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@ Introduction



Symplectic Foliations
Definition

A symplectic foliation on M is a foliation 7 endowed with a leafwise symplectic
structure, i.e. a non-degenerate w € Q*(F) := T'(A?T*F) s. t. drw = 0.

Definition

A Poisson structure IT € X2(M) is regular if TI* : T7*M — T'M has constant
rank.

Regular Poisson structures II «+— Symplectic foliations (F,w)
I — (F =imIl¥,0’ = —(I1|5-)7")



Symplectic Foliations
Definition

A symplectic foliation on M is a foliation 7 endowed with a leafwise symplectic
structure, i.e. a non-degenerate w € Q*(F) := T'(A?T*F) s. t. drw = 0.

Definition

A Poisson structure IT € X2(M) is regular if TI* : T7*M — T'M has constant
rank.

Regular Poisson structures II «+— Symplectic foliations (F,w)
I — (F =imIlf, o’ = (115 )7

Remark: (h-Principle for Symplectic Foliations) [Fernandes-Frejlich]

Let II be a regular bivector field on an open manifold M. Then:

IT is homotopic, through regular bivector fields, to a regular Poisson structure
& the distribution im IT* is homotopic to an involutive distribution.



Deformations of Poisson structures

Often deformations are encoded by an algebraic structure.

Example:
Let 7 € X2(M) be a Poisson structure.
A deformation of 7 is a Poisson structure 7 + 7, where 7 € X2(

M).
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Deformations of Poisson structures

Often deformations are encoded by an algebraic structure.

Example:
Let 7 € X2(M) be a Poisson structure.
A deformation of = is a Poisson structure 7 + 7, where & € X%(M).

m + 7 Poisson

1
& 0=[n 47+ =20m, 7] + [7,7] =2( doit + 5[7,7] )

Maurer-Cartan equation

< 7 is a MC element of the DGLA (X°*(M)[1],dx,[,])
(i.e. it is a degree 1 element satisfying the Maurer-Cartan equation).



Goals

Let II be a regular Poisson structure.

Goals:

@ Find a DGLA whose Maurer Cartan elements parametrize regular
Poisson structures at I1

@ Use it to investigate the “smoothness at 11" of the space of regular
Poisson structures

@ Use it to relate deformations of regular Poisson structures to those of the
underlying foliations

Immaterial choice: Choose a distribution G s.t. TF & G = TM.
Simplifying assumption: G is involutive.
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9 Deformations of regular Poisson structures



Good multivector fields

Problem:
{bivector fields of fixed constant rank} is not an affine subspace of X?(

(M) :={W € X*(M) : tyFotpre W = 0}
=T(ANTF) @ TN TF®G)
=C®°(M)aI(TM) T (N TFo (TFRG)) D ...

.
good

M).
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Good multivector fields

Problem:
{bivector fields of fixed constant rank} is not an affine subspace of X2(M).

.(.]u()d(j\"j) = {W S %.(M) LT Fo LT]-'OW = O}
=D(A\TF) @ T(A'TF ®G)
=C®(M)OT(TM)aT(NTFo (TF2G))®

Lemma
Let {11} be a smooth curve of regular Poisson structures, then

‘OHt € xj()()(]( )

and is d-closed.

Hence
Tri{Regular Poisson str} = (X good(M))closed~

We will show that X7 ,,,(M) carries the desired DGLA structure.



Parametrizing regular bivector fields

Let v € Q%(M) be the unique extension of w satisfying ker(vy) = G.
Definition

Let Z € X2(M) be “small”. The gauge transformation of Z by ~ is the unique
bivector field Z7 s.t.

Gr(Z7) = (2%, € + Lziem).

Proposition A
We have a bijection

(X2 ,00(M)) smans—{W € X*(M) regular s.t. imW* th G}
Z— 11+ 77
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Figure: A “submanifold chart” for xregum(M)

Theorem
The DGLA
(Xgooa(M)[1],dm, [, 15)

controls the deformations of (F,w). Indeed, we have a bijection

MC (%3 04a(M)[1]) sman <— {Symplectic foliations (F', '
Z — I+ 27

) with TF' h G}

Here [, ], is a graded Lie bracket, specified later.
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e Relation to deformations of foliations



Deformations of foliations and foliated forms

Recall
There is a DGLA structure on
QUF;G) =T(ANT*"F®QG),

with differential dy the Bott-connection. o _
It controls the deformations of the foliation J;[Huebschmann, Vitagliano, Ji]
MC(Q*(F;Q)) «— {F' st. TF' h G}
n+— Gr(n) CTFe&G=TM.

Remark:
The complex
(X°(F) :=T(ATF),dn)

is isomorphic to (Q(F),dr), via ”.



A short exact sequence

Proposition
There is a short exact sequence of DGLA’s

{0} = X*(F)[1] = X500 (M)[1] = Q°(F; G) — {0}

Remark:
In degree 1, it reads

T(AXTF) < D(A2TF) & D(TF © G) % T(T*F © G).
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A short exact sequence

Proposition
There is a short exact sequence of DGLA’s

{0} = X*(F)[1] = X°,,,(M)[1] = Q*(F; G) — {0}

good

Remark:
In degree 1, it reads

T(A2TF) = T(A\2TF) & T(TF © G) % T(T*F @ G).

Remark:
Given a MC element Z € X2(F) (a cocycle), the corresponding deformation of
(F,w)is

(F,w—+ B),
where B := (A%w)(Z) € Q2 4(F).

In other words, it is the gauge transformation 115 for any extension of B.



@ Infinitesimal deformations



Infinitesimal deformations
Let Z(t) be a curve of Maurer-Cartan elements in X2

good(M)y with Z(O) =0.
Since

0=dn(Z(t)) + %[Z(tx Z(t)]y

we have
dn(2'(0)) =0
[Z/(0), Z'(0)], = du(Z"(0)).



Infinitesimal deformations

Let Z(t) be a curve of Maurer-Cartan elements in xgood( ), with Z(0) = 0.

Since )
0=dn(Z(t) + 5[2(1). 2(0)],
we have
dn(Z'(0)) =0
[2(0), Z2'(0)]y = du(Z"(0)).
Definition

An infinitesimal deformation of Iis W € X2 ,,,(M) such that

dgW =0

N—_——
linearized Maurer-Cartan equation

Corollary (Kuranishi criterion)
An infinitesimal deformation W can be extended to a curve of deformations

= [W, W], € XJ,,4(M) is exact.
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Infinitesimal deformations and foliations (1)

There exist infinitesimal deformations of II (as regular Poisson str.) which are
obstructed, i.e. can’t be prolonged to a smooth curve of MC elements. J

Denote ,
&1 X000 (M)[1] = Q°(F; G).
Let W e x2,,,(M) be an infinitesimal deformation.

W unobstructed
= ¢(W) unobstructed deformation of F.
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Infinitesimal deformations and foliations (1)

There exist infinitesimal deformations of II (as regular Poisson str.) which are
obstructed, i.e. can’t be prolonged to a smooth curve of MC elements.

Denote ,
¢ xgood( )[ ] i) Q.(]:v G)
Let W e x2,,,(M) be an infinitesimal deformation.

W unobstructed
= ¢(W) unobstructed deformation of F.

Proposition
The converse does not hold. J

Intuition: Given a path of foliations {F;} through F, in general you don’t know
how to put a leaf-wise symplectic form on F; for all ¢.
Further, you would want regular Poisson structures {Z;} W|th loZy = W.
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Infinitesimal deformations and foliations (Il)

Example: On M = S* x T4,

m- 2,2, 9,9
_67,‘1 833‘2 8333 61‘4’

0 7] 0

where f(¢) non-constant.
(Apply Kuranishi criterion.)

Remark:
There are TI = (F, w) with this property:
@ the space of regular Poisson structures is “not smooth at I1”
(there exists an obstructed infinitesimal deformation)

@ the space of foliations is “smooth at 7~
(all infinitesimal deformation are unobstructed)
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Infinitesimal deformations and foliations (ll1)

Remark:
Infinitesimal deformations 11" < X”(.F) are unobstructed: a prolongation is
given by the path of symplectic foliations

t— (./_‘.70&) + th)
where By, := (A2W)(W).
Corollary

Infinitesimal deformations W € X,,,(M) with

[6(W)] =0 € H'(F;G)

are unobstructed, provided M is compact.
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Infinitesimal deformations and foliations (1V)

Proposition
Suppose rank(F) = 2 and M is compact.

Then for all infinitesimal deformations W € X,,,(M):

o(W) unobstructed deformation of F
= W unobstructed.

Remark:
Given W = W, + Wy € T(A*TF) @ T(TF ® G), a desired path of symplectic
foliations is
(Fe. (v + Bw)l7,)

where

@ F; is a path of foliations through F,

@ By, := (N2W") (W) € Q3(F),

° EVWI denotes an arbitrary extension to Q2(M).
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Infinitesimal deformations and Poisson structures

Let W € ¥2

s00a(M) be an infinitesimal deformation. Clearly:

W unobstructed as a deformation of regular Poisson structures
= W unobstructed as a deformation of Poisson structures.
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Infinitesimal deformations and Poisson structures
Let W e x2,,,(M) be an infinitesimal deformation. Clearly:

W unobstructed as a deformation of regular Poisson structures
= W unobstructed as a deformation of Poisson structures.

Proposition
The converse does not hold. J

Example: On M = T*4,

0 0
In= h(x;,u)a 92s

0 0 0 0

W=50" e Tom, Non

where h(z3, z4) no-where vanishing and non-constant.
(IT + tW is Poisson, non-regular. W is obstructed by the Kuranishi criterion.)
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A related question

Stability of symplectic foliations (F,w):
Does any nearby foliation 7’ carry a (nearby) leaf-wise symplectic structure?

Stability:
Surjectivity of

MC(X2,,0(M)[1]) 5 MOQ*(F;q)),

locally near 0.

Infinitesimal stability:
Surjectivity of

Inf. deformations in x;ood(M) % Inf. deformations in QN F; Q).

Equivalently: surjectivity of the map in cohomology.
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e The proof: Background on Dirac geometry



Dirac structures ()

Recall:
TM :=TM & T*M is a Courant algebroid with
@ non-degenerate symmetric pairing (—, —) given by

(X + oY +8) :=1xB+va,
@ Dorfman bracket [—, —] on I'(TM) given by

X +a,Y+0):=[X,Y]+ LxB — tyda.

Remark:
@ Forall Z € X2(M):

ty :TM — TM, (X,a) — (X + Z'a,a)

preserves (—, —) but not [—, —].
@ For all closed B € Q*(M):

tg : TM — TM, (X,0) = (X,a+ B’ X)

preserves (—,—) and [—, —].
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Dirac structures (Il)

Definition
A Dirac structure is a vector subbundle L ¢ TM which is Lagrangian w.r.t.
(—,—) and involutive w.r.t. [—, —].

Remark:

Bivector fields Z <=5 Lagrangian subbundles L s.t. L h T M
Zv—— Gr(Z)={Z'¢+ ¢ €€ T M}
Z is Poisson <= Gr(Z) is Dirac

17/24



Deformations of Dirac structures (l)
Fact

Let L, R ¢ TM be transverse Lagrangian subbundles.
There is a bijection

dr: T'(A’L*) = {Lagrangian subbundles transverse to R}

b
o+~ (graph ofthe map L & L* = R).

M

TM
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Deformations of Dirac structures (ll)

When is & (o) Dirac?

PrOpOSitiOn ([Liu—Weinstein—Xu])
Let L be a Dirac structure, and R a complementary Dirac structure.
@ Thereis a DGLA
T(ALD)AL, dr, [ ]z-)
where
- dy, is the differential of Lie algebroid L,

- [, ]z~ is the bracket of the Lie algebroid R = L*, extended by Leibniz rule.
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Deformations of Dirac structures (ll)

When is & (o) Dirac?

Proposition (ILiu-Weinstein-xul)
Let L be a Dirac structure, and R a complementary Dirac structure.
@ Thereis a DGLA
T(ALHA], di, [, 1zv)
where

- dy, is the differential of Lie algebroid L,
- [, ]z~ is the bracket of the Lie algebroid R = L*, extended by Leibniz rule.

Q Leto e T(A2L*)[1].

o is a Maurer-Cartan element
&
the graph ® (o) is a Dirac structure.
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@ The proof: Deformations of regular Poisson structures



Parametrizing regular bivector fields (I)

A complement to Gr(II) is TM, but ill-behaved w.r.t. regular Poisson str.
Idea: Deform the Dirac structure Gr(11) using G & G° as a complement.
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Parametrizing regular bivector fields (I)

A complement to Gr(II) is TM, but ill-behaved w.r.t. regular Poisson str.
Idea: Deform the Dirac structure Gr(11) using G & G° as a complement.

Using Gr(Il) = T*M, Fact =

X?(M)+—{Lagrangian subbundles h G & G°}
ZFﬁfHHGTQQ

Here v € Q?(M) denotes the unique extension of w satisfying ker(y) = G.

GG

trty

™
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Parametrizing regular bivector fields (lI)

Restring the above bijection to “small” bivector fields yields

XM ) arane—{W € X*(M) s.t. Gr(W) h G & G°}
Z— 11+ 27

where Z7 =(gauge transformation of Z by ~), i.e. Gr(Z7) = t,(Gr(Z)).
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Parametrizing regular bivector fields (lI)

Restring the above bijection to “small” bivector fields yields

XM ) arane—{W € X*(M) s.t. Gr(W) h G & G°}
Z— I+ 27

where Z7 =(gauge transformation of Z by ~), i.e. Gr(Z7) = t,(Gr(Z)).

Lemma
Forall Z € X*(M)smau:

Z € X3 ,,4(M) < I+ Z7 has constant rank.

Proposition A
We have a bijection

(X2,,0(M)) smaus—{W € X*(M) regular s.t. imW* th G}
Z— 11+ 2727
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X*(M)

352

X

2
good

(M) -~

Figure: A “submanifold chart” for X
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Deformations of regular Poisson structures (I)

Proposition [LWX] =

a DGLA structure on T'(AGr(IT)*)[1] governing deformations of the Dirac
structure Gr(I1).

We now describe this using Gr(IT) = T* M.

The DGLA becomes
(X*(M)[1], du, [, 14)

where
[X,Y], = [Xg. Ya] = T (Lxgtyy — Lygtx?)

for vector fields X, Y (extend to X*(M) by the Leibniz rule).
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Deformations of regular Poisson structures (I)

Proposition [LWX] =

a DGLA structure on T'(AGr(IT)*)[1] governing deformations of the Dirac
structure Gr(I1).

We now describe this using Gr(IT) = T* M.

The DGLA becomes
(X*(M)[1], du, [, 14)

where
[X,Y], = [Xg. Ya] = T (Lxgtyy — Lygtx?)

for vector fields X, Y (extend to X*(M) by the Leibniz rule).
Remark:

prg: TM — TM is a Nijenhuis endomorphism.
Further [X,Y], = [X, Y]pre — T (tyexdy).
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Deformations of regular Poisson structures (1l)
Proposition B
The map Z — tit,Gr(Z) induces a bijection

MC(X*(M)[1],dm, [, ]y)«—{Dirac structures transverse to G & G°}.
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Deformations of regular Poisson structures (1l)
Proposition B
The map Z — tit,Gr(Z) induces a bijection

MC(X*(M)[1],dm, [, ]y)«—{Dirac structures transverse to G & G°}.

Lemma
xe,,,(M)[1] is a sub-DGLA.

good

Propositions A and B together give:

Theorem
The DGLA
( ;mﬂ(ﬂj)ul7dnv[a}7)

controls the deformations of (F,w).
Indeed, we have a bijection

MC (%3 ,04(M)[1]) sman <— {Symplectic foliations (F',w") with TF' th G}
Z — I+ 2Z7
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