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Symplectic manifolds
Definition
Let M be a manifold. A symplectic form is a two-form ω ∈ Ω2(M) which is

closed (dω = 0)
non-degenerate.

At every x ∈M , have a non-degenerate, skew-symmetric bilinear form •

ωx : TxM × TxM → R.

In a suitable basis of TxM , it is
(

0 In
−In 0

)
.

Examples:
1 All orientable surfaces, with ω = volume form.
2 On R2n with coordinates q1, . . . , qn, p1, . . . , pn:

ω =

n∑
i=1

dqi ∧ dpi.

Darboux’s theorem: locally, all symplectic manifolds look like this!
3 More generally: for any manifold B, the cotangent bundle T ∗B. •



Lagrangian submanifolds
Given a submanifold L ⊂M ,

TLω := {v ∈ TM : ω(v, ·)|TL = 0}

is the symplectic orthogonal to TL.

Definition
A submanifold L ⊂M is Lagrangian iff

TL = TLω.

Equivalently: if the pullback of ω to L vanishes and dim(L) = 1
2dim(M).

Examples: •
1 Any curve in an orientable surface is Lagrangian.
2 Rn × {0} is Lagrangian in R2n.

The torus S1 × · · · × S1 is Lagrangian in R2 × · · · × R2 = R2n.
3 The zero section B of T ∗B is Lagrangian. Any fiber T ∗xB is Lagrangian.
4 Graphs of symplectomorphisms are Lagrangian.
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A normal form for Lagrangian submanifolds

Theorem (WEINSTEIN, 1971)
Let L ⊂ (M,ω) be Lagrangian. There is a symplectomorphism

(Neighbourhood of L in M ) ∼= (Neighbourhood of L in T ∗L).

•
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Deformations of Lagrangian submanifolds

Proposition
For all α ∈ Γ(T ∗L) = Ω1(L):

graph(α) is Lagrangian in T ∗L ⇔ dα = 0.

•
Remark
This means: the deformations of the Lagrangian submanifold L are governed
by the chain complex (Ω(L), d).
Example
L := R2 × {0} is Lagrangian in R4 ∼= T ∗L.
A 1-form on L is α = fdq1 + gdq2.

graph(α) := {(q1, q2, f(q), g(q)) : q ∈ R2} is Lagrangian
m

dα = 0

i.e., −∂2f + ∂1g = 0
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The space of deformations

Remark
By the last Proposition:

{Lagrangian submanifolds near L} ∼= {“small” closed 1-forms on L},

an open subset of the vector space Ω1
closed(L).

One can show:

{Lagrangian submanifolds near L}
Hamiltonian diffeomorphisms

is an open subset of H1(L).
Hence it is finite dimensional (if L compact) and smooth!
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Coisotropic submanifolds
Definition
A submanifold C ⊂M is coisotropic iff

TCω ⊂ TC.

Necessarily dim(C) ≥ 1
2dim(M).

Examples
1 the coisotropic submanifolds of dimension 1

2dim(M) are the Lagrangian
ones

2 all submanifolds of dimension dim(M)− 1 are coisotropic.
3 for any submanifold S ⊂ B, T ∗B|S is coisotropic in T ∗B.
4 if J : M → g∗ is a moment map, then J−1(0) is coisotropic.

Remark
Denote by {·, ·} the Poisson bracket on C∞(M). Let

IC := {functions on M which vanish on C}.

Then: C is a coisotropic submanifold⇔ {IC , IC} ⊂ IC .



A normal form for coisotropic submanifolds

Theorem ( GOTAY 1982)
Let C ⊂ (M,ω) be coisotropic.
Denote K := TCω. There is a symplectomorphism

(Neighbourhood of C in M ) ∼= (Neighbourhood of C in K∗).

•
Remark

1) The symplectic structure on K∗ depends on a choice of distribution G s.t.
K ⊕G = TC.

2) When C is Lagrangian, we have K = TC, so we recover Weinstein’s
theorem.
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The instrinsic structure
of a coisotropic submanifold

Definition
A presymplectic form on a manifold is a two-form Ω s.t.

Ω is closed
ker(Ω) has constant rank.

Let C ⊂ (M,ω) be coisotropic.
Then i∗ω is a presymplectic form on C, where i is the inclusion.

There is a foliation F tangent to ker(i∗ω) = TCω.

C∞(C)bas := {functions on C constant along F}

is a Poisson algebra. •
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Interlude:
Relation to deformation quantization

Theorem (CATTANEO-FELDER, 2005)
If the first and second foliated cohomology groups vanish, then C∞(C)bas
admits a deformation quantization.

Remark
When the space of leaves C/F is smooth, it is a symplectic manifold, and

C∞(C)bas ∼= C∞(C/F).

It was already known that C/F admits a deformation
quantization[Fedosov 1996, Kontsevich 1997].
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An example

Example
Let

M = T4︸︷︷︸
x1,x2,x3,x4

× R2︸︷︷︸
ξ3,ξ4

ω = dx1 ∧ dx2 + dx3 ∧ dξ3 + dx4 ∧ dξ4.
Then C = T4 × {0} is a coisotropic submanifold of (M,ω).
(TCω is spanned by ∂

∂x3
and ∂

∂x4
.) •

For any (f, g) : T4 → R2:

graph(f, g) is coisotropic ⇔ ∂4f − ∂3g = ∂1f ∂2g − ∂2f ∂1g.

Remark
This equation is non-linear.
So the deformations of the coisotropic submanifold C are not governed by a
chain complex.



L∞-algebras

Definition (STASHEFF, 1990S)
A L∞-algebra consists of a graded vector space V = ⊕i∈ZVi and

[·, · · · , ·]n : ⊗nV −→ V (n ≥ 1)

graded skewsymmetric, of degree 2− n, satisfying “higher Jacobi identities”:
d2 = 0, where d := [·]1
d[a, b]2 = [da, b]2 + (−1)|a|[b, da]2

[[a, b]2, c]2 ± c.p. = ±d[a, b, c]3 ± ([da, b, c]3 ± c.p.)
. . .

Definition
A Maurer-Cartan element of a L∞-algebra V is an element Q ∈ V1 satisfying

∞∑
n=1

(−1)
n(n−1)

2
1

n!
[Q, . . . , Q]n = 0.
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L∞-algebras (cont.)

Examples
1 If V is concentrated in degree 0, i.e. V = V0, then V is a Lie algebra.
2 If only d := [·]1 is non-zero, then V is a chain complex.

The Maurer-Cartan equation reads

dQ = 0.

3 If only d := [·]1 and [·, ·]2 are non-zero, then W is a differential graded Lie
algebra (DGLA).
The Maurer-Cartan equation reads

dQ− 1

2
[Q,Q]2 = 0.

Remark
The above notion is equivalent to the one of L∞[1]-algebra, which is
conceptually cleaner. The correspondence is given by a degree shift.
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The L∞-algebra of Oh-Park
Let C be a coisotropic submanifold of (M,ω).
Recall that C has a foliation F , tangent to K = TCω. We denote

ΩF (C) := Γ(∧K∗)

the differential forms along the leaves.

Theorem (OH-PARK, 2003)
ΩF (C) is endowed with an L∞-algebra structure.

Remark:
1) [·]1 is the leaf-wise de Rham differential dF
2)

H0(ΩF (C), dF ) = C∞(C)bas,

and the Lie bracket induced by [·, ·]2 is the Poisson bracket on C∞(C)bas.
Remark:
The L∞-algebra structure is “invisible to the naked eye”, since it depends on a
choice of distribution G s.t. K ⊕G = TC.
Different choices give quasi-isomorphic L∞-algebras.
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Deformations

Theorem (OH-PARK 2003)
Let α ∈ Ω1

F (C) be a foliated 1-form.

α is a Maurer-Cartan element for the L∞-algebra ΩF (C)⇔
graph(α) is a coisotropic submanifold of K∗.

Remark •
This means: the deformations of the coisotropic submanifold C are governed
by the L∞-algebra ΩF (C).

Example
Again: C = T4 × {0} is coisotropic in the symplectic manifold M = T4 × R2.
One can show: the L∞-algebra structure on ΩF (C) is a DGLA.
The foliation F on C is tangent to ∂

∂x3
and ∂

∂x4
.

A foliated 1-form is α = f(x)dx3 + g(x)dx4.

graph(α) is coisotropic ⇔

dFα−
1

2
[α, α]2 = 0, i.e., ∂4f − ∂3g = ∂1f ∂2g − ∂2f ∂1g.

14 / 19



Infinitesimal deformations
Let α(t) be a curve in Ω1

F (C) with α(0) = 0.
Assume that graph(α(t)) is coisotropic, i.e.

0 = dF (α(t))− 1

2
[α(t), α(t)]2 −

1

3!
...

Then

dF (α′(0)) = 0

[α′(0), α′(0)]2 = dF (α′′(0))

Definition
An infinitesimal deformation of the coisotropic submanifold C is

A ∈ Ω1
F (C) s.t. dFA = 0︸ ︷︷ ︸

linearized Maurer-Cartan equation

.

Corollary
An infinitesimal deformation A can be extended to a curve of deformations
⇒ [A,A]2 ∈ Ω2

F (C) is dF -exact.
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The space of deformations

Remark
In general, not all infinitesimal deformations can be extended to a curve of
deformations. (See the example of T4 × {0} in T4 × R2.)
Heuristically this means: in general,

{coisotropic submanifolds near C}

is not “smooth”. •
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Equivalences of deformations
Notions of equivalence on {coisotropic submanifolds near C}:

Geometric:
Given by Hamiltonian diffeomorphisms of (M,ω).
It is generated by C∞(M).
Algebraic:
Given by the “gauge equivalences” of the L∞-algebra.
It is generated by C∞(C).

Theorem (LÊ-OH-TORTORELLA-VITAGLIANO 2014, SCHÄTZ-ZAMBON 2014)
The two equivalence relations agree, provided C is compact.

Remark: Denote

M :=
{coisotropic submanifolds near C}

Hamiltonian diffeomorphisms
.

The formal tangent space toM at [C] is H1
F (C).

Remark: One can also consider the quotient by symplectomorphisms. Its
formal tangent space at [C] is

H1
F (C) / r(H1(C))

where r : Ω1(C)→ Ω1
F (C) is the restriction to the leaves.
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Explicit formulae via Poisson geometry
Poisson geometry is an extension of symplectic geometry.
Example: The symplectic manifold (R2, dx ∧ dy) can be regarded as the
Poisson manifold (R2,Π = ∂

∂x ∧
∂
∂y ).

Let C be a coisotropic submanifold in a Poisson manifold.
Identify a tubular neighbourhood of C with a vector bundle E (this is a choice).

Theorem (CATTANEO-FELDER 2005)
Γ(∧E)[1] has an L∞[1]-algebra structure with multibrackets (n ≥ 1):

{s1, . . . , sn}n = P ([[. . . [Π, s1], s2], . . . , sn]),

where P : χmulti(E)→ Γ(∧E) is the canonical projection.

Remark
1) In the symplectic case, upon a degree shift, this recovers the L∞-algebra

of Oh-Park.
2) If Π is “analytic in fiber directions”, the Maurer-Cartan elements

correspond to coisotropic submanifolds.[Schätz-Zambon 2012]
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Thank you for your attention!
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