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Before we start

Example (Poisson structures)
Let M be a manifold.

A Poisson structure is π ∈ Γ(∧2TM) such that [π, π] = 0.
A deformation of π is given by π̃ ∈ Γ(∧2TM) such that

0 = [π + π̃, π + π̃] = 2[π, π̃] + [π̃, π̃] = 2( dππ̃ +
1

2
[π̃, π̃]︸ ︷︷ ︸

Maurer-Cartan equation

).

There are many mathematical structures whose deformations are given by a
Maurer-Cartan equation.
In this talk we deform two structures simultaneously.
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Example: Lie algebra morphisms

Let U, V be Lie algebras.
Let φ : U → V be a morphism, i.e. dUφ+ 1

2 [φ, φ]V = 0.

1) Deformation of morphisms:
Let φ̃ : U → V be a linear map.

φ+ φ̃ is a morphism ⇔ dU,φφ̃+
1

2
[φ̃, φ̃]V = 0︸ ︷︷ ︸

is a Maurer-Cartan equation (1966)

.

2) Deformation of Lie algebras and of morphisms:
Let d̃U ∈ ∧2U∗ ⊗ U , d̃V ∈ ∧2V ∗ ⊗ V .{

(U, dU + d̃U ) and (V, dV + d̃V ) are Lie algebras
φ+ φ̃ is a morphism between them

⇔ (some cubic equation in d̃U , d̃V , φ̃ )︸ ︷︷ ︸
is a Maurer-Cartan equation (2008)

.
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AIM: Find a criteria to determine when:

pair of algebraic/geometric structures
⇓?

their simultaneous deformations are given by the MC equation of some
L∞-algebra.

WHY?
{deformations} acquires a natural equivalence relation.
the deformations of A and B are governed by quasi-isomorphic
L∞-algebras
⇒ the deformation theories for A and B are equivalent.
H1 = 0
⇒ first order deformations can be extended to (formal) deformations.
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L∞-algebras and Maurer-Cartan elements
Definition

A L∞[1]-algebra consists of a graded vector space W = ⊕i∈ZWi and

{·, · · · , ·}n : ⊗nW −→W (n ≥ 1)

graded symmetric, of degree 1, satisfying “higher Jacobi identities”:
d2 = 0, where d := {·}1
d{a, b}2 = {da, b}2 + (−1)|a|{b, da}2
{{a, b}2, c}2 ± c.p. = ±d{a, b, c}3 ± ({da, b, c}3 ± c.p.)
. . .

Definition
A Maurer-Cartan element of a L∞[1]-algebra W is an element Q ∈W0

satisfying
∞∑
n=1

1

n!
{Q, . . . , Q}n = 0.
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Example (DGLA)
Suppose that only d := {·}1 and {·, ·}2 are non-zero.
Then W [−1] is a differential graded Lie algebra (DGLA).
The MC equation reads

dQ+
1

2
{Q,Q}2 = 0.
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Voronov’s construction of L∞[1]-algebras
Definition

A V-data consists of a quadruple (L, a, P,∆) where
(L, [·, ·]) is a graded Lie algebra
a an abelian Lie subalgebra
P : L→ a a projection whose kernel is a Lie subalgebra of L
∆ ∈ Ker(P )1 such that [∆,∆] = 0.

Theorem (Th. Voronov)

Let (L, a, P,∆) be a V-data.

a) a has an induced L∞[1]-structure with multibrackets (n ≥ 1)

{a1, . . . , an} = P [. . . [[∆, a1], a2], . . . , an].

Notation: aP∆.
b) L[1]⊕ a has an induced L∞[1]-structure extending aP∆.

Notation: (L[1]⊕ a)P∆.
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An algebraic theorem: deformations of MC elements

Theorem (Frégier-Z.)

Let
(L, a, P,∆) be a V-data
Φ∈MC(aP∆),

denote PΦ := P ◦ e[·,Φ] : L→ a.
1) For any Φ̃ ∈ a0:

Φ + Φ̃ ∈MC(aP∆) ⇔ Φ̃ ∈MC(aPΦ

∆ ).

2) For all ∆̃ ∈ (ker(P ))1 and Φ̃ ∈ a0:{
[∆ + ∆̃,∆ + ∆̃] = 0

Φ + Φ̃ ∈MC(aP
∆+∆̃

)
⇔ (∆̃, Φ̃) ∈MC((L[1]⊕ a)PΦ

∆ ).
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Applying the theorem
Let U, V be Lie algebras. Choose

L = ∧(U∗ × V ∗)⊗ (U × V )

a = ∧U∗ ⊗ V
P : L→ a the natural projection
∆ = dU + dV

MC elements of aP∆ are exactly morphisms U → V !
Φ ∈MC(aP∆).

⇒ 1) For any Φ̃ : U → V linear:

Φ + Φ̃ is a morphism ⇔ Φ̃ ∈MC(aPΦ

∆ ).

2) For all d̃U ∈ ∧2U∗ ⊗ U , d̃V ∈ ∧2V ∗ ⊗ V :{
(U, dU + d̃U ) and (V, dV + d̃V ) are Lie algebras
Φ + Φ̃ is a morphism between them

⇔(d̃U + d̃V , Φ̃) ∈MC((L[1]⊕ a)PΦ

∆ ).
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Twisted Poisson structures

Let M be a manifold.

Definition
Let

H ∈ Ω3(M) be a closed 3-form
π ∈ χ2(M) be a bivector field.

We say

π is a H-twisted Poisson structure⇔ [π, π]Schouten = 2(∧3π])H,

where π] : T ∗M → TM, ξ 7→ ιξπ.

Such structures are interesting
in geometry (Courant algebroids, Dirac structures...)
in physics (String theory, sigma models with Wess-Zumino-Witten
terms...).
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Applying the theorem

Let M be a manifold. Choose
L = C(T ∗[2]T ∗[1]M)[2]

a = C(T ∗[1]M)[2]

P : L→ a the restriction to the zero section
∆ = “de Rham”

MC elements of aP∆ are exactly Poisson bivector fields
0 ∈MC(aP∆).

⇒ 2) For all H ∈ Ω3(M), for all π ∈ χ2(M):{
dH = 0

π is a H-twisted Poisson structure

⇔(−H,π) ∈MC((L[1]⊕ a)P∆).
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The relevant subalgebra of (L[1]⊕ a)P∆.
Corollary

Let M be a manifold. There is an L∞[1]-algebra structure on

L := ⊕i≥−2[Ωi+3(M)⊕ χi+2(M)]

whose only non-vanishing multibrackets are
a) dDeRham on differential forms
b) ±[·, ·]Schouten on multivector fields
c) for all n ≥ 1

{H,π1, . . . , πn} = ±(π]1 ∧ · · · ∧ π]n)H ∈ χ•(M)

where H ∈ Ωn(M) and πi ∈ χ•(M).
Its MC elements are exactly

{(−H,π) : π is a H-twisted Poisson structure}.

Without the algebraic theorem, it would have been hard to find an L∞-algebra
as above!
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Equivalences of MC elements
Given an L∞[1]-algebra W , there is a map

W−1 → {vector fields on W0}, z 7→ Yz

where the value of Yz at m ∈W0 is

Yz|m := dz + {z,m}+
1

2!
{z,m,m}+

1

3!
{z,m,m,m}+ · · · ∈W0 = TmW0.

This gives an involutive (singular) distribution on MC(W ) ⊂W0

 equivalence relation on MC(W ).

Example
Let L be the L∞[1]-algebra whose MC elements are twisted Poisson
structures. The following coincide:

The equivalence classes in MC(L)

the orbits of the (partial) group action

Ω2(M) o Diff(M) 	 MC(L) ⊂ Ω3(M)× χ2(M)

(B,φ) · (H,π) = ((φ−1)∗H + dB , eBφ∗π).

12 / 12


	A motivating example
	L-algebras and Maurer-Cartan elements
	Deformations of MC elements
	Example: morphisms of Lie algebras
	Example: twisted Poisson structures

