

Singular subalgebroids and their integrations

Marco Zambon

joint work with
Iakovos Androulidakis
arXiv:2008.07976

The main question

Well-known:

A **Lie group** differentiates to a Lie algebra

A **Lie algebra** is integrated by certain Lie groups

Topic of this talk:

What are **singular subalgebroids** integrated by?

Our answer: **diffeological groupoids** with extra structures and properties

Special case: Integration of wide Lie subalgebroids

Let $A \rightarrow M$ be a Lie algebroid, and G an integrating Lie groupoid.

Theorem (Moerdijk-Mrčun)

Let B be a wide Lie subalgebroid of A .

There exists a unique map

$$\Phi: H_{min} \rightarrow G$$

where

- 1) H_{min} is a Lie groupoid integrating B ,
- 2) Φ is a Lie groupoid morphism integrating the inclusion $\iota: B \hookrightarrow A$,
- 3) minimality: any Lie groupoid morphism $\tilde{H} \rightarrow G$ integrating ι factors as

$$\begin{array}{ccc} \tilde{H} & & \\ \downarrow & \searrow & \\ H_{min} & \xrightarrow{\Phi} & G \end{array}$$

Singular subalgebroids

Let $A \rightarrow M$ be a Lie algebroid.

Definition

A **singular subalgebroid** of A is a $C^\infty(M)$ -submodule \mathcal{B} of $\Gamma_c(A)$ which is

- involutive
- locally finitely generated.

Remark:

Singular subalgebroids

- are “relative” notion (need to fix the ambient Lie algebroid A).
- are Lie-Rinehart algebras with a geometric flavor.

Main Examples:

- 1) the case $A = TM$: singular foliations
- 2) wide Lie subalgebroids B of A (take $\mathcal{B} = \Gamma_c(B)$)

A hierarchy of examples

- i) Images of Lie algebroid morphisms $\psi: E \rightarrow A$ over Id_M :

$$\mathcal{B} := \psi(\Gamma_c(E)).$$

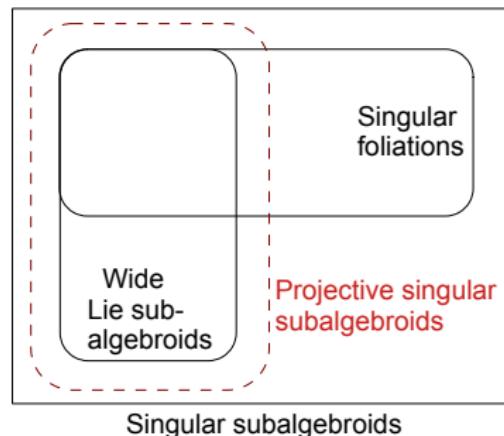
- ii) Special case: \mathcal{B} projective, i.e.

$$\mathcal{B} \cong \Gamma_c(B)$$

for some vector bundle $B \rightarrow M$.

(Also: B is Lie algebroid, with an almost injective morphism $\tau: B \rightarrow A$.)

- iii) Special case: wide Lie subalgebroids.



Diffeological groupoids

A **diffeological groupoid** $H \rightrightarrows M$ is a groupoid in the category of *diffeological spaces*. We assume: M is a **manifold**.

Lemma

Let $\{\chi : \mathcal{O}_x \rightarrow H\}$ be any generating set of plots.

Then for every $x \in M$ there is

- a plot χ in the generating set
- a submanifold $e \subset \mathcal{O}_x$

such that

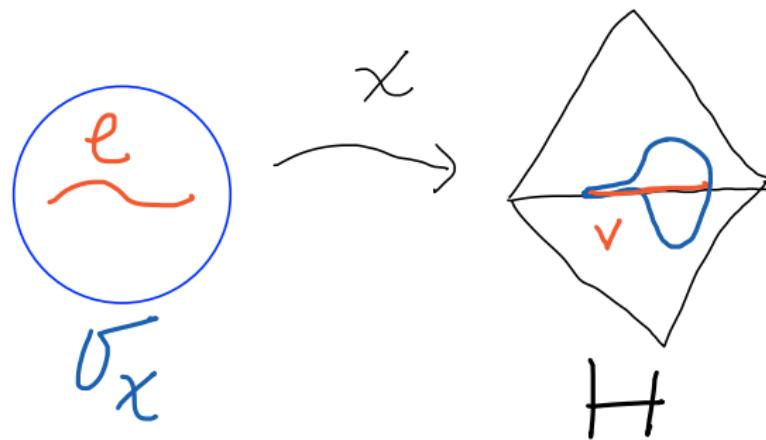
i)

$$\chi|_e : e \rightarrow V$$

is a **diffeomorphism** onto a neighbourhood of x in 1_M

ii) $s_H \circ \chi$ and $t_H \circ \chi$ are **submersions** at points of e .

The open map property (cont.)



Remark:

The image $x(O_x)$ might not be open in H

The open map property

Open map property:

The diffeology of H is generated by open maps

Consequences:

- ⇒ through every point of H there is a local bisection
- ⇒ source s_H and target t_H are local subductions, in particular open maps

The holonomy groupoid of a singular subalgebroid

Let $A \rightarrow M$ be a Lie algebroid, and G an integrating Lie groupoid.

Theorem (Z, after [Androulidakis-Skandalis])

Let \mathcal{B} be a singular subalgebroid of A .

1) There exists a canonical map

$$\Phi: H^G(\mathcal{B}) \rightarrow G,$$

- where $H^G(\mathcal{B})$ is a diffeological groupoid over M
- Φ is a morphism of diffeological groupoids

2) This specializes to:

- When \mathcal{B} comes from a wide Lie subalgebroid:

$$H^G(\mathcal{B}) = H_{min} \text{ [Moerdijk-Mrčun]}$$

- When \mathcal{B} is a singular foliation, $G = M \times M$:

$$H^G(\mathcal{B}) = \text{the holonomy groupoid} \text{ [Androulidakis-Skandalis]}$$

$H^G(\mathcal{B})$ is called the **holonomy groupoid of \mathcal{B}** .

The holonomy groupoid as diffeological groupoid

Sketch of the construction:

- A **bisubmersion** for \mathcal{B} is a manifold U with a smooth map

$$\varphi: U \rightarrow G$$

(plus properties). It desingularizes and encodes \mathcal{B} .

- The holonomy groupoid is a quotient of a union of bisubmersions:

$$H^G(\mathcal{B}) := \coprod U_i / \sim$$

- The map $\Phi: H^G(\mathcal{B}) \rightarrow G$ is induced by the φ_i

Corollary

$H^G(\mathcal{B})$ is a diffeological groupoid.

Remark:

The quotient map $\coprod U_i \rightarrow H^G(\mathcal{B})$ is a local subduction.

In particular, the diffeological groupoid $H^G(\mathcal{B})$ has the open map property.

Remark:

Later: $\Phi: H^G(\mathcal{B}) \rightarrow G$ provides an “integration” of \mathcal{B} .

Other properties

Remark^[Androulidakis-Skandalis]

There is a C^* -algebra associated to $H^G(\mathcal{B})$

Remark:

$H^G(\mathcal{B})|_L$ is a Lie groupoid for all leaves $L \subset M$ of \mathcal{B} ^[after Debord]

$H^G(\mathcal{B})$ is a Lie groupoid $\Leftrightarrow \mathcal{B}$ is projective.

Examples of holonomy groupoids

Example:

Let \mathcal{B} be the singular foliation on $M = \mathbb{R}^2$ of vector fields vanishing at 0.

$$H^{M \times M}(\mathcal{B}) = (\mathbb{R}^2 - \{0\}) \times (\mathbb{R}^2 - \{0\}) \coprod GL(2, \mathbb{R}).$$

Example:

Let B be a wide Lie subalgebroid of A , and $\mathcal{B} = \Gamma_c(B)$. Then

$$H^G(\mathcal{B}) = H_{min}$$

Example:

Let $\psi: E \rightarrow A$ be a Lie algebroid morphisms over Id_M , and $\mathcal{B} := \psi(\Gamma_c(E))$.

Let $\Psi: K \rightarrow G$ be an integrating morphism of Lie groupoids. Then

$$H^G(\mathcal{B}) = K/\mathcal{I},$$

where

$$\mathcal{I} := \{k \in K : \exists \text{ a local bisection } b \text{ through } k \text{ such that } \Psi(b) \subset 1_M\}$$

The holonomy-like property

This is a “uniqueness” requirement for “nice” plots near 1_M as in the Lemma.

Definition

A diffeological groupoid $H \rightrightarrows M$ is called **holonomy-like** if there exists a generating set of plots^a $\mathcal{X} = \{\chi : \mathcal{O}_\chi \rightarrow \overset{\circ}{H}\}$ such that $\forall \chi, \chi' \in \mathcal{X}$:

- Let $e \subset \mathcal{O}_\chi, e' \subset \mathcal{O}_{\chi'}$ be submanifolds such that $\chi|_e$ and $\chi'|_{e'}$ are diffeomorphisms onto the same open subset of $1_M \subset H$.
Then \exists a smooth map

$$k: \mathcal{O}_{\chi'} \rightarrow \mathcal{O}_\chi$$

with $k(e') = e$ such that

$$\begin{array}{ccc} & H & \\ \chi' \nearrow & & \swarrow \chi \\ \mathcal{O}_{\chi'} & \dashrightarrow & \mathcal{O}_\chi \end{array} \tag{1}$$

^a $\overset{\circ}{H}$ is an open neighborhood of 1_M in H .

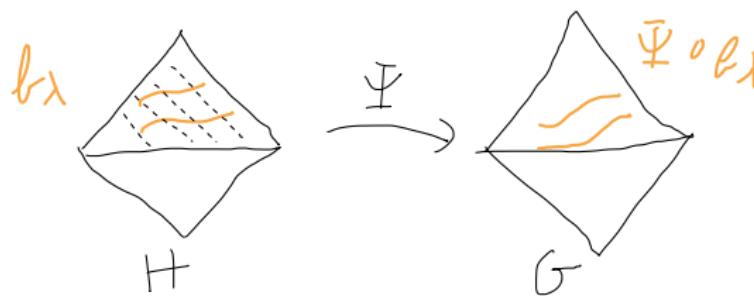
The induced module \mathcal{S}

- Let H a diffeological groupoid,
- $\Psi: H \rightarrow G$ a morphism covering Id_M , with G a Lie groupoid.

Definition

We denote by \mathcal{S} this $C^\infty(M)$ -submodule of $\Gamma_c(AG)$:

$$\left\{ \frac{d}{d\lambda}|_0(\Psi \circ b_\lambda) : \{b_\lambda\}_{\lambda \in I} \text{ smooth family of global bisections of } H \text{ s.t. } b_0 = Id_M \right\}_c$$



Assumption (\mathcal{S} arises from 1-parameter groups):

Locally, every element of \mathcal{S} arises from a smooth 1-parameter group $\{b_\lambda\}_{\lambda \in I}$ of global bisections of H .

Differentiation

Theorem

Assume that

- i) H is holonomy-like
- ii) \mathcal{S} arises from 1-parameter groups.

Then \mathcal{S} is a **singular subalgebroid** of AG .

We say that (H, Ψ) **differentiates to \mathcal{S}** .

Remark:

- i) $\Rightarrow \mathcal{S}$ is locally finitely generated
- ii) $\Rightarrow \mathcal{S}$ is involutive.

N.B. Involutivity also holds when:

if $\{\alpha_\lambda\} \subset \Gamma_c(A)$ smooth 1-parameter family in \mathcal{S} with $\alpha_0 = 1_M$, then

$$\frac{d}{d\lambda}|_{\lambda=0} \alpha_\lambda \in \mathcal{S}.$$

Definition of integration

- Let H a diffeological groupoid,
- $\Psi: H \rightarrow G$ a morphism covering Id_M , with G a Lie groupoid.

Definition

Let \mathcal{B} be a singular subalgebroid of AG .

(H, Ψ) is an **integral** of \mathcal{B} over G if:

- ① (H, Ψ) differentiates to \mathcal{B}
- ② The diffeology of H is generated by open maps
- ③ The morphism Ψ is **almost injective**.

Almost injective means that H has the “right size”:

nearby the units $1_{M,H}$,
 $(\mathbf{b} \text{ local bisection with } \Psi(\mathbf{b}) \subset 1_{M,G}) \Rightarrow \mathbf{b} \subset 1_{M,H}$.

Remark:

We saw: 2) \Rightarrow through every point of H there is a local bisection.
Hence 3) is a meaningful requirement.

Holonomy groupoids are integrals

Example

For any singular subalgebroid \mathcal{B} of AG :

The holonomy groupoid $(H^G(\mathcal{B}), \Phi)$ is an integral of \mathcal{B} over G .

Remark:

The **graph of \mathcal{B} over G** is the image of the groupoid morphism $\Phi : H^G(\mathcal{B}) \rightarrow G$. It is a diffeological groupoid, with the quotient diffeology.

- Fact: the graph of \mathcal{B} is **not an integral** of \mathcal{B} .
- Reason: its diffeology is not generated by open maps.

Example: When \mathcal{B} is a singular foliation and $G = M \times M$,

graph of $\mathcal{B} = \{(x, y) : x \text{ and } y \text{ belong to the same leaf of } \mathcal{F}\}$.

Lie subalgebras

Example

Let \mathfrak{g} a Lie algebra with Lie group G ,
let \mathfrak{k} a Lie subalgebra.

- 1) All integrals of \mathfrak{k} over G are **smooth**
- 2) They are exactly the Lie groups covering K , the connected Lie subgroup of G corresponding to \mathfrak{k} .

The proof uses:

Lemma (Souriau)

On a Lie group, the diffeology is the smallest diffeology

- *containing all 1-parameter groups $t \mapsto \exp(tv)$, and*
- *so that the group multiplication and inversion are smooth.*

Wide Lie subalgebroids

Example

Let B be a wide Lie subalgebroid of A . The following coincides:

- The **smooth** integrals of $\mathcal{B} = \Gamma_c(B)$
- The Lie groupoid morphism $H \rightarrow G$ integrating the inclusion $\iota: B \hookrightarrow A$
(i.e. the integrations of B as in [\[Moerdijk-Mrčun\]](#))

Open question:

Are there **non-smooth** integrals of \mathcal{B} ?

Projective Lie subalgebroids

Let \mathcal{B} be a singular subalgebroid of AG .

Proposition

\mathcal{B} admits a *smooth integral* $\Leftrightarrow \mathcal{B}$ is *projective*.

Proposition

The holonomy groupoid $H^G(\mathcal{B})$ is the *minimal smooth integral*:
Any *smooth integral* (H, Ψ) of \mathcal{B} factors as

$$\begin{array}{ccc} H & & \\ | & \searrow \Psi & \\ | & & \\ \Downarrow & & \\ H^G(\mathcal{B}) & \xrightarrow{\Phi} & G \end{array}$$

This generalizes the Theorem for wide Lie subalgebroids by [\[Moerdijk-Mrčun\]](#).

References

- I. Androulidakis and G. Skandalis
The holonomy groupoid of a singular foliation.
J. Reine Angew. Math., 626:1–37, 2009.
- I. Androulidakis and M. Zambon
Integration of Singular Subalgebroids.
Arxiv:2008.07976.
- I. Moerdijk and J. Mrčun
On the integrability of Lie subalgebroids.
Adv. Math., 204:101–115, 2006.
- M. Zambon
Singular subalgebroids. With an appendix by I. Androulidakis.
Annales de l'Institut Fourier, to appear. ArXiv:1805.02480.

Thank you for your attention