

Simultaneous deformations of Maurer-Cartan elements

Marco Zambon (UAM-ICMAT)
with Yaël Frégier (Univ. Lens)

Poisson Geometry and Applications
Figueira da Foz, June 2011

Before we start

Example (Poisson structures)

Let M be a manifold.

A Poisson structure is $\pi \in \Gamma(\wedge^2 TM)$ such that $[\pi, \pi] = 0$.

A **deformation of π** is given by $\tilde{\pi} \in \Gamma(\wedge^2 TM)$ such that

$$0 = [\pi + \tilde{\pi}, \pi + \tilde{\pi}] = 2[\pi, \tilde{\pi}] + [\tilde{\pi}, \tilde{\pi}] = 2\left(\underbrace{d_\pi \tilde{\pi} + \frac{1}{2}[\tilde{\pi}, \tilde{\pi}]}_{\text{Maurer-Cartan equation}}\right).$$

There are many mathematical structures whose deformations are given by a Maurer-Cartan equation.

In this talk we deform **two structures simultaneously**.

Outline

- 1 A motivating example
- 2 L_∞ -algebras and Maurer-Cartan elements
- 3 Deformations of MC elements
- 4 Example: morphisms of Lie algebras
- 5 Example: twisted Poisson structures

Example: Lie algebra morphisms

Let U, V be Lie algebras.

Let $\phi: U \rightarrow V$ be a morphism, i.e. $d_U \phi + \frac{1}{2}[\phi, \phi]_V = 0$.

1) Deformation of morphisms:

Let $\tilde{\phi}: U \rightarrow V$ be a linear map.

$$\phi + \tilde{\phi} \text{ is a morphism} \Leftrightarrow \underbrace{d_{U, \phi} \tilde{\phi} + \frac{1}{2}[\tilde{\phi}, \tilde{\phi}]_V = 0}_{\text{is a Maurer-Cartan equation (1966)}} .$$

2) Deformation of Lie algebras and of morphisms:

Let $\tilde{d}_U \in \wedge^2 U^* \otimes U$, $\tilde{d}_V \in \wedge^2 V^* \otimes V$.

$$\begin{cases} (U, d_U + \tilde{d}_U) \text{ and } (V, d_V + \tilde{d}_V) \text{ are Lie algebras} \\ \phi + \tilde{\phi} \text{ is a morphism between them} \end{cases} \Leftrightarrow \underbrace{(\text{some cubic equation in } \tilde{d}_U, \tilde{d}_V, \tilde{\phi})}_{\text{is a Maurer-Cartan equation (2008)}} .$$

AIM: Find a criteria to determine when:

pair of algebraic/geometric structures

↓?

their simultaneous deformations are given by the MC equation of some L_∞ -algebra.

WHY?

- $\{\text{deformations}\}$ acquires a natural equivalence relation.
- the deformations of A and B are governed by quasi-isomorphic L_∞ -algebras
 - ⇒ the deformation theories for A and B are equivalent.
- $H^1 = 0$
 - ⇒ first order deformations can be extended to (formal) deformations.

L_∞ -algebras and Maurer-Cartan elements

Definition

A $L_\infty[1]$ -algebra consists of a graded vector space $W = \bigoplus_{i \in \mathbb{Z}} W_i$ and

$$\{\cdot, \dots, \cdot\}_n : \otimes^n W \longrightarrow W \quad (n \geq 1)$$

graded symmetric, of degree 1, satisfying “higher Jacobi identities”:

- $d^2 = 0$, where $d := \{\cdot\}_1$
- $d\{a, b\}_2 = \{da, b\}_2 + (-1)^{|a|}\{b, da\}_2$
- $\{\{a, b\}_2, c\}_2 \pm c.p. = \pm d\{a, b, c\}_3 \pm (\{da, b, c\}_3 \pm c.p.)$
- ...

Definition

A Maurer-Cartan element of a $L_\infty[1]$ -algebra W is an element $Q \in W_0$ satisfying

$$\sum_{n=1}^{\infty} \frac{1}{n!} \{Q, \dots, Q\}_n = 0.$$

Example (DGLA)

Suppose that only $d := \{\cdot\}_1$ and $\{\cdot, \cdot\}_2$ are non-zero.

Then $W[-1]$ is a differential graded Lie algebra (DGLA).

The MC equation reads

$$dQ + \frac{1}{2}\{Q, Q\}_2 = 0.$$

Voronov's construction of $L_\infty[1]$ -algebras

Definition

A **V-data** consists of a quadruple $(L, \mathfrak{a}, P, \Delta)$ where

- $(L, [\cdot, \cdot])$ is a graded Lie algebra
- \mathfrak{a} an abelian Lie subalgebra
- $P: L \rightarrow \mathfrak{a}$ a projection whose kernel is a Lie subalgebra of L
- $\Delta \in \text{Ker}(P)_1$ such that $[\Delta, \Delta] = 0$.

Theorem (Th. Voronov)

Let $(L, \mathfrak{a}, P, \Delta)$ be a V-data.

- a) \mathfrak{a} has an induced $L_\infty[1]$ -structure with multibrackets ($n \geq 1$)

$$\{a_1, \dots, a_n\} = P[\dots [[\Delta, a_1], a_2], \dots, a_n].$$

Notation: \mathfrak{a}_Δ^P .

- b) $L[1] \oplus \mathfrak{a}$ has an induced $L_\infty[1]$ -structure extending \mathfrak{a}_Δ^P .

Notation: $(L[1] \oplus \mathfrak{a})_\Delta^P$.

An algebraic theorem: deformations of MC elements

Theorem (Frégier-Z.)

Let

- $(L, \mathfrak{a}, P, \Delta)$ be a V -data
- $\Phi \in MC(\mathfrak{a}_{\Delta}^P)$,

denote $P_{\Phi} := P \circ e^{[\cdot, \Phi]}: L \rightarrow \mathfrak{a}$.

1) For any $\tilde{\Phi} \in \mathfrak{a}_0$:

$$\Phi + \tilde{\Phi} \in MC(\mathfrak{a}_{\Delta}^P) \Leftrightarrow \tilde{\Phi} \in MC(\mathfrak{a}_{\Delta}^{P_{\Phi}}).$$

2) For all $\tilde{\Delta} \in (\ker(P))_1$ and $\tilde{\Phi} \in \mathfrak{a}_0$:

$$\begin{cases} [\Delta + \tilde{\Delta}, \Delta + \tilde{\Delta}] = 0 \\ \Phi + \tilde{\Phi} \in MC(\mathfrak{a}_{\Delta + \tilde{\Delta}}^P) \end{cases} \Leftrightarrow (\tilde{\Delta}, \tilde{\Phi}) \in MC((L[1] \oplus \mathfrak{a})_{\Delta}^{P_{\Phi}}).$$

Applying the theorem

Let U, V be Lie algebras. Choose

- $L = \wedge(U^* \times V^*) \otimes (U \times V)$
- $\mathfrak{a} = \wedge U^* \otimes V$
- $P: L \rightarrow \mathfrak{a}$ the natural projection
- $\Delta = d_U + d_V$

MC elements of \mathfrak{a}_Δ^P are exactly morphisms $U \rightarrow V$!

- $\Phi \in MC(\mathfrak{a}_\Delta^P)$.

$\Rightarrow 1)$ For any $\tilde{\Phi}: U \rightarrow V$ linear:

$$\Phi + \tilde{\Phi} \text{ is a morphism} \iff \tilde{\Phi} \in MC(\mathfrak{a}_\Delta^{P_\Phi}).$$

$2)$ For all $\tilde{d}_U \in \wedge^2 U^* \otimes U, \tilde{d}_V \in \wedge^2 V^* \otimes V$:

$$\begin{cases} (U, d_U + \tilde{d}_U) \text{ and } (V, d_V + \tilde{d}_V) \text{ are Lie algebras} \\ \Phi + \tilde{\Phi} \text{ is a morphism between them} \end{cases}$$

$$\Leftrightarrow (\tilde{d}_U + \tilde{d}_V, \tilde{\Phi}) \in MC((L[1] \oplus \mathfrak{a})_\Delta^{P_\Phi}).$$

Twisted Poisson structures

Let M be a manifold.

Definition

Let

- $H \in \Omega^3(M)$ be a closed 3-form
- $\pi \in \chi^2(M)$ be a bivector field.

We say

π is a H -twisted Poisson structure $\Leftrightarrow [\pi, \pi]_{Schouten} = 2(\wedge^3 \pi^\sharp)H$,

where $\pi^\sharp: T^*M \rightarrow TM, \xi \mapsto \iota_\xi \pi$.

Such structures are interesting

- in geometry (Courant algebroids, Dirac structures...)
- in physics (String theory, sigma models with Wess-Zumino-Witten terms...).

Applying the theorem

Let M be a manifold. Choose

- $L = \mathcal{C}(T^*[2]T^*[1]M)[2]$
- $\mathfrak{a} = \mathcal{C}(T^*[1]M)[2]$
- $P: L \rightarrow \mathfrak{a}$ the restriction to the zero section
- $\Delta = \text{“de Rham”}$

MC elements of \mathfrak{a}_Δ^P are exactly Poisson bivector fields

- $0 \in MC(\mathfrak{a}_\Delta^P)$.

$\Rightarrow 2)$ For all $H \in \Omega^3(M)$, for all $\pi \in \chi^2(M)$:

$$\begin{cases} dH = 0 \\ \pi \text{ is a } H\text{-twisted Poisson structure} \end{cases} \Leftrightarrow (-H, \pi) \in MC((L[1] \oplus \mathfrak{a})_\Delta^P).$$

The relevant subalgebra of $(L[1] \oplus \mathfrak{a})_{\Delta}^P$.

Corollary

Let M be a manifold. There is an $L_{\infty}[1]$ -algebra structure on

$$\mathfrak{L} := \bigoplus_{i \geq -2} [\Omega^{i+3}(M) \oplus \chi^{i+2}(M)]$$

whose only non-vanishing multibrackets are

- a) d_{DeRham} on differential forms
- b) $\pm[\cdot, \cdot]_{Schouten}$ on multivector fields
- c) for all $n \geq 1$

$$\{H, \pi_1, \dots, \pi_n\} = \pm(\pi_1^\sharp \wedge \dots \wedge \pi_n^\sharp)H \in \chi^\bullet(M)$$

where $H \in \Omega^n(M)$ and $\pi_i \in \chi^\bullet(M)$.

Its MC elements are exactly

$$\{(-H, \pi) : \pi \text{ is a } H\text{-twisted Poisson structure}\}.$$

Without the algebraic theorem, it would have been hard to find an L_{∞} -algebra as above!

Equivalences of MC elements

Given an $L_\infty[1]$ -algebra W , there is a map

$$W_{-1} \rightarrow \{\text{vector fields on } W_0\}, \quad z \mapsto \mathcal{Y}^z$$

where the value of \mathcal{Y}^z at $m \in W_0$ is

$$\mathcal{Y}^z|_m := dz + \{z, m\} + \frac{1}{2!} \{z, m, m\} + \frac{1}{3!} \{z, m, m, m\} + \dots \in W_0 = T_m W_0.$$

This gives an involutive (singular) distribution on $MC(W) \subset W_0$

↪ equivalence relation on $MC(W)$.

Example

Let \mathfrak{L} be the $L_\infty[1]$ -algebra whose MC elements are twisted Poisson structures. The following coincide:

- The equivalence classes in $MC(\mathfrak{L})$
- the orbits of the (partial) group action

$$\Omega^2(M) \rtimes \text{Diff}(M) \quad \circlearrowleft \quad MC(\mathfrak{L}) \subset \Omega^3(M) \times \chi^2(M)$$

$$(B, \phi) \cdot (H, \pi) = ((\phi^{-1})^* H + dB, e^B \phi_* \pi).$$