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What are foliations?

This is a picture of a (regular) foliation:

As a field, foliation theory arose in the 1950s through the work of Ehresmann
and Reeb.



Foliations are common in nature m
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Definition m
Let M be a manifold (=smooth space) of dimension n.

Definition
A foliation is a partition of M into disjoint connected subsets (called leaves),
which locally look like “copies of R* piled on top of each other”:
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Examples of foliations

@ On the torus:

@ On the Mbbius band:
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© On R? — {horizontal circle} — {z-axis}: m

locally looks like
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On S? there is no foliation by 1-dimensonal leaves.
Reason: there is no nowhere-vanishing vector field, by the Poincaré-Hopf theorem and
since the Euler characteristic is x(S?) = 2 # 0.

@ This foliation on the solid torus there has exactly one compact leaf (the
gray torus)
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The Reeb foliation on S is obtained taking 2 copies of the above foliation,
and gluing the 2 gray tori to each other (exchanging meridians and parallels).

Remark: Hopf (1935) asked:
On S3, is there a no-where vanishing vector field X with X | curl(X)?

Equivalently: is there a foliation of S® by surfaces? Reeb (1948): yes.



The Frobenius theorem m

Definition

A rank-£ distribution is a field of k-dimensional “planes” on M. J

Given a foliation on M by leaves of dimension k, by taking the tangent spaces
to the leaves we obtain a rank-k distribution.

Theorem (Frobenius theorem Dearna 1840, CLesscH 1860)

Let D be a distribution on M.
D comes from a foliation <

for all vector fields X, Y lying in D, their Lie bracket [X,Y] lies in D.
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Examples

A rank-1 distribution on R2. It
gives rise to a foliation of R? by
1-dimensional leaves.

D = Span{0,,0, — z0,} does
not come from a foliation.

It is the kernel of the contact 1-
form xdy + d=.
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Holonomy
Definition (Exresmann, 1950)

Letv: [0,1] — M be a path lying in a leaf, and S, S(1) slices transverse to
the foliation. The holonomy of  is the germ of the diffeomorphism

Sy(0) = Sy(1)

obtained “following nearby paths lying in leaves”.




The foliation on the Mdbius band has one special circle.

The holonomy around the special circle is “—Id”.
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A motivation: Reeb’s local stability theorem m

Homotopic paths have the same the holonomy. So, for any leaf L and = € L,
get a surjective map

m1(L,x) — HE := {holonomy of loops based at =}.
The local model of F near L is
(L x S5)/H

with the foliation induced by L x {point}. Here L be the covering space of L
such that L/HZ? = L.
Theorem (Reeb’s local stability theorem Rees, 1952)

Suppose L is a compact leaf and HZ is finite.
Then, nearby L, the foliation F is isomorphic to the local model.

In particular, all leaves nearby L are also compact.
Example: the Mébius band as above.
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Groupoids

A groupoid is a set with a partially defined, associative composition law.
Example:
@ Let M be a topological space. Then

{continuous paths [0, 1] — M }/(homotopy of paths)

is a groupoid over M, with composition law=composition of paths.

\
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© Let M be a set. Then
M x M
is a groupoid over M, with composition (z, y)(y, z) = (z, 2).
© a groupoid over a point is a group.
Lie groupoid=smooth groupoid.



The holonomy groupoid m

Consider a foliation on M.

Definition (winkeLnkemper, 1983)
The holonomy groupoid is

H = {paths in leaves of the foliation}/(holonomy of paths).

It is a Lie groupoid!
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Examples of holonomy groupoids m

@ The one-leaf foliation on M: its holonomy groupoid is
Mx M= M,

with composition (z,y)(y, z) = (z, 2).
@ On the Mdbius band M

This foliation “comes” from an action of S' on M which “wraps around M
twice”. Notice that the action is not free.
The holonomy groupoid is the transformation groupoid of the action, i.e.

St x M = M,

with composition
(9, hy)(h,y) = (ghy, y).
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Motivation for the holonomy groupoid
1) A foliation on M is an equivalence relation on M. The graph

{(p, q) : p, q lie in the same leaf of the foliation} € M x M

is usually not smooth.
However the holonomy groupoid H is always smooth.

2) The leaf space of a foliation is a topological space. It can be very
non-smooth, as for the Kronecker foliation on the torus:

N\

The holonomy groupoid H, for many purposes, replaces the leaf space.
(When the leaf space is a smooth manifold, the Lie groupoids H and the leaf
space are Morita equivalent.)

3) To the holonomy groupoid H one can associate a C*-algebra and do
non-commutative geometry (Connes, 1970s).
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What are singular foliations?

In part of the literature, a singular foliation is a suitable partition of a manifold
into leaves of variying dimension.

We will use a more refined notion.



Let M be a manifold. m

Definition (steran anp Sussman, 1970s)

A singular foliation F is a C'*°(M)-module of vector fields such that:
@ F is locally finitely generated,
@ [F,F|]CF.

Theorem (steran anp Sussman, 1970s)
(M, F) is partitioned into leaves, of varying dimension.

Remark: A (regular) foliation can be viewed as a singular foliation, namely
F := {vector fields tangent to the leaves}.
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Examples of singular foliations
@ On M = R take F = (x0,), the singular foliation generated by zd,.
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F has three leaves: R_, {0}, R;..

0

Notice: for k € N+, the singular foliations (z*9,) are all different, but
have the same partition into leaves.
©Q On M = R? take F = (9,, yd,).

Remark: Any singular foliation, locally near a point p, is a product

(leaf through p) x (singular foliation vanishing at p).
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©Q On M =R? take F = (20, — y9,).
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© Let G be a Lie group acting on M. The infinitesimal action is

g := (Lie algebra of G) — {vector fields}, v — vyp,.
Take

]::<’U]\42’U€g>.
Its leaves are the orbits of the action.
(For the action of S* on R? by rotations, F is as in the example above.)

@ A Poisson structure on M induces a singular foliation, by
even-dimensional leaves.
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A Lie algebra at every point
A Lie algebra is a vector space with a suitable bracket.
It is the infinitesimal counterpart of a Lie group.

At any point p, we get a Lie algebra
{X e F:X(p)=0}
= I,F
where I, = {functions on M vanishing at p}.
Example

F = {Vector fields on R? vanishing at the origin}.

F is generated by x0,, y0,, ©0y, y0,. At p =0 we have

gp = {2 x 2 matrices}

10
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The holonomy groupoid m

Definition
Let Xy,..., X,, € F be local generators of F.
A path holonomy bi-submersion is (U, s, t) where

UcMxR*= M
t

and the maps s and t are
s(y,6) =y
t(y, &) = exp, (>, & X;), the time-1 flow of Y7 & X starting at y.

There is a notion of composition and inversion of path holonomy
bi-submersions.
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Take a family of path holonomy bi-submersions {U;};c; covering M. Let U be
the family of all finite compositions of elements of {U; };cr and of their
inverses.

Definition (AnorouLipakis-SkaNDALIS, 2005)
The holonomy groupoid of the singular foliation F is

H::HU/N

Ueu

where ~ is a suitable equivalence relation.

Remark: H is a topological groupoid over M, usually not smooth.

Remark: This extends the construction of the holonomy groupoid of a
(regular) foliation.
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Examples of holonomy groupoids m

@ Consider F = (29, — y9s). It “comes” from the action of S on R? by
rotations. Then H is the transformation groupoid of the action, i.e.
St x R? = R?,
with composition
(9, hy)(h, y) = (ghy, ).
(2

F = { Vector fields on R? vanishing at the origin}.

Then
H=(R>-{0}) x (R*—={0}) J] GL2.R).
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Smoothness m

Given a singular foliation (M, F), H is a topological groupoid over M, usually
not smooth. However:

Theorem (pesoro 2013)

Let L be a leaf. The restriction of H to L is a Lie groupoid. J

Remark: For any p € L: the restriction of H to {p} is a Lie group integrating
the Lie algebra g,,.
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Holonomy

Recall: For a (regular) foliation, we associated holonomy to a path ~ in a leaf,
by “following nearby paths in the leaves”.

For singular foliations this fails.

Question: How to extend the notion of holonomy to singular foliations?



Let z,y € (M, F) be points in the same leaf L. m

Fix slices S, and S, transversal to L.
Theorem (ANDROULIDAKIS-Z 2014)
There is a well defined map

GermDif f(Sz, Sy)
exp(I.Fls,)

oY HY —

Remark: The map sends h € HY to [r], where T is defined as follows:

@ take any bi-submersion (U, t,s) and u € U satisfying [u] = h,

@ take any section b: S, — U through u of s such that (t o b)(S,) C S,
and define r:=tob: S, — Sy.
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Remark: ®¥(h) is just an equivalence class of diffeomorphisms, m
but its derivative is a well-defined map 7., S, — T,,S,,.

Example:
Let M =R and F = (z0,).

4‘—4—4-0*—»«—»

We have H =R x M = M. So HY = {0} x R, and a transversal S, at 0 is a

neighbourhood of 0 in M.
{0} xR

For all X € HJ we have:

GermDif f(So, So)
exp(lox0y,) '

DHN) =[y = ey €

Here we quotient by time-one flows of vector fields lying in 120, = (220,.).
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Interpretation of the holonomy groupoid m

We obtain a groupoid morphism

GermDif f(Sz,Sy)

o H Uz
ey exp(I.Fls,)

® s injective.

Proposition J

Remark: If 7 is a regular foliation, then exp(I,F|s,) = {Ids, }, hence the map
® recovers the usual notion of holonomy for regular foliations.

This provides a geometric justifications for calling H holonomy groupoid.

28/28



References

[§ A. Haefliger:
Naissance des feuilletages, d’Ehresmann-Reeb a Novikov.
Available at http://foliations.org

[{ 1. Androulidakis and G. Skandalis:

The holonomy groupoid of a singular foliation.
J. Reine Angew. Math. 626 (2009).

[3 I. Androulidakis and M. Zambon:
Holonomy transformations for singular foliations.
Adv. Math. 256 (May 2014)

Thank you for your attention!
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