

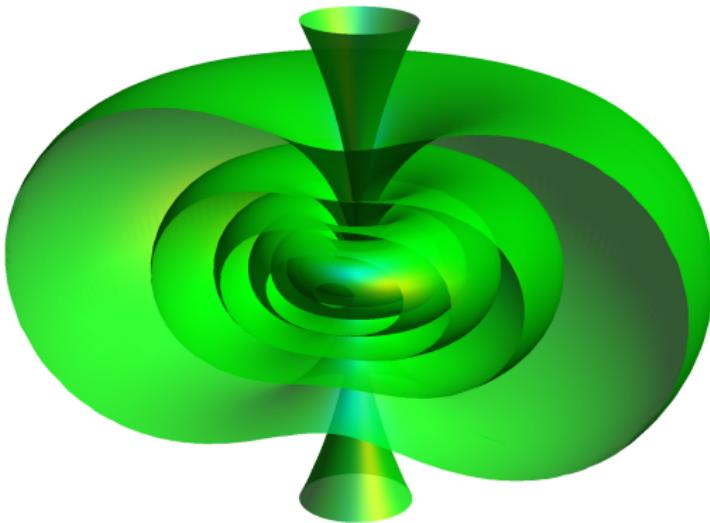
The geometry of foliations with singularities

Marco Zambon

Inaugurale lezingen
March 25, 2015

What are foliations?

This is a picture of a (regular) foliation:



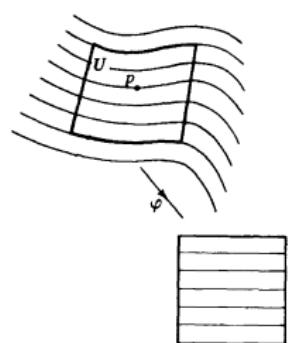
As a field, foliation theory arose in the 1950s through the work of Ehresmann and Reeb.

Foliations are common in nature

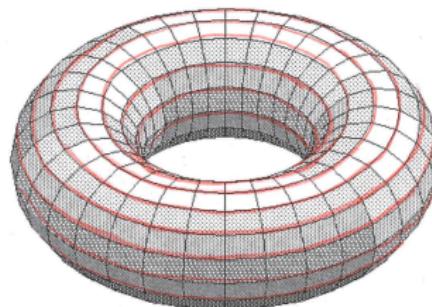
Let M be a manifold (=smooth space) of dimension n .

Definition

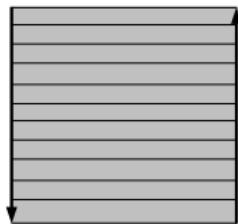
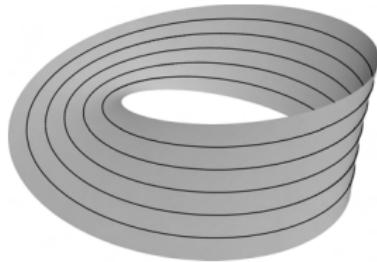
A **foliation** is a partition of M into disjoint connected subsets (called **leaves**), which locally look like “copies of \mathbb{R}^k piled on top of each other”:



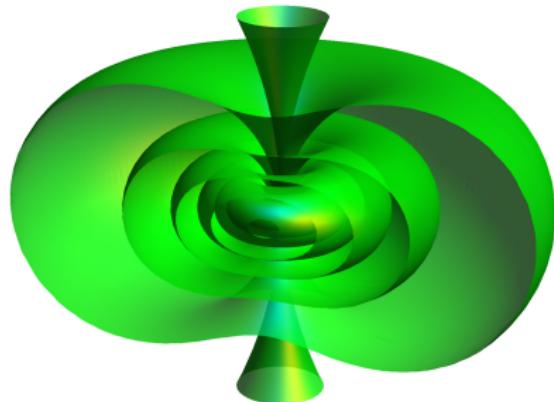
- ① On the torus:



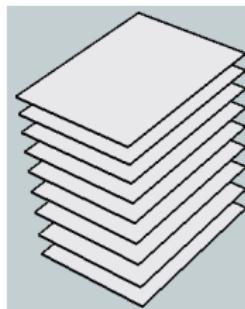
- ② On the Möbius band:



③ On $\mathbb{R}^3 - \{\text{horizontal circle}\} - \{z\text{-axis}\}$:



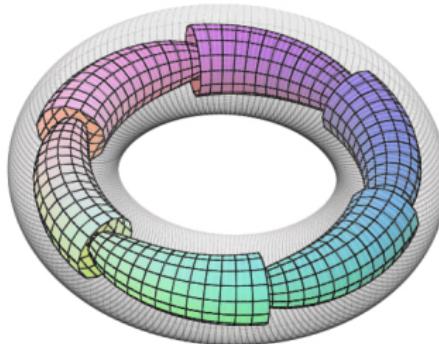
locally looks like



On S^2 there is no foliation by 1-dimensional leaves.

Reason: there is no nowhere-vanishing vector field, by the Poincaré-Hopf theorem and since the Euler characteristic is $\chi(S^2) = 2 \neq 0$.

- ④ This foliation on the solid torus there has exactly one compact leaf (the gray torus)



The **Reeb foliation on S^3** is obtained taking 2 copies of the above foliation, and gluing the 2 gray tori to each other (exchanging meridians and parallels).

Remark: Hopf (1935) asked:

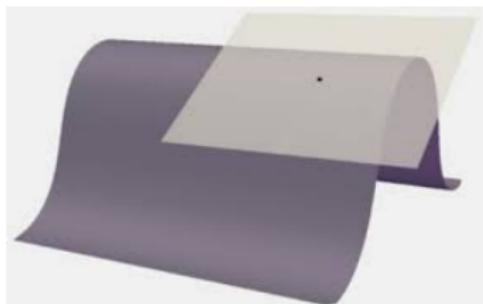
On S^3 , is there a no-where vanishing vector field X with $X \perp \text{curl}(X)$?

Equivalently: is there a foliation of S^3 by surfaces? Reeb (1948): yes.

Definition

A **rank- k distribution** is a field of k -dimensional “planes” on M .

Given a foliation on M by leaves of dimension k , by taking the tangent spaces to the leaves we obtain a rank- k distribution.



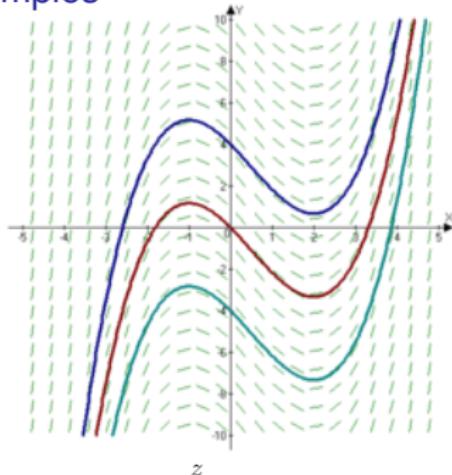
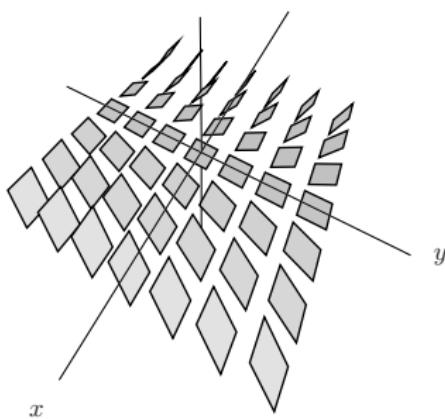
Theorem (Frobenius theorem) DEAHNA 1840, CLEBSCH 1860

Let D be a distribution on M .

D comes from a foliation \Leftrightarrow

for all vector fields X, Y lying in D , their Lie bracket $[X, Y]$ lies in D .

Examples



A rank-1 distribution on \mathbb{R}^2 . It gives rise to a foliation of \mathbb{R}^2 by 1-dimensional leaves.

$D = \text{Span}\{\partial_x, \partial_y - x\partial_z\}$ does not come from a foliation. It is the kernel of the contact 1-form $xdy + dz$.

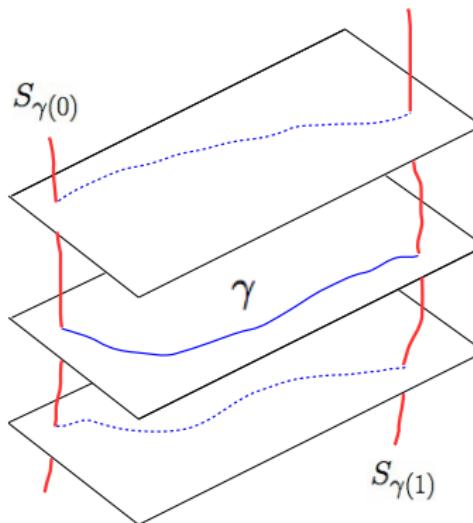
Holonomy

Definition (EHRESMANN, 1950)

Let $\gamma: [0, 1] \rightarrow M$ be a path lying in a leaf, and $S_{\gamma(0)}, S_{\gamma(1)}$ slices transverse to the foliation. The **holonomy** of γ is the germ of the diffeomorphism

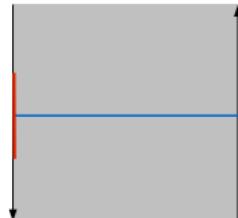
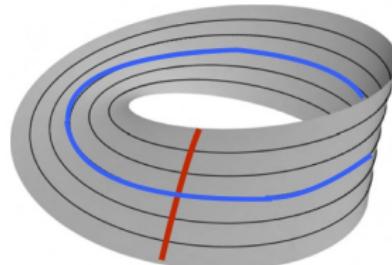
$$S_{\gamma(0)} \rightarrow S_{\gamma(1)}$$

obtained “following nearby paths lying in leaves”.

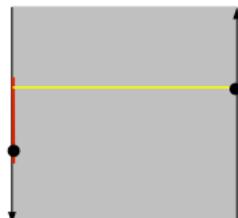
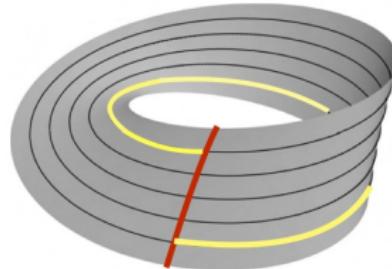


Example

The foliation on the Möbius band has one special circle.



The holonomy around the special circle is “ $-Id$ ”.



A motivation: Reeb's local stability theorem

Homotopic paths have the same holonomy. So, for any leaf L and $x \in L$, get a surjective map

$$\pi_1(L, x) \rightarrow H_x^x := \{\text{holonomy of loops based at } x\}.$$

The local model of \mathcal{F} near L is

$$(\hat{L} \times S_x)/H_x^x$$

with the foliation induced by $\hat{L} \times \{\text{point}\}$. Here \hat{L} be the covering space of L such that $\hat{L}/H_x^x = L$.

Theorem (Reeb's local stability theorem REEB, 1952)

Suppose L is a compact leaf and H_x^x is finite.

Then, nearby L , the foliation \mathcal{F} is isomorphic to the local model.

In particular, all leaves nearby L are also compact.

Example: the Möbius band as above.

Groupoids

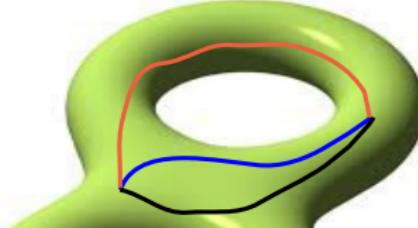
A **groupoid** is a set with a *partially defined*, associative composition law.

Example:

- ① Let M be a topological space. Then

$$\{\text{continuous paths } [0, 1] \rightarrow M\} / (\text{homotopy of paths})$$

is a groupoid over M , with composition law=composition of paths.



- ② Let M be a set. Then

$$M \times M$$

is a groupoid over M , with composition $(x, y)(y, z) = (x, z)$.

- ③ a groupoid over a point is a group.

Lie groupoid=smooth groupoid.

Consider a foliation on M .

Definition (WINKELNEMPER, 1983)

The **holonomy groupoid** is

$$H = \{\text{paths in leaves of the foliation}\}/(\text{holonomy of paths}).$$

It is a Lie groupoid!

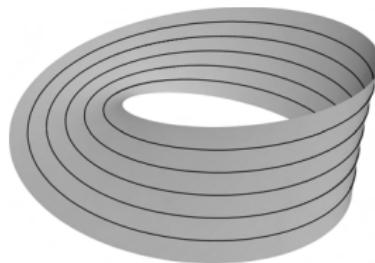
Examples of holonomy groupoids

- 1 The one-leaf foliation on M : its holonomy groupoid is

$$M \times M \rightrightarrows M,$$

with composition $(x, y)(y, z) = (x, z)$.

- 2 On the Möbius band M



This foliation “comes” from an action of S^1 on M which “wraps around M twice”. Notice that the action is not free.

The holonomy groupoid is the transformation groupoid of the action, i.e.

$$S^1 \times M \rightrightarrows M,$$

with composition

$$(g, hy)(h, y) = (ghy, y).$$

Motivation for the holonomy groupoid

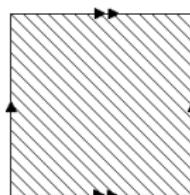
- 1) A foliation on M is an equivalence relation on M . The graph

$$\{(p, q) : p, q \text{ lie in the same leaf of the foliation}\} \subset M \times M$$

is usually not smooth.

However the holonomy groupoid H is **always smooth**.

- 2) The leaf space of a foliation is a topological space. It can be very non-smooth, as for the Kronecker foliation on the torus:

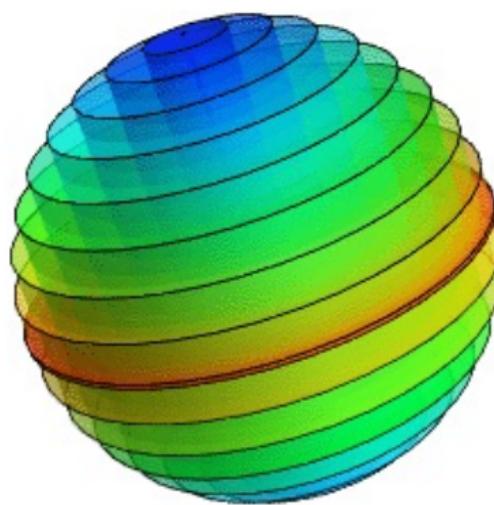


The holonomy groupoid H , for many purposes, **replaces the leaf space**.
(When the leaf space is a smooth manifold, the Lie groupoids H and the leaf space are Morita equivalent.)

- 3) To the holonomy groupoid H one can associate a C^* -algebra and do **non-commutative geometry** (Connes, 1970s).

What are singular foliations?

In part of the literature, a singular foliation is a suitable partition of a manifold into leaves of varying dimension.



We will use a more refined notion.

Let M be a manifold.

Definition (STEFAN AND SUSSMAN, 1970s)

A **singular foliation** \mathcal{F} is a $C^\infty(M)$ -module of vector fields such that:

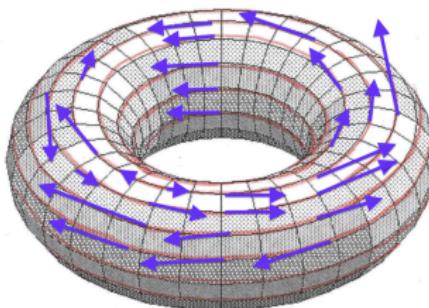
- \mathcal{F} is locally finitely generated,
- $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$.

Theorem (STEFAN AND SUSSMAN, 1970s)

(M, \mathcal{F}) is partitioned into leaves, of varying dimension.

Remark: A (regular) foliation can be viewed as a singular foliation, namely

$$\mathcal{F} := \{\text{vector fields tangent to the leaves}\}.$$



Examples of singular foliations

① On $M = \mathbb{R}$ take $\mathcal{F} = \langle x\partial_x \rangle$, the singular foliation generated by $x\partial_x$.

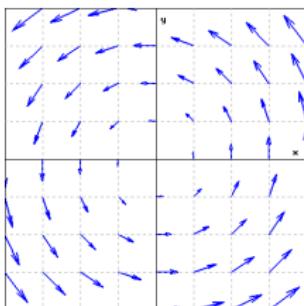
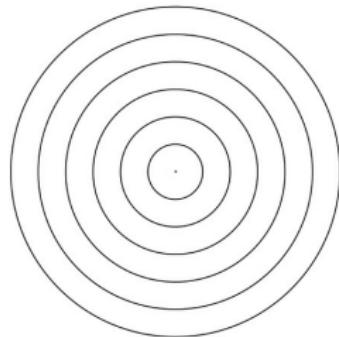
\mathcal{F} has three leaves: $\mathbb{R}_-, \{0\}, \mathbb{R}_+$.

Notice: for $k \in \mathbb{N}_{>0}$, the singular foliations $\langle x^k \partial_x \rangle$ are all different, but have the same partition into leaves.

② On $M = \mathbb{R}^2$ take $\mathcal{F} = \langle \partial_x, y\partial_y \rangle$.

Remark: Any singular foliation, locally near a point p , is a product (leaf through p) \times (singular foliation vanishing at p).

3 On $M = \mathbb{R}^2$ take $\mathcal{F} = \langle x\partial_y - y\partial_x \rangle$.



4 Let G be a Lie group acting on M . The infinitesimal action is

$$\mathfrak{g} := (\text{Lie algebra of } G) \rightarrow \{\text{vector fields}\}, \quad v \mapsto v_M.$$

Take

$$\mathcal{F} = \langle v_M : v \in \mathfrak{g} \rangle.$$

Its leaves are the orbits of the action.

(For the action of S^1 on \mathbb{R}^2 by rotations, \mathcal{F} is as in the example above.)

5 A Poisson structure on M induces a singular foliation, by even-dimensional leaves.

A Lie algebra at every point

A **Lie algebra** is a vector space with a suitable bracket.

It is the infinitesimal counterpart of a Lie group.

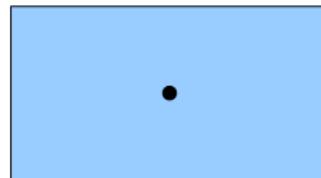
At any point p , we get a Lie algebra

$$\mathfrak{g}_p := \frac{\{X \in \mathcal{F} : X(p) = 0\}}{I_p \mathcal{F}}$$

where $I_p = \{\text{functions on } M \text{ vanishing at } p\}$.

Example

$\mathcal{F} = \{\text{Vector fields on } \mathbb{R}^2 \text{ vanishing at the origin}\}.$



\mathcal{F} is generated by $x\partial_x, y\partial_x, x\partial_y, y\partial_y$. At $p = 0$ we have

$$\mathfrak{g}_p \cong \{2 \times 2 \text{ matrices}\}$$

$$x\partial_x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \text{etc}$$

Definition

Let $X_1, \dots, X_n \in \mathcal{F}$ be local generators of \mathcal{F} .

A **path holonomy bi-submersion** is (U, s, t) where

$$U \subset M \times \mathbb{R}^n \xrightarrow[s]{t} M$$

and the maps s and t are

$$s(y, \xi) = y$$

$t(y, \xi) = \exp_y(\sum_{i=1}^n \xi_i X_i)$, the time-1 flow of $\sum_{i=1}^n \xi_i X_i$ starting at y .

There is a notion of composition and inversion of path holonomy bi-submersions.

Take a family of path holonomy bi-submersions $\{U_i\}_{i \in I}$ covering M . Let \mathcal{U} be the family of all finite compositions of elements of $\{U_i\}_{i \in I}$ and of their inverses.

Definition (ANDROULIDAKIS-SKANDALIS, 2005)

The **holonomy groupoid** of the singular foliation \mathcal{F} is

$$H := \coprod_{U \in \mathcal{U}} U / \sim$$

where \sim is a suitable equivalence relation.

Remark: H is a topological groupoid over M , usually not smooth.

Remark: This extends the construction of the holonomy groupoid of a (regular) foliation.

Examples of holonomy groupoids

1 Consider $\mathcal{F} = \langle x\partial_y - y\partial_x \rangle$. It “comes” from the action of S^1 on \mathbb{R}^2 by rotations. Then H is the transformation groupoid of the action, i.e.

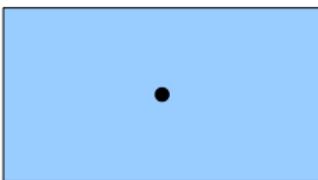
$$S^1 \times \mathbb{R}^2 \rightrightarrows \mathbb{R}^2,$$

with composition

$$(g, hy)(h, y) = (ghy, y).$$

2

$\mathcal{F} = \{ \text{Vector fields on } \mathbb{R}^2 \text{ vanishing at the origin} \}.$



Then

$$H = (\mathbb{R}^2 - \{0\}) \times (\mathbb{R}^2 - \{0\}) \coprod GL(2, \mathbb{R}).$$

Given a singular foliation (M, \mathcal{F}) , H is a topological groupoid over M , usually not smooth. However:

Theorem (DEBORD 2013)

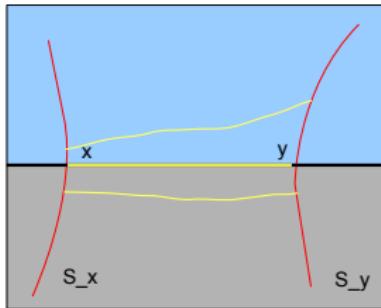
Let L be a leaf. The restriction of H to L is a Lie groupoid.

Remark: For any $p \in L$: the restriction of H to $\{p\}$ is a Lie group integrating the Lie algebra \mathfrak{g}_p .

Holonomy

Recall: For a (regular) foliation, we associated holonomy to a *path* γ in a leaf, by “following nearby paths in the leaves”.

For singular foliations this fails.



Question: How to extend the notion of holonomy to singular foliations?

Let $x, y \in (M, \mathcal{F})$ be points in the same leaf L .
 Fix slices S_x and S_y transversal to L .

Theorem (ANDROULIDAKIS-Z 2014)

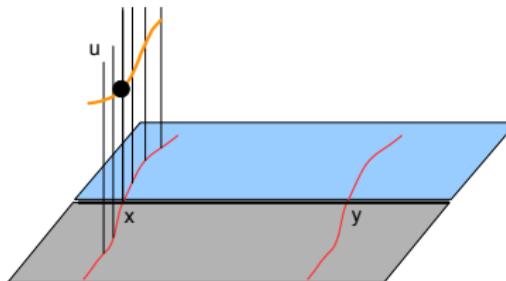
There is a well defined map

$$\Phi_x^y: H_x^y \rightarrow \frac{\text{GermDiff}(S_x, S_y)}{\exp(I_x \mathcal{F}|_{S_x})}.$$

Remark: The map sends $h \in H_x^y$ to $[\tau]$, where τ is defined as follows:

- take any bi-submersion (U, t, s) and $u \in U$ satisfying $[u] = h$,
- take any section $\bar{b}: S_x \rightarrow U$ through u of s such that $(t \circ \bar{b})(S_x) \subset S_y$,

and define $\tau := t \circ \bar{b}: S_x \rightarrow S_y$.

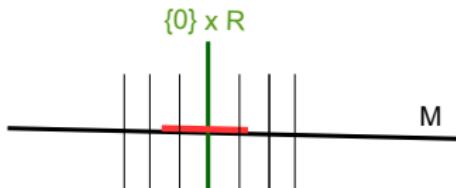


Remark: $\Phi_x^y(h)$ is just an equivalence class of diffeomorphisms, but its derivative is a well-defined map $T_x S_x \rightarrow T_y S_y$.

Example:

Let $M = \mathbb{R}$ and $\mathcal{F} = \langle x\partial_x \rangle$.

We have $H = \mathbb{R} \times M \rightrightarrows M$. So $H_0^0 = \{0\} \times \mathbb{R}$, and a transversal S_0 at 0 in M .



For all $\lambda \in H_0^0$ we have:

$$\Phi_0^0(\lambda) = [y \mapsto e^\lambda y] \in \frac{\text{GermDiff}(S_0, S_0)}{\exp(I_0 x \partial_x)}.$$

Here we quotient by time-one flows of vector fields lying in $I_0 x \partial_x = \langle x^2 \partial_x \rangle$.

We obtain a groupoid morphism

$$\Phi: H \rightarrow \cup_{x,y} \frac{\text{GermDiff}(S_x, S_y)}{\exp(I_x \mathcal{F}|_{S_x})}.$$

Proposition

Φ is injective.

Remark: If \mathcal{F} is a regular foliation, then $\exp(I_x \mathcal{F}|_{S_x}) = \{Id_{S_x}\}$, hence the map Φ recovers the usual notion of holonomy for regular foliations.

This provides a geometric justifications for calling H holonomy groupoid.

References

A. Haefliger:

Naissance des feuilletages, d'Ehresmann-Reeb à Novikov.
Available at <http://foliations.org>

I. Androulidakis and G. Skandalis:

The holonomy groupoid of a singular foliation.
J. Reine Angew. Math. **626** (2009).

I. Androulidakis and M. Zambon:

Holonomy transformations for singular foliations.
Adv. Math. **256** (May 2014)

Thank you for your attention!