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What are foliations?

This is a picture of a (regular) foliation:

As a field, foliation theory arose in the 1950s through the work of Ehresmann
and Reeb.



Foliations are common in nature
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Definition

Let M be a manifold (=smooth space) of dimension n.

Definition
A foliation is a partition of M into disjoint connected subsets (called leaves),
which locally look like “copies of Rk piled on top of each other”:24 Geometric Theory of Foliations 
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Examples of foliations

1 On the torus:

2 On the Möbius band:

1.1 Definition and first examples 7

Fig. 1.2. Kronecker foliation of the torus

precisely if x′ − x ∈ Z and y′ = (−1)x′−xy. The trivial foliation of

codimension 1 of R2 induces a foliation F of M , in the same way as in

(3). All the leaves of F are diffeomorphic to S1, and they are wrapping

around M twice, except for the ‘middle’ one: this one goes around only

once (Figure 1.3).

Fig. 1.3. Foliation of the Möbius band

(5) (The Reeb foliation of the solid torus and of S3) One can also define

the notion of a foliation of a manifold with boundary in the obvious way;

however, one usually assumes that the leaves of such a foliation behave

well near the boundary, by requiring either that they are transversal to

the boundary, or that the connected components of the boundary are

leaves. An example of the last sort is the Reeb foliation of the solid

torus, which is given as follows.

Consider the unit disk D = {z | z ∈ C, |z| ≤ 1 }, and define a submer-
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3 On R3 − {horizontal circle} − {z-axis}:

locally looks like
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On S2 there is no foliation by 1-dimensonal leaves.
Reason: there is no nowhere-vanishing vector field, by the Poincaré-Hopf theorem and
since the Euler characteristic is χ(S2) = 2 6= 0.

4 This foliation on the solid torus there has exactly one compact leaf (the
gray torus)

The Reeb foliation on S3 is obtained taking 2 copies of the above foliation,
and gluing the 2 gray tori to each other (exchanging meridians and parallels).
Remark: Hopf (1935) asked:

On S3, is there a no-where vanishing vector field X with X ⊥ curl(X)?

Equivalently: is there a foliation of S3 by surfaces? Reeb (1948): yes.
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The Frobenius theorem
Definition
A rank-k distribution is a field of k-dimensional “planes” on M .

Given a foliation on M by leaves of dimension k, by taking the tangent spaces
to the leaves we obtain a rank-k distribution.

Theorem (Frobenius theorem DEAHNA 1840, CLEBSCH 1860)
Let D be a distribution on M .
D comes from a foliation⇔
for all vector fields X,Y lying in D, their Lie bracket [X,Y ] lies in D.
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Examples

A rank-1 distribution on R2. It
gives rise to a foliation of R2 by
1-dimensional leaves.

P1: xxx

CUUK1064-McKenzie December 7, 2007 20:6

4 Facets of contact geometry

(meaning that it vanishes nowhere). Such a 1–form α is called a contact

form. The pair (M, ξ) is called a contact manifold.

Remark 1.1.4 As a somewhat degenerate case, this definition includes 1–

dimensional manifolds with a non-vanishing 1–form α. The corresponding

contact structure ξ = ker α is the zero section of the tangent bundle.

Example 1.1.5 On R2n+1 with Cartesian coordinates

(x1 , y1 , . . . , xn , yn , z),

the 1–form

α1 = dz +

n∑

j=1

xj dyj

is a contact form. The contact structure ξ1 = ker α1 is called the standard

contact structure on R2n+1. See Figure 1.1 for the 3–dimensional case.

x

y

z

Fig. 1.1. The contact structure ker(dz + x dy).

Remark 1.1.6 Observe that α is a contact form precisely if α ∧ (dα)n is a

volume form on M (i.e. a nowhere vanishing top-dimensional differential

form); in particular, M needs to be orientable. The condition α ∧ (dα)n ̸= 0

is independent of the specific choice of α and thus is indeed a property of

ξ = ker α: any other 1–form defining the same hyperplane field must be of

the form λα for some smooth function λ : M → R \ {0}, and we have

(λα) ∧ (d(λα))n = λα ∧ (λ dα + dλ ∧ α)n = λn+1α ∧ (dα)n ̸= 0.

D = Span{∂x, ∂y − x∂z} does
not come from a foliation.
It is the kernel of the contact 1-
form xdy + dz.
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Holonomy
Definition (EHRESMANN, 1950)
Let γ : [0, 1]→M be a path lying in a leaf, and Sγ(0), Sγ(1) slices transverse to
the foliation. The holonomy of γ is the germ of the diffeomorphism

Sγ(0) → Sγ(1)

obtained “following nearby paths lying in leaves”.



Example
The foliation on the Möbius band has one special circle.

The holonomy around the special circle is “−Id”.
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A motivation: Reeb’s local stability theorem
Homotopic paths have the same the holonomy. So, for any leaf L and x ∈ L,
get a surjective map

π1(L, x)→ Hx
x := {holonomy of loops based at x}.

The local model of F near L is

(L̂× Sx)/Hx
x

with the foliation induced by L̂× {point}. Here L̂ be the covering space of L
such that L̂/Hx

x = L.

Theorem (Reeb’s local stability theorem REEB, 1952)
Suppose L is a compact leaf and Hx

x is finite.
Then, nearby L, the foliation F is isomorphic to the local model.

In particular, all leaves nearby L are also compact.

Example: the Möbius band as above.
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Groupoids
A groupoid is a set with a partially defined, associative composition law.
Example:

1 Let M be a topological space. Then

{continuous paths [0, 1]→M}/(homotopy of paths)

is a groupoid over M , with composition law=composition of paths.

2 Let M be a set. Then
M ×M

is a groupoid over M , with composition (x, y)(y, z) = (x, z).
3 a groupoid over a point is a group.

Lie groupoid=smooth groupoid.



The holonomy groupoid

Consider a foliation on M .

Definition (WINKELNKEMPER, 1983)
The holonomy groupoid is

H = {paths in leaves of the foliation}/(holonomy of paths).

It is a Lie groupoid!
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Examples of holonomy groupoids
1 The one-leaf foliation on M : its holonomy groupoid is

M ×M ⇒M,

with composition (x, y)(y, z) = (x, z).
2 On the Möbius band M

1.1 Definition and first examples 7

Fig. 1.2. Kronecker foliation of the torus

precisely if x′ − x ∈ Z and y′ = (−1)x′−xy. The trivial foliation of

codimension 1 of R2 induces a foliation F of M , in the same way as in

(3). All the leaves of F are diffeomorphic to S1, and they are wrapping

around M twice, except for the ‘middle’ one: this one goes around only

once (Figure 1.3).

Fig. 1.3. Foliation of the Möbius band

(5) (The Reeb foliation of the solid torus and of S3) One can also define

the notion of a foliation of a manifold with boundary in the obvious way;

however, one usually assumes that the leaves of such a foliation behave

well near the boundary, by requiring either that they are transversal to

the boundary, or that the connected components of the boundary are

leaves. An example of the last sort is the Reeb foliation of the solid

torus, which is given as follows.

Consider the unit disk D = {z | z ∈ C, |z| ≤ 1 }, and define a submer-

This foliation “comes” from an action of S1 on M which “wraps around M
twice”. Notice that the action is not free.
The holonomy groupoid is the transformation groupoid of the action, i.e.

S1 ×M ⇒M,

with composition
(g, hy)(h, y) = (ghy, y).
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Motivation for the holonomy groupoid
1) A foliation on M is an equivalence relation on M . The graph

{(p, q) : p, q lie in the same leaf of the foliation} ⊂M ×M

is usually not smooth.
However the holonomy groupoid H is always smooth.

2) The leaf space of a foliation is a topological space. It can be very
non-smooth, as for the Kronecker foliation on the torus:1.1 Definition and first examples 7

Fig. 1.2. Kronecker foliation of the torus

precisely if x′ − x ∈ Z and y′ = (−1)x′−xy. The trivial foliation of

codimension 1 of R2 induces a foliation F of M , in the same way as in

(3). All the leaves of F are diffeomorphic to S1, and they are wrapping

around M twice, except for the ‘middle’ one: this one goes around only

once (Figure 1.3).

Fig. 1.3. Foliation of the Möbius band

(5) (The Reeb foliation of the solid torus and of S3) One can also define

the notion of a foliation of a manifold with boundary in the obvious way;

however, one usually assumes that the leaves of such a foliation behave

well near the boundary, by requiring either that they are transversal to

the boundary, or that the connected components of the boundary are

leaves. An example of the last sort is the Reeb foliation of the solid

torus, which is given as follows.

Consider the unit disk D = {z | z ∈ C, |z| ≤ 1 }, and define a submer-

The holonomy groupoid H, for many purposes, replaces the leaf space.
(When the leaf space is a smooth manifold, the Lie groupoids H and the leaf
space are Morita equivalent.)

3) To the holonomy groupoid H one can associate a C∗-algebra and do
non-commutative geometry (Connes, 1970s).
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What are singular foliations?

In part of the literature, a singular foliation is a suitable partition of a manifold
into leaves of variying dimension.

We will use a more refined notion.



Let M be a manifold.

Definition (STEFAN AND SUSSMAN, 1970S)
A singular foliation F is a C∞(M)-module of vector fields such that:
F is locally finitely generated,
[F ,F ] ⊂ F .

Theorem (STEFAN AND SUSSMAN, 1970S)
(M,F) is partitioned into leaves, of varying dimension.

Remark: A (regular) foliation can be viewed as a singular foliation, namely

F := {vector fields tangent to the leaves}.
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Examples of singular foliations
1 On M = R take F = 〈x∂x〉, the singular foliation generated by x∂x.

0

0
F has three leaves: R−, {0},R+.

0

0

Notice: for k ∈ N>0, the singular foliations 〈xk∂x〉 are all different, but
have the same partition into leaves.

2 On M = R2 take F = 〈∂x, y∂y〉.

Remark: Any singular foliation, locally near a point p, is a product

(leaf through p)× (singular foliation vanishing at p).
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3 On M = R2 take F = 〈x∂y − y∂x〉.

4 Let G be a Lie group acting on M . The infinitesimal action is

g := (Lie algebra of G)→ {vector fields}, v 7→ vM .

Take
F = 〈vM : v ∈ g〉.

Its leaves are the orbits of the action.
(For the action of S1 on R2 by rotations, F is as in the example above.)

5 A Poisson structure on M induces a singular foliation, by
even-dimensional leaves.
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A Lie algebra at every point
A Lie algebra is a vector space with a suitable bracket.
It is the infinitesimal counterpart of a Lie group.
At any point p, we get a Lie algebra

gp :=
{X ∈ F : X(p) = 0}

IpF
where Ip = {functions on M vanishing at p}.
Example

F = {Vector fields on R2 vanishing at the origin}.

F is generated by x∂x, y∂x, x∂y, y∂y. At p = 0 we have

gp ∼= {2× 2 matrices}

x∂x 7→
(

1 0
0 0

)
, etc



The holonomy groupoid

Definition
Let X1, . . . , Xn ∈ F be local generators of F .
A path holonomy bi-submersion is (U, s, t) where

U ⊂M × Rn
s
⇒
t
M

and the maps s and t are
s(y, ξ) = y

t(y, ξ) = expy(
∑n
i=1 ξiXi), the time-1 flow of

∑n
i=1 ξiXi starting at y.

There is a notion of composition and inversion of path holonomy
bi-submersions.
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Take a family of path holonomy bi-submersions {Ui}i∈I covering M . Let U be
the family of all finite compositions of elements of {Ui}i∈I and of their
inverses.

Definition (ANDROULIDAKIS-SKANDALIS, 2005)
The holonomy groupoid of the singular foliation F is

H :=
∐

U∈U
U/ ∼

where ∼ is a suitable equivalence relation.

Remark: H is a topological groupoid over M , usually not smooth.
Remark: This extends the construction of the holonomy groupoid of a
(regular) foliation.
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Examples of holonomy groupoids

1 Consider F = 〈x∂y − y∂x〉. It “comes” from the action of S1 on R2 by
rotations. Then H is the transformation groupoid of the action, i.e.

S1 × R2 ⇒ R2,

with composition
(g, hy)(h, y) = (ghy, y).

2

F = { Vector fields on R2 vanishing at the origin}.

Then
H = (R2 − {0})× (R2 − {0})

∐
GL(2,R).
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Smoothness

Given a singular foliation (M,F), H is a topological groupoid over M , usually
not smooth. However:

Theorem (DEBORD 2013)

Let L be a leaf. The restriction of H to L is a Lie groupoid.

Remark: For any p ∈ L: the restriction of H to {p} is a Lie group integrating
the Lie algebra gp.
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Holonomy

Recall: For a (regular) foliation, we associated holonomy to a path γ in a leaf,
by “following nearby paths in the leaves”.
For singular foliations this fails.

S_x S_y

x y

Question: How to extend the notion of holonomy to singular foliations?



Let x, y ∈ (M,F) be points in the same leaf L.
Fix slices Sx and Sy transversal to L.

Theorem (ANDROULIDAKIS-Z 2014)

There is a well defined map

Φyx : Hy
x →

GermDiff(Sx, Sy)

exp(IxF|Sx
)

.

Remark: The map sends h ∈ Hy
x to [τ ], where τ is defined as follows:

take any bi-submersion (U, t, s) and u ∈ U satisfying [u] = h,
take any section b̄ : Sx → U through u of s such that (t ◦ b̄)(Sx) ⊂ Sy,

and define τ := t ◦ b̄ : Sx → Sy.

x y

u
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Remark: Φyx(h) is just an equivalence class of diffeomorphisms,
but its derivative is a well-defined map TxSx → TySy.
Example:
Let M = R and F = 〈x∂x〉.

0

0
We have H = R×M ⇒M . So H0

0 = {0} × R, and a transversal S0 at 0 is a
neighbourhood of 0 in M .

M

{0} x R

For all λ ∈ H0
0 we have:

Φ0
0(λ) = [y 7→ eλy] ∈ GermDiff(S0, S0)

exp(I0x∂x)
.

Here we quotient by time-one flows of vector fields lying in I0x∂x = 〈x2∂x〉.
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Interpretation of the holonomy groupoid

We obtain a groupoid morphism

Φ: H → ∪x,y
GermDiff(Sx, Sy)

exp(IxF|Sx)
.

Proposition
Φ is injective.

Remark: If F is a regular foliation, then exp(IxF|Sx
) = {IdSx

}, hence the map
Φ recovers the usual notion of holonomy for regular foliations.

This provides a geometric justifications for calling H holonomy groupoid.
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Thank you for your attention!
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