2(W ), [w] 7→
[
[[w,w]]

]
.

Corollary (Kuranishi criterion)

w unobstructed⇒ Kr[w] = 0.



Obstructedness of infinitesimal deformations

2 Is the deformation problem obstructed?

Recall:
The graph of (α′, f ′) ∈ Γ(T ∗FL × R) = Ω1(FL)× C∞(L) is Lagrangian iff{

dFL
α′ = 0

dFL
f ′ + f ′(γ − LXα′) = 0

(α, f) is an infinitesimal deformation when{
dFL

α = 0

dFL
f + fγ = 0 ← depends on γ

Remark:

There exist obstructed infinitesimal deformations
(α, 0) and (0, f) are unobstructed:
t 7→ (tα, 0) and t 7→ (0, tf) are prolongations.
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Criteria for unobstructedness

Lemma
If [LXα] = 0 ∈ H1(FL) then (α, f) is unobstructed.

Reason:
f ∈ {cocycles for dγFL

} ↔ {cocycles for dγ−LXα
FL

}

Example: The local model around a point of L, since H1(FL) = 0 there.

Theorem
Let (α, f) ∈ Ω1(FL)× C∞(L) be an infinitesimal deformation, where L
compact. The following are equivalent:

1 (α, f) is smoothly unobstructed
2 Kr[(α, f)] = 0

3 LXα is exact on L \ Zf
4 α extends to a closed one-form on L \ Zf ← independent of X and γ
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Example
Consider (T2 × R2, θ1, θ2, y1, y2) with log-symplectic structure

π =
(
gX(θ1)∂θ1 + gγ(θ1)∂y2

)
∧ y1∂y1 + ∂θ2 ∧ ∂y2

Let L = T2 × {(0, 0)}.
So γ = −gγ(θ1)dθ2 ∈ Ω1(FL).

Infinitesimal deformations are (α, f) ∈ Ω1(FL)× C∞(L) such that

f = f(θ1) and fgγ = 0.

The following are equivalent:
(α, f) is unobstructed
LXα is exact on L \ Zf
On L \ Zf ,

[α] ∈ H1(FL) ∼= Γ(H1)

is a locally constant section of the vector bundle H1 = R→ S1

(i.e. a flat section w.r.t. the Gauss-Manin connection).
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Conclusions

Are deformations of Lagrangians Ln ⊂ Z in log-symplectic geometry
as nice as in the symplectic case?

Deformations: not as nice, but quite nice
The Lagrangian condition is not linear, but quadratic.
The space of nearby Lagrangians is connected.
When the Kuranishi obstruction vanishes, infinitesimal deformations are
unobstructed. Formality of the DGLA?

Moduli spaceMHam smooth at L?
Not smooth in general:

I T[L]MHam typically infinite dimensional.
I T[L′]MHam finite dimensional for Lagrangians L′ in M \ Z.

Smooth when C1-small deformations of L stay inside Z:
MHam is open in H1(FL).
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