

Deformations of coisotropic submanifolds in symplectic geometry

Marco Zambon

IAP annual meeting 2015

Symplectic manifolds

Definition

Let M be a manifold. A **symplectic form** is a two-form $\omega \in \Omega^2(M)$ which is

- closed ($d\omega = 0$)
- non-degenerate.

At every $x \in M$, have a non-degenerate, skew-symmetric bilinear form

$$\omega_x: T_x M \times T_x M \rightarrow \mathbb{R}.$$

In a suitable basis of $T_x M$, it is $\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

Examples:

- 1 All orientable surfaces, with $\omega = \text{volume form}$.
- 2 On \mathbb{R}^{2n} with coordinates $q_1, \dots, q_n, p_1, \dots, p_n$:

$$\omega = \sum_{i=1}^n dq_i \wedge dp_i.$$

Darboux's theorem: locally, all symplectic manifolds look like this!

- 3 More generally: for any manifold B , the cotangent bundle $T^* B$.

Given a submanifold $L \subset M$,

$$TL^\omega := \{v \in TM : \omega(v, \cdot)|_{TL} = 0\}$$

is the symplectic orthogonal to TL .

Definition

A submanifold $L \subset M$ is **Lagrangian** iff

$$TL = TL^\omega.$$

Equivalently: if the pullback of ω to L vanishes and $\dim(L) = \frac{1}{2}\dim(M)$.

Examples: •

- 1 Any curve in an orientable surface is Lagrangian.
- 2 $\mathbb{R}^n \times \{0\}$ is Lagrangian in \mathbb{R}^{2n} .
The torus $S^1 \times \cdots \times S^1$ is Lagrangian in $\mathbb{R}^2 \times \cdots \times \mathbb{R}^2 = \mathbb{R}^{2n}$.
- 3 The zero section B of T^*B is Lagrangian. Any fiber T_x^*B is Lagrangian.
- 4 Graphs of symplectomorphisms are Lagrangian.

Theorem (WEINSTEIN, 1971)

Let $L \subset (M, \omega)$ be Lagrangian. There is a symplectomorphism

$$(\text{Neighbourhood of } L \text{ in } M) \cong (\text{Neighbourhood of } L \text{ in } T^*L).$$

Proposition

For all $\alpha \in \Gamma(T^*L) = \Omega^1(L)$:

$$\text{graph}(\alpha) \text{ is Lagrangian in } T^*L \Leftrightarrow d\alpha = 0.$$

•

Remark

This means: the deformations of the Lagrangian submanifold L are governed by the chain complex $(\Omega(L), d)$.

Example

$L := \mathbb{R}^2 \times \{0\}$ is Lagrangian in $\mathbb{R}^4 \cong T^*L$.

A 1-form on L is $\alpha = f dq_1 + g dq_2$.

$\text{graph}(\alpha) := \{(q_1, q_2, f(q), g(q)) : q \in \mathbb{R}^2\}$ is Lagrangian

\Updownarrow

$$d\alpha = 0$$

i.e., $-\partial_2 f + \partial_1 g = 0$

Remark

- By the last Proposition:

$\{\text{Lagrangian submanifolds near } L\} \cong \{\text{“small” closed 1-forms on } L\}$,

an open subset of the vector space $\Omega_{closed}^1(L)$.

- One can show:

$$\frac{\{\text{Lagrangian submanifolds near } L\}}{\text{Hamiltonian diffeomorphisms}}$$

is an open subset of $H^1(L)$.

Hence it is finite dimensional (if L compact) and smooth!

Coisotropic submanifolds

Definition

A submanifold $C \subset M$ is **coisotropic** iff

$$TC^\omega \subset TC.$$

Necessarily $\dim(C) \geq \frac{1}{2}\dim(M)$.

Examples

- ① the coisotropic submanifolds of dimension $\frac{1}{2}\dim(M)$ are the Lagrangian ones
- ② all submanifolds of dimension $\dim(M) - 1$ are coisotropic.
- ③ for any submanifold $S \subset B$, $T^*B|_S$ is coisotropic in T^*B .
- ④ if $J: M \rightarrow \mathfrak{g}^*$ is a moment map, then $J^{-1}(0)$ is coisotropic.

Remark

Denote by $\{\cdot, \cdot\}$ the Poisson bracket on $C^\infty(M)$. Let

$$I_C := \{\text{functions on } M \text{ which vanish on } C\}.$$

Then: C is a coisotropic submanifold $\Leftrightarrow \{I_C, I_C\} \subset I_C$.

Theorem (GOTAY 1982)

Let $C \subset (M, \omega)$ be coisotropic.

Denote $K := TC^\omega$. There is a symplectomorphism

$$(\text{Neighbourhood of } C \text{ in } M) \cong (\text{Neighbourhood of } C \text{ in } K^*).$$

Remark

- 1) The symplectic structure on K^* depends on a choice of distribution G s.t. $K \oplus G = TC$.
- 2) When C is Lagrangian, we have $K = TC$, so we recover Weinstein's theorem.

The intrinsic structure of a coisotropic submanifold

Definition

A **presymplectic form** on a manifold is a two-form Ω s.t.

- Ω is closed
- $\ker(\Omega)$ has constant rank.

Let $C \subset (M, \omega)$ be coisotropic.

Then $i^*\omega$ is a presymplectic form on C , where i is the inclusion.

- There is a foliation \mathcal{F} tangent to $\ker(i^*\omega) = TC^\omega$.
-

$$C^\infty(C)_{bas} := \{\text{functions on } C \text{ constant along } \mathcal{F}\}$$

is a Poisson algebra. •

Relation to deformation quantization

Theorem (CATTANEO-FELDER, 2005)

If the first and second foliated cohomology groups vanish, then $C^\infty(C)_{bas}$ admits a deformation quantization.

Remark

When the space of leaves C/\mathcal{F} is smooth, it is a symplectic manifold, and

$$C^\infty(C)_{bas} \cong C^\infty(C/\mathcal{F}).$$

It was already known that C/\mathcal{F} admits a deformation quantization [Fedosov 1996, Kontsevich 1997].

An example

Example

Let

- $M = \underbrace{\mathbb{T}^4}_{x_1, x_2, x_3, x_4} \times \underbrace{\mathbb{R}^2}_{\xi_3, \xi_4}$
- $\omega = dx_1 \wedge dx_2 + dx_3 \wedge d\xi_3 + dx_4 \wedge d\xi_4.$

Then $C = \mathbb{T}^4 \times \{0\}$ is a coisotropic submanifold of (M, ω) .
(TC^ω is spanned by $\frac{\partial}{\partial x_3}$ and $\frac{\partial}{\partial x_4}$). •

For any $(f, g) : \mathbb{T}^4 \rightarrow \mathbb{R}^2$:

$$\text{graph}(f, g) \text{ is coisotropic} \Leftrightarrow \partial_4 f - \partial_3 g = \partial_1 f \partial_2 g - \partial_2 f \partial_1 g.$$

Remark

This equation is non-linear.

So the deformations of the coisotropic submanifold C are *not* governed by a chain complex.

Definition (STASHEFF, 1990s)

A L_∞ -algebra consists of a graded vector space $V = \bigoplus_{i \in \mathbb{Z}} V_i$ and

$$[\cdot, \dots, \cdot]_n : \otimes^n V \longrightarrow V \quad (n \geq 1)$$

graded skewsymmetric, of degree $2 - n$, satisfying “higher Jacobi identities”:

- $d^2 = 0$, where $d := [\cdot]_1$
- $d[a, b]_2 = [da, b]_2 + (-1)^{|a|} [b, da]_2$
- $[[a, b]_2, c]_2 \pm c.p. = \pm d[a, b, c]_3 \pm ([da, b, c]_3 \pm c.p.)$
- ...

Definition

A **Maurer-Cartan element** of a L_∞ -algebra V is an element $Q \in V_1$ satisfying

$$\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \frac{1}{n!} [Q, \dots, Q]_n = 0.$$

Examples

- ① If V is concentrated in degree 0, i.e. $V = V_0$, then V is a **Lie algebra**.
- ② If only $d := [\cdot]_1$ is non-zero, then V is a **chain complex**.
The Maurer-Cartan equation reads

$$dQ = 0.$$

- ③ If only $d := [\cdot]_1$ and $[\cdot, \cdot]_2$ are non-zero, then W is a **differential graded Lie algebra** (DGLA).
The Maurer-Cartan equation reads

$$dQ - \frac{1}{2}[Q, Q]_2 = 0.$$

Remark

The above notion is equivalent to the one of $L_\infty[1]$ -algebra, which is conceptually cleaner. The correspondence is given by a degree shift.

The L_∞ -algebra of Oh-Park

Let C be a coisotropic submanifold of (M, ω) .

Recall that C has a foliation \mathcal{F} , tangent to $K = TC^\omega$. We denote

$$\Omega_{\mathcal{F}}(C) := \Gamma(\wedge K^*)$$

the differential forms along the leaves.

Theorem (OH-PARK, 2003)

$\Omega_{\mathcal{F}}(C)$ is endowed with an L_∞ -algebra structure.

Remark:

- 1) $[\cdot]_1$ is the leaf-wise de Rham differential $d_{\mathcal{F}}$
- 2)

$$H^0(\Omega_{\mathcal{F}}(C), d_{\mathcal{F}}) = C^\infty(C)_{bas},$$

and the Lie bracket induced by $[\cdot, \cdot]_2$ is the Poisson bracket on $C^\infty(C)_{bas}$.

Remark:

The L_∞ -algebra structure is “invisible to the naked eye”, since it depends on a choice of distribution G s.t. $K \oplus G = TC$.

Different choices give quasi-isomorphic L_∞ -algebras.

Theorem (OH-PARK 2003)

Let $\alpha \in \Omega_{\mathcal{F}}^1(C)$ be a foliated 1-form.

α is a Maurer-Cartan element for the L_∞ -algebra $\Omega_{\mathcal{F}}(C) \Leftrightarrow$
 $\text{graph}(\alpha)$ is a coisotropic submanifold of K^* .

Remark •

This means: the deformations of the coisotropic submanifold C are governed by the L_∞ -algebra $\Omega_{\mathcal{F}}(C)$.

Example

Again: $C = \mathbb{T}^4 \times \{0\}$ is coisotropic in the symplectic manifold $M = \mathbb{T}^4 \times \mathbb{R}^2$.

One can show: the L_∞ -algebra structure on $\Omega_{\mathcal{F}}(C)$ is a DGLA.

The foliation \mathcal{F} on C is tangent to $\frac{\partial}{\partial x_3}$ and $\frac{\partial}{\partial x_4}$.

A foliated 1-form is $\alpha = f(x)dx_3 + g(x)dx_4$.

$\text{graph}(\alpha)$ is coisotropic \Leftrightarrow

$$d_{\mathcal{F}}\alpha - \frac{1}{2}[\alpha, \alpha]_2 = 0, \text{ i.e., } \partial_4 f - \partial_3 g = \partial_1 f \ \partial_2 g - \partial_2 f \ \partial_1 g.$$

Infinitesimal deformations

Let $\alpha(t)$ be a curve in $\Omega_{\mathcal{F}}^1(C)$ with $\alpha(0) = 0$.

Assume that $\text{graph}(\alpha(t))$ is coisotropic, i.e.

$$0 = d_{\mathcal{F}}(\alpha(t)) - \frac{1}{2}[\alpha(t), \alpha(t)]_2 - \frac{1}{3!} \dots$$

Then

$$\begin{aligned} d_{\mathcal{F}}(\alpha'(0)) &= 0 \\ [\alpha'(0), \alpha'(0)]_2 &= d_{\mathcal{F}}(\alpha''(0)) \end{aligned}$$

Definition

An **infinitesimal deformation** of the coisotropic submanifold C is

$$A \in \Omega_{\mathcal{F}}^1(C) \text{ s.t. } \underbrace{d_{\mathcal{F}} A}_{\text{linearized Maurer-Cartan equation}} = 0 \quad .$$

Corollary

An infinitesimal deformation A can be extended to a curve of deformations
 $\Rightarrow [A, A]_2 \in \Omega_{\mathcal{F}}^2(C)$ is $d_{\mathcal{F}}$ -exact.

Remark

In general, not all infinitesimal deformations can be extended to a curve of deformations. (See the example of $\mathbb{T}^4 \times \{0\}$ in $\mathbb{T}^4 \times \mathbb{R}^2$.)

Heuristically this means: in general,

$\{\text{coisotropic submanifolds near } C\}$

is not “smooth”. •

Equivalences of deformations

Notions of equivalence on $\{\text{coisotropic submanifolds near } C\}$:

- **Geometric:**

Given by Hamiltonian diffeomorphisms of (M, ω) .

It is generated by $C^\infty(M)$.

- **Algebraic:**

Given by the “gauge equivalences” of the L_∞ -algebra.

It is generated by $C^\infty(C)$.

Theorem (LÊ-OH-TORTORELLA-VITAGLIANO 2014, SCHÄTZ-ZAMBON 2014)

The two equivalence relations agree, provided C is compact.

Remark: Denote

$$\mathcal{M} := \frac{\{\text{coisotropic submanifolds near } C\}}{\text{Hamiltonian diffeomorphisms}}.$$

The formal tangent space to \mathcal{M} at $[C]$ is $H_{\mathcal{F}}^1(C)$.

Remark: One can also consider the quotient by symplectomorphisms. Its formal tangent space at $[C]$ is

$$H_{\mathcal{F}}^1(C) / r(H^1(C))$$

where $r : \Omega^1(C) \rightarrow \Omega_{\mathcal{F}}^1(C)$ is the restriction to the leaves.

Explicit formulae via Poisson geometry

Poisson geometry is an extension of symplectic geometry.

Example: The symplectic manifold $(\mathbb{R}^2, dx \wedge dy)$ can be regarded as the Poisson manifold $(\mathbb{R}^2, \Pi = \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$.

Let C be a coisotropic submanifold in a [Poisson manifold](#).

Identify a tubular neighbourhood of C with a vector bundle E (this is a choice).

Theorem (CATTANEO-FELDER 2005)

$\Gamma(\wedge E)[1]$ has an $L_\infty[1]$ -algebra structure with multibrackets ($n \geq 1$):

$$\{s_1, \dots, s_n\}_n = P([[\dots [\Pi, s_1], s_2], \dots, s_n]),$$

where $P : \chi^{multi}(E) \rightarrow \Gamma(\wedge E)$ is the canonical projection.

Remark

- 1) In the symplectic case, upon a degree shift, this recovers the L_∞ -algebra of Oh-Park.
- 2) If Π is “analytic in fiber directions”, the Maurer-Cartan elements correspond to coisotropic submanifolds. [\[Schätz-Zambon 2012\]](#)

References

- [Y.-G. Oh and J.-S. Park.](#)
Deformations of coisotropic submanifolds and strong homotopy Lie algebroids.
Invent. Math., 161(2):287-360, 2005.
- [A. S. Cattaneo and G. Felder.](#)
Relative formality theorem and quantisation of coisotropic submanifolds.
Adv. in Math., 208:521-548, 2007.
- [F. Schätz and M. Zambon.](#)
Deformations of coisotropic submanifolds for fibrewise entire Poisson structures.
Lett. Math. Phys., 103(7):777-791, 2013.
- [Lê, Oh, Tortorella, Vitagliano](#)
Deformations of Coisotropic Submanifolds in Abstract Jacobi Manifolds
ArXiv:1410.8446.

 F. Schätz and M. Zambon.
Equivalences of coisotropic submanifolds.
ArXiv:1411.3227

Thank you for your attention!