
Poisson Geometrie, Reduktion,
und graduierte Mannigfaltigkeiten

Marco Zambon

Hamburg, 21. Januar 2009



Ein einfaches Beispiel

Beispiel (Reduktion)
ω = dx1 ∧ dx2 + dx3 ∧ dx4 ist eine symplektische Form auf R4.

R3 × {0} ι // R4

ι∗ω = dx1 ∧ dx2 ist keine symplektische Form auf R3 × {0}, weil
ker(ι∗ω) = R ∂

∂x3
6= {0}.

R3 × {0}

π

��

ι // R4

R3 × {0}/ker(ι∗ω) ∼= R2

Aber π∗(ι∗ω) = dx1 ∧ dx2 ist eine symplektische Form auf ∼= R2.
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Hintergrund: Poisson Mannigfaltigkeiten

Definition (algebraische Def.)
(M, {•, •}) ist eine Poisson Mannigfaltigkeit, falls
(C∞(M), {•, •}) eine Lie Algebra ist, mit

{f, gh} = {f, g}h+ g{f, h}.

Definition (geometrische Def.)
(M,π) ist eine Poisson Mannigfaltigkeit, falls
π ∈ Γ(∧2TM) ein Bivektorfeld ist, mit [π, π] = 0.

Beziehung:
{f, g} = π(df, dg).



Beispiele (von Poisson Mannigf’en)
g∗ das Duale einer Lie Algebra:
für v, w ∈ g ⊂ C∞(g∗) definiere {v, w} := [v, w].
symplektische Mannigfaltigkeiten (M,ω)
(d .h. lokal ω =

∑
dqi ∧ dpi):

definiere π := ω−1.
T ∗M/G
(Physikalisch: Poisson Mannigfaltigkeiten beschreiben
mechanische Systeme mit Symmetrie).

“Gute” Untermannigfaltigkeiten:

Definition
N ⊂ (M,π) ist eine koisotrope Untermannigfaltigkeit, falls {I, I} ⊂ I.
Hier I = {Funktionen, die auf N verschwinden}.
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Reduktion von Poisson Mannigfaltigkeiten

Frage: Sei (M,π) eine Poisson Mannigfaltigkeit. Seien gegeben
N eine Untermannigfaltigkeit,
F eine Blätterung auf N .

Wann hat der Quotientenraum N := N/F eine induzierte Poisson
Struktur?

Klassisches Beispiel:
N koisotrop F = {π(df)|N : f ∈ I}.
Marsden-Ratiu (1986):
Benötigen die Annahme, dass N eine Poisson Unteralgebra von
(C∞(M), {•, •}) induziert.
Falceto-Z:
Version mit schwächeren Voraussetzungen.



Hintergrund: Generalisierte komplexe Mannigf’en
Courant Algebroide (Courant-Weinstein, 1988) sind “erweiterte
Tangentialbündel” E →M .

Beispiel
Sei H ∈ Ω3

geschlossen(M). Nehme (TM ⊕ T ∗M, [•, •]H), wobei

[X1 + ξ1, X2 + ξ2]H = [X1, X2] + LX1ξ2 − iX2dξ1 + iX2iX1H.

Definition (Hitchin, 2002)
Eine generalisierte komplexe Mannigfaltigkeit ist (M,J), wobei

J : TM ⊕ T ∗M → TM ⊕ T ∗M

J2 = −1 erfüllt und [•, •]H respektiert.

Beispiele fassen symplektische und komplexe Strukturen auf.
Bemerkung: J induziert eine Poisson Struktur πJ auf M !



Reduktion von generalisierten komplexen Mannigf’en
2005 sind fünf Arbeiten über Reduktion von gen. komplexen
Mannigf’en unter Gruppenwirkungen erschienen.

Frage: gibt es C ⊂ (M,J) mit einer kanonischen Blätterung F , so
dass C := C/F eine induzierte gen. komplexe Struktur hat?

Definition (Gualtieri 2003, Kapustin-Orlov 1998)
Ein Brane besteht aus

C ⊂M einer Untermannigfaltigkeit,
L ⊂ (TM ⊕ T ∗M)|C einem Lagrangeschen Unterbündel über TC
mit [L,L]H ⊂ L, J(L) = L.

Theorem (Z)
Sei (C,L) ein Weak Brane. Dann ist C koisotrop bezüglich πJ .
Sei C der Quotient von C (falls glatt).

a) Es gibt einen induzierten Courant Algebroid über C.
b) J induziert eine gen. komplexe Struktur auf C.
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Hintergrund: Graduierte Mannigfaltigkeiten
Definition
Sei V = ⊕iVi ein (Z− {0})-graduierter Vektorraum.
Eine graduierte Mannigfaltigkeit besteht aus

dem “Body”: eine Mannigfaltigkeit M ,
den “Funktionen”: eine Garbe über M von graduierten
kommutativen Algebren, die lokal aussehen wie

C∞(Rdim(M))⊗ S•(V ∗).

(S• = graduierter symmetrischer Tensorprodukt).

Beispiel
Die graduierte Mannigfaltigkeit T ∗[1]M hat

Body M ,
Funktionen Γ(∧•TM) = {Multivektorfelder auf M}.

Hier V =(T ∗xM konzentriert im Grad −1).



Poisson-Reduktion durch graduierte Mannigf’en

Bemerkung: (T ∗[1]M,ω) ist eine symplektische graduierte
Mannigfaltigkeit (vom Grad 1), wobei ω =

∑
dxj ∧ dθj .

(Hier sind (xj , θj) “Koordinatenfunktionen” auf T ∗[1]M .)

Fakt (Roytenberg 2000)
Poisson Struktur π auf M ↔

Funktion S vom Grad 2 auf T ∗[1]M mit {S,S} = 0.

π = πij(x)∂xi ∧ ∂xj ↔ S = πij(x)θiθj .



Idee für Poisson-Reduktion:

C ⊂ (T ∗[1]M,ω,S) prä-symplektisch, so dass S|C invariant ist
 der Quotient C ist symplektisch, hat eine Funktion S vom Grad 2.

Falls {S,S} = 0, entspricht C einer neuen Poisson Mannigf’t!

Klassisch:

C ⊂M, E ⊂ TM |C ↔ C
C/(E ∩ TC) ↔ C





Seien C ⊂ (M,π), E ⊂ TM |C , so dass C := C/(E ∩ TC) glatt ist.

Theorem (Cattaneo-Z)
Sei D|C ein Unterbündel von TM |C mit

(E ∩ TC) ⊂ D|C ⊂ E,
π]E◦ ⊂ TC +D|C .

Erweitere C zu einer Untermannigfaltigkeit A mit TA|C = TC +D|C
und D|C zu einer involutiven Distribution D auf A. Nehme an, dass

(LΓ(D)π)|C ⊂ E ∧ TM |C .

Dann ist C eine Poisson Mannigfaltigkeit.



Beispiel
M = R4

M = T ∗[1]R4

π = ∂
∂x1
∧ ∂
∂x2

+ ∂
∂x3
∧ ∂
∂x4

S = θ1θ2 + θ3θ4

E = Span( ∂
∂x4

+ α ∂
∂x1

)

��
C = {x4 ≡ 0}

C = {x4 ≡ 0, θ4 + αθ1 ≡ 0} symplektisch

  
C = C = R3 C = C ∼= T ∗[1]R3

π = ∂
∂x1
∧ ( ∂

∂x2
+ α ∂

∂x3
) S = θ1(θ2 + αθ3)

(Poisson, falls ∂
∂x1

α = 0)
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Beispiel einer Differentiell graduierte Lie Algebra (DGLA):
(χ(T ∗[1]M), [•, •], [XS , •]).

h[1]⊕ g: DGLA konzentriert in Grad −1 und 0
 H ×G⇒G: kategorische Gruppe, d.h. Gruppe in {Gruppoiden}.

(M,π) Poisson Mannigfaltigkeit Γ symplektischer Gruppoid.

Theorem (Cattaneo-Z)
Morphismus von DGLA

h[1]⊕ g→ χsym(T ∗[1]M)

 Morphismus von Lie Algebren

ho g→ χ(Γ)

 Gruppenwirkung und Gruppoid-Morphismus

(H ×G)× Γ→ Γ.



Gen. komplexe Reduktion durch graduierte Mannig’en
Fakt (Roytenberg 2000, Grabowski 2006)

Courant Algebroid (TM ⊕ T ∗M, [•, •]H) ↔
Funktion S vom Grad 3 auf onM := T ∗[2]T [1]M mit {S,S} = 0.
Generalisierte komplexe Struktur J auf M ↔
Funktion J vom Grad 2 auf onM mit {{S,J },J }} = −S.

Bemerkung: M = T ∗[2]T [1]M ist ein Beispiel einer symplektischen
graduierten Mannigfaltigkeit (vom Grad 2).

Theorem (Bursztyn-Cattaneo-Metha-Z)
C ⊂ M koisotrop ↔
K → C isotropes Unterbündel von TM ⊕ T ∗M ,
F Blätterung auf C,
∇ flacher, metrischer Zusammenhang auf K⊥/K.
L ⊂M Lagrangesche Unterm’t mit S|L = 0,J |L = 0 ↔
Brane auf M



Fakt (Bursztyn-Cavalcanti-Gualtieri, 2005)
Erweiterte Wirkung auf (M,J) mit Impulsabbildung µ 
µ−1(0)/(Wirkung) ist wieder eine gen. komplexe Mannigfaltigkeit .

Interpretation aufM:

Theorem (Bursztyn-Cattaneo-Metha-Z)
erweiterte Wirkung mit Impulsabbildung µ ↔
Morphismus von DGLA g̃→ χ(M) mit Impulsabbildung µ̃.
µ−1(0)/(Wirkung) ↔
übliche symplektische Reduktion µ̃−1(0)/g̃
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