

Deformations of symplectic foliations

Marco Zambon

joint work with
Stephane Geudens and Alfonso Tortorella
in progress

June 3, 2021

Outline

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

Symplectic Foliations

Definition

A **symplectic foliation** on M is a foliation \mathcal{F} endowed with a leafwise symplectic structure, i.e. a non-degenerate $\omega \in \Omega^2(\mathcal{F}) := \Gamma(\wedge^2 T^* \mathcal{F})$ s. t. $d_{\mathcal{F}}\omega = 0$.

Definition

A Poisson structure $\Pi \in \mathfrak{X}^2(M)$ is **regular** if $\Pi^\sharp : T^*M \rightarrow TM$ has constant rank.

Regular Poisson structures $\Pi \longleftrightarrow$ Symplectic foliations (\mathcal{F}, ω)

$$\Pi \longmapsto (\mathcal{F} = \text{im } \Pi^\sharp, \omega^\flat = -(\Pi|_{T\mathcal{F}}^\sharp)^{-1})$$

Remark: (h-Principle for Symplectic Foliations) [Fernandes-Frejlich]

Let Π be a regular bivector field on an open manifold M . Then:

Π is homotopic, through regular bivector fields, to a regular Poisson structure
 \Leftrightarrow the distribution $\text{im } \Pi^\sharp$ is homotopic to an involutive distribution.

Symplectic Foliations

Definition

A **symplectic foliation** on M is a foliation \mathcal{F} endowed with a leafwise symplectic structure, i.e. a non-degenerate $\omega \in \Omega^2(\mathcal{F}) := \Gamma(\wedge^2 T^* \mathcal{F})$ s. t. $d_{\mathcal{F}}\omega = 0$.

Definition

A Poisson structure $\Pi \in \mathfrak{X}^2(M)$ is **regular** if $\Pi^\sharp : T^*M \rightarrow TM$ has constant rank.

Regular Poisson structures $\Pi \longleftrightarrow$ Symplectic foliations (\mathcal{F}, ω)

$$\Pi \longmapsto (\mathcal{F} = \text{im } \Pi^\sharp, \omega^\flat = -(\Pi|_{T\mathcal{F}}^\sharp)^{-1})$$

Remark: (h-Principle for Symplectic Foliations) [Fernandes-Frejlich]

Let Π be a regular bivector field on an open manifold M . Then:

Π is homotopic, through regular bivector fields, to a regular Poisson structure
 \Leftrightarrow the distribution $\text{im } \Pi^\sharp$ is homotopic to an involutive distribution.

Deformations of Poisson structures

Often deformations are encoded by an algebraic structure.

Example:

Let $\pi \in \mathfrak{X}^2(M)$ be a Poisson structure.

A **deformation of π** is a Poisson structure $\pi + \tilde{\pi}$, where $\tilde{\pi} \in \mathfrak{X}^2(M)$.

$\pi + \tilde{\pi}$ Poisson

$$\Leftrightarrow 0 = [\pi + \tilde{\pi}, \pi + \tilde{\pi}] = 2[\pi, \tilde{\pi}] + [\tilde{\pi}, \tilde{\pi}] = 2\left(\underbrace{d_\pi \tilde{\pi} + \frac{1}{2}[\tilde{\pi}, \tilde{\pi}]}_{\text{Maurer-Cartan equation}}\right)$$

$\Leftrightarrow \tilde{\pi}$ is a MC element of the DGLA $(\mathfrak{X}^\bullet(M)[1], d_\pi, [\cdot, \cdot])$

(i.e. it is a degree 1 element satisfying the Maurer-Cartan equation).

Deformations of Poisson structures

Often deformations are encoded by an algebraic structure.

Example:

Let $\pi \in \mathfrak{X}^2(M)$ be a Poisson structure.

A **deformation of π** is a Poisson structure $\pi + \tilde{\pi}$, where $\tilde{\pi} \in \mathfrak{X}^2(M)$.

$\pi + \tilde{\pi}$ Poisson

$$\Leftrightarrow 0 = [\pi + \tilde{\pi}, \pi + \tilde{\pi}] = 2[\pi, \tilde{\pi}] + [\tilde{\pi}, \tilde{\pi}] = 2\left(\underbrace{d_\pi \tilde{\pi} + \frac{1}{2}[\tilde{\pi}, \tilde{\pi}]}_{\text{Maurer-Cartan equation}}\right)$$

$\Leftrightarrow \tilde{\pi}$ is a MC element of the DGLA $(\mathfrak{X}^\bullet(M)[1], d_\pi, [\cdot, \cdot])$

(i.e. it is a degree 1 element satisfying the Maurer-Cartan equation).

Goals

Let Π be a regular Poisson structure.

Goals:

- Find a DGLA whose Maurer Cartan elements parametrize regular Poisson structures at Π
- Use it to investigate the “smoothness at Π ” of the space of regular Poisson structures
- Use it to relate deformations of regular Poisson structures to those of the underlying foliations

Immaterial choice: Choose a distribution G s.t. $T\mathcal{F} \oplus G = TM$.

Simplifying assumption: G is involutive.

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

Good multivector fields

Problem:

{bivector fields of fixed constant rank} is not an affine subspace of $\mathfrak{X}^2(M)$.

$$\begin{aligned}\mathfrak{X}_{good}^\bullet(M) &:= \{W \in \mathfrak{X}^\bullet(M) : \iota_{T\mathcal{F}} \circ \iota_{T\mathcal{F}} \circ W = 0\} \\ &= \Gamma(\wedge^\bullet T\mathcal{F}) \oplus \Gamma(\wedge^{\bullet-1} T\mathcal{F} \otimes G) \\ &= C^\infty(M) \oplus \Gamma(TM) \oplus \Gamma(\wedge^2 T\mathcal{F} \oplus (T\mathcal{F} \otimes G)) \oplus \dots\end{aligned}$$

Lemma

Let $\{\Pi_t\}$ be a smooth curve of regular Poisson structures, then

$$\frac{d}{dt}|_0 \Pi_t \in \mathfrak{X}_{good}^2(M)$$

and is d_Π -closed.

Hence

$$T_\Pi \{\text{Regular Poisson str}\} = (\mathfrak{X}_{good}^2(M))_{closed}.$$

We will show that $\mathfrak{X}_{good}^\bullet(M)$ carries the desired DGLA structure.

Good multivector fields

Problem:

{bivector fields of fixed constant rank} is not an affine subspace of $\mathfrak{X}^2(M)$.

$$\begin{aligned}\mathfrak{X}_{good}^\bullet(M) &:= \{W \in \mathfrak{X}^\bullet(M) : \iota_{T\mathcal{F}} \circ \iota_{T\mathcal{F}} \circ W = 0\} \\ &= \Gamma(\wedge^\bullet T\mathcal{F}) \oplus \Gamma(\wedge^{\bullet-1} T\mathcal{F} \otimes G) \\ &= C^\infty(M) \oplus \Gamma(TM) \oplus \Gamma(\wedge^2 T\mathcal{F} \oplus (T\mathcal{F} \otimes G)) \oplus \dots\end{aligned}$$

Lemma

Let $\{\Pi_t\}$ be a smooth curve of *regular* Poisson structures, then

$$\frac{d}{dt}|_0 \Pi_t \in \mathfrak{X}_{good}^2(M)$$

and is d_Π -closed.

Hence

$$T_\Pi \{\text{Regular Poisson str}\} = (\mathfrak{X}_{good}^2(M))_{closed}.$$

We will show that $\mathfrak{X}_{good}^\bullet(M)$ carries the desired DGLA structure.

Parametrizing regular bivector fields

Let $\gamma \in \Omega^2(M)$ be the unique extension of ω satisfying $\ker(\gamma) = G$.

Definition

Let $Z \in \mathfrak{X}^2(M)$ be “small”. The **gauge transformation** of Z by γ is the unique bivector field Z^γ s.t.

$$Gr(Z^\gamma) = (Z^\sharp \xi, \xi + \iota_{Z^\sharp \xi} \gamma).$$

Proposition A

We have a bijection

$$(\mathfrak{X}^2_{\text{good}}(M))_{\text{small}} \longleftrightarrow \{W \in \mathfrak{X}^2(M) \text{ regular s.t. } \text{im } W^\sharp \pitchfork G\}$$
$$Z \longmapsto \Pi + Z^\gamma$$

$$\mathfrak{X}^2(M)$$

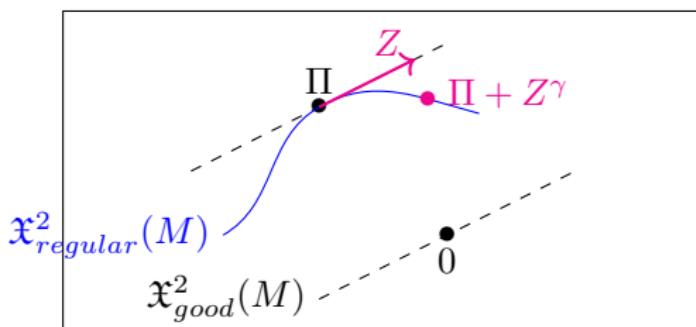


Figure: A “submanifold chart” for $\mathfrak{X}_{regular}^2(M)$

Theorem

The DGLA

$$(\mathfrak{X}_{good}^\bullet(M)[1], d_\Pi, [,]_\gamma)$$

controls the deformations of (\mathcal{F}, ω) . Indeed, we have a bijection

$$MC(\mathfrak{X}_{good}^\bullet(M)[1])_{small} \longleftrightarrow \{ \text{Symplectic foliations } (\mathcal{F}', \omega') \text{ with } T\mathcal{F}' \pitchfork G \}$$

$$Z \mapsto \Pi + Z^\gamma$$

Here $[,]_\gamma$ is a graded Lie bracket, specified later.

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

Deformations of foliations and foliated forms

Recall

There is a DGLA structure on

$$\Omega^\bullet(\mathcal{F}; G) := \Gamma(\wedge T^* \mathcal{F} \otimes G),$$

with differential d_∇ the Bott-connection.

It controls the **deformations of the foliation** \mathcal{F} : [Huebschmann, Vitagliano, Ji]

$$\begin{aligned} MC(\Omega^\bullet(\mathcal{F}; G)) &\longleftrightarrow \{\mathcal{F}' \text{ s.t. } T\mathcal{F}' \pitchfork G\} \\ \eta &\longmapsto Gr(\eta) \subset T\mathcal{F} \oplus G = TM. \end{aligned}$$

Remark:

The complex

$$(\mathfrak{X}^\bullet(\mathcal{F}) := \Gamma(\wedge T\mathcal{F}), d_\Pi)$$

is isomorphic to $(\Omega(\mathcal{F}), d_{\mathcal{F}})$, via ω^\flat .

A short exact sequence

Proposition

There is a short exact sequence of DGLA's

$$\{0\} \rightarrow \mathfrak{X}^\bullet(\mathcal{F})[1] \hookrightarrow \mathfrak{X}_{good}^\bullet(M)[1] \rightarrow \Omega^\bullet(\mathcal{F}; G) \rightarrow \{0\}$$

Remark:

In degree 1, it reads

$$\Gamma(\wedge^2 T\mathcal{F}) \hookrightarrow \Gamma(\wedge^2 T\mathcal{F}) \oplus \Gamma(T\mathcal{F} \otimes G) \xrightarrow{\omega^\flat} \Gamma(T^*\mathcal{F} \otimes G).$$

Remark:

Given a MC element $Z \in \mathfrak{X}^2(\mathcal{F})$ (a cocycle), the corresponding deformation of (\mathcal{F}, ω) is

$$(\mathcal{F}, \omega + B),$$

where $B := (\wedge^2 \omega^\flat)(Z) \in \Omega^2_{closed}(\mathcal{F})$.

In other words, it is the gauge transformation $\Pi^{\tilde{B}}$ for any extension of B .

A short exact sequence

Proposition

There is a short exact sequence of DGLA's

$$\{0\} \rightarrow \mathfrak{X}^\bullet(\mathcal{F})[1] \hookrightarrow \mathfrak{X}_{good}^\bullet(M)[1] \rightarrow \Omega^\bullet(\mathcal{F}; G) \rightarrow \{0\}$$

Remark:

In degree 1, it reads

$$\Gamma(\wedge^2 T\mathcal{F}) \hookrightarrow \Gamma(\wedge^2 T\mathcal{F}) \oplus \Gamma(T\mathcal{F} \otimes G) \xrightarrow{\omega^\flat} \Gamma(T^*\mathcal{F} \otimes G).$$

Remark:

Given a MC element $Z \in \mathfrak{X}^2(\mathcal{F})$ (a cocycle), the corresponding deformation of (\mathcal{F}, ω) is

$$(\mathcal{F}, \omega + B),$$

where $B := (\wedge^2 \omega^\flat)(Z) \in \Omega_{closed}^2(\mathcal{F})$.

In other words, it is the gauge transformation $\Pi^{\tilde{B}}$ for any extension of B .

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

Infinitesimal deformations

Let $Z(t)$ be a curve of Maurer-Cartan elements in $\mathfrak{X}_{good}^2(M)$, with $Z(0) = 0$. Since

$$0 = d_{\Pi}(Z(t)) + \frac{1}{2}[Z(t), Z(t)]_{\gamma}$$

we have

$$\begin{aligned} d_{\Pi}(Z'(0)) &= 0 \\ [Z'(0), Z'(0)]_{\gamma} &= d_{\Pi}(Z''(0)). \end{aligned}$$

Definition

An **infinitesimal deformation** of Π is $W \in \mathfrak{X}_{good}^2(M)$ such that

$$\underbrace{d_{\Pi}W = 0}_{\text{linearized Maurer-Cartan equation}}$$

Corollary (Kuranishi criterion)

An infinitesimal deformation W can be extended to a curve of deformations

$$\Rightarrow [W, W]_{\gamma} \in \mathfrak{X}_{good}^3(M) \text{ is exact.}$$

Infinitesimal deformations

Let $Z(t)$ be a curve of Maurer-Cartan elements in $\mathfrak{X}_{good}^2(M)$, with $Z(0) = 0$. Since

$$0 = d_{\Pi}(Z(t)) + \frac{1}{2}[Z(t), Z(t)]_{\gamma}$$

we have

$$\begin{aligned} d_{\Pi}(Z'(0)) &= 0 \\ [Z'(0), Z'(0)]_{\gamma} &= d_{\Pi}(Z''(0)). \end{aligned}$$

Definition

An **infinitesimal deformation** of Π is $W \in \mathfrak{X}_{good}^2(M)$ such that

$$\underbrace{d_{\Pi}W = 0}_{\text{linearized Maurer-Cartan equation}}$$

Corollary (Kuranishi criterion)

An infinitesimal deformation W can be extended to a curve of deformations

$$\Rightarrow [W, W]_{\gamma} \in \mathfrak{X}_{good}^3(M) \text{ is exact.}$$

Infinitesimal deformations and foliations (I)

There exist infinitesimal deformations of Π (as regular Poisson str.) which are **obstructed**, i.e. can't be prolonged to a smooth curve of MC elements.

Denote

$$\phi: \mathfrak{X}_{good}^\bullet(M)[1] \xrightarrow{\omega^\flat} \Omega^\bullet(\mathcal{F}; G).$$

Let $W \in \mathfrak{X}_{good}^2(M)$ be an infinitesimal deformation.

W unobstructed
 $\Rightarrow \phi(W)$ unobstructed deformation of \mathcal{F} .

Proposition

The converse does not hold.

Intuition: Given a path of foliations $\{\mathcal{F}_t\}$ through \mathcal{F} , in general you don't know how to put a leaf-wise symplectic form on \mathcal{F}_t for all t .

Further, you would want regular Poisson structures $\{Z_t\}$ with $\frac{d}{dt}|_0 Z_t = W$.

Infinitesimal deformations and foliations (I)

There exist infinitesimal deformations of Π (as regular Poisson str.) which are **obstructed**, i.e. can't be prolonged to a smooth curve of MC elements.

Denote

$$\phi: \mathfrak{X}_{good}^\bullet(M)[1] \xrightarrow{\omega^\flat} \Omega^\bullet(\mathcal{F}; G).$$

Let $W \in \mathfrak{X}_{good}^2(M)$ be an infinitesimal deformation.

W unobstructed
 $\Rightarrow \phi(W)$ unobstructed deformation of \mathcal{F} .

Proposition

The converse does not hold.

Intuition: Given a path of foliations $\{\mathcal{F}_t\}$ through \mathcal{F} , in general you don't know how to put a leaf-wise symplectic form on \mathcal{F}_t for all t .

Further, you would want regular Poisson structures $\{Z_t\}$ with $\frac{d}{dt}|_0 Z_t = W$.

Infinitesimal deformations and foliations (II)

Example: On $M = S^1 \times \mathbb{T}^4$,

$$\begin{aligned}\Pi &= \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3} \wedge \frac{\partial}{\partial x_4}, \\ W &= f(\psi) \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3} \wedge \frac{\partial}{\partial \psi}\end{aligned}$$

where $f(\psi)$ non-constant.

(Apply Kuranishi criterion.)

Remark:

There are $\Pi \equiv (\mathcal{F}, \omega)$ with this property:

- the space of regular Poisson structures is “not smooth at Π ”
(there exists an obstructed infinitesimal deformation)
- the space of foliations is “smooth at \mathcal{F} ”
(all infinitesimal deformation are unobstructed)

Infinitesimal deformations and foliations (III)

Remark:

Infinitesimal deformations $W \in \mathfrak{X}^2(\mathcal{F})$ are unobstructed: a prolongation is given by the path of symplectic foliations

$$t \mapsto (\mathcal{F}, \omega + tB_W)$$

where $B_W := (\wedge^2 \omega^\flat)(W)$.

Corollary

Infinitesimal deformations $W \in \mathfrak{X}^2_{good}(M)$ with

$$[\phi(W)] = 0 \in H^1(\mathcal{F}; G)$$

are unobstructed, provided M is compact.

Infinitesimal deformations and foliations (IV)

Proposition

Suppose $\text{rank}(\mathcal{F}) = 2$ and M is compact.

Then for all infinitesimal deformations $W \in \mathfrak{X}_{good}^2(M)$:

$\phi(W)$ unobstructed deformation of \mathcal{F}
 $\Rightarrow W$ unobstructed.

Remark:

Given $W = W_1 + W_2 \in \Gamma(\wedge^2 T\mathcal{F}) \oplus \Gamma(T\mathcal{F} \otimes G)$, a desired path of symplectic foliations is

$$(\mathcal{F}_t, (\gamma + \widetilde{B_{W_1}})|_{\mathcal{F}_t})$$

where

- \mathcal{F}_t is a path of foliations through \mathcal{F} ,
- $B_{W_1} := (\wedge^2 \omega^\flat)(W_1) \in \Omega^2(\mathcal{F})$,
- $\widetilde{B_{W_1}}$ denotes an arbitrary extension to $\Omega^2(M)$.

Infinitesimal deformations and Poisson structures

Let $W \in \mathfrak{X}_{good}^2(M)$ be an infinitesimal deformation. Clearly:

W unobstructed as a deformation of **regular** Poisson structures
 $\Rightarrow W$ unobstructed as a deformation of Poisson structures.

Proposition

The converse does not hold.

Example: On $M = \mathbb{T}^4$,

$$\Pi = h(x_3, x_4) \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}$$

$$W = \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_4}$$

where $h(x_3, x_4)$ no-where vanishing and non-constant.
($\Pi + tW$ is Poisson, non-regular. W is obstructed by the Kuranishi criterion.)

Infinitesimal deformations and Poisson structures

Let $W \in \mathfrak{X}_{good}^2(M)$ be an infinitesimal deformation. Clearly:

W unobstructed as a deformation of **regular** Poisson structures
 $\Rightarrow W$ unobstructed as a deformation of Poisson structures.

Proposition

The converse does not hold.

Example: On $M = \mathbb{T}^4$,

$$\begin{aligned}\Pi &= h(x_3, x_4) \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} \\ W &= \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_4}\end{aligned}$$

where $h(x_3, x_4)$ no-where vanishing and non-constant.
($\Pi + tW$ is Poisson, non-regular. W is obstructed by the Kuranishi criterion.)

A related question

Stability of symplectic foliations (\mathcal{F}, ω) :

Does any nearby foliation \mathcal{F}' carry a (nearby) leaf-wise symplectic structure?

Stability:

Surjectivity of

$$MC(\mathfrak{X}_{good}^\bullet(M)[1]) \xrightarrow{\phi} MC(\Omega^\bullet(\mathcal{F}; G)),$$

locally near 0.

Infinitesimal stability:

Surjectivity of

$$\text{Inf. deformations in } \mathfrak{X}_{good}^2(M) \xrightarrow{\phi} \text{Inf. deformations in } \Omega^1(\mathcal{F}; G).$$

Equivalently: surjectivity of the map in cohomology.

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

Dirac structures (I)

Recall:

$\mathbb{T}M := TM \oplus T^*M$ is a Courant algebroid with

- non-degenerate symmetric pairing $\langle -, - \rangle$ given by

$$\langle X + \alpha, Y + \beta \rangle := \iota_X \beta + \iota_Y \alpha,$$

- Dorfman bracket $[\![-, -]\!]$ on $\Gamma(\mathbb{T}M)$ given by

$$[\![X + \alpha, Y + \beta]\!] := [X, Y] + \mathcal{L}_X \beta - \iota_Y d\alpha.$$

Remark:

- For all $Z \in \mathfrak{X}^2(M)$:

$$\mathfrak{t}_Z : \mathbb{T}M \rightarrow \mathbb{T}M, (X, \alpha) \mapsto (X + Z^\sharp \alpha, \alpha)$$

preserves $\langle -, - \rangle$ but not $[\![-, -]\!]$.

- For all **closed** $B \in \Omega^2(M)$:

$$\mathfrak{t}_B : \mathbb{T}M \rightarrow \mathbb{T}M, (X, \alpha) \mapsto (X, \alpha + B^\flat X)$$

preserves $\langle -, - \rangle$ and $[\![-, -]\!]$.

Dirac structures (II)

Definition

A **Dirac structure** is a vector subbundle $L \subset \mathbb{T}M$ which is Lagrangian w.r.t. $\langle -, - \rangle$ and involutive w.r.t. $\llbracket -, - \rrbracket$.

Remark:

Bivector fields $Z \xleftrightarrow{1-1}$ Lagrangian subbundles L s. t. $L \pitchfork TM$

$$Z \longmapsto Gr(Z) = \{Z^\sharp \xi + \xi : \xi \in T^*M\}$$

Z is **Poisson** $\iff Gr(Z)$ is **Dirac**

Deformations of Dirac structures (I)

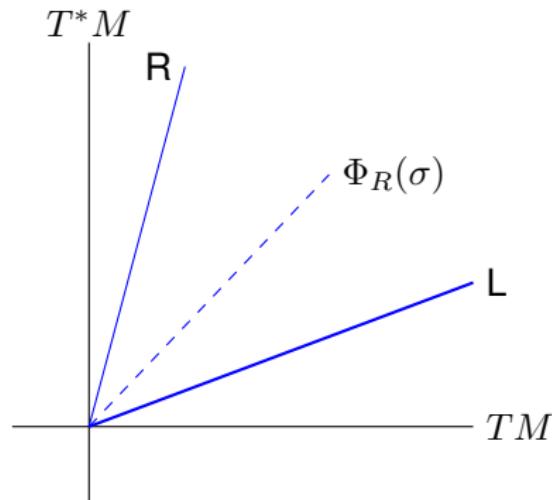
Fact

Let $L, R \subset TM$ be transverse Lagrangian subbundles.

There is a bijection

$$\Phi_R: \Gamma(\wedge^2 L^*) \cong \{\text{Lagrangian subbundles transverse to } R\}$$

$$\sigma \mapsto (\text{graph of the map } L \xrightarrow{\sigma^\flat} L^* \cong R).$$



Deformations of Dirac structures (II)

When is $\Phi_R(\sigma)$ Dirac?

Proposition ([Liu-Weinstein-Xu])

Let L be a Dirac structure, and R a complementary Dirac structure.

1 There is a DGLA

$$(\Gamma(\wedge L^*)[1], d_L, [,]_{L^*})$$

where

- d_L is the differential of Lie algebroid L ,
- $[,]_{L^*}$ is the bracket of the Lie algebroid $R \cong L^*$, extended by Leibniz rule.

2 Let $\sigma \in \Gamma(\wedge^2 L^*)[1]$.

σ is a Maurer-Cartan element

\Leftrightarrow

the graph $\Phi_R(\sigma)$ is a Dirac structure.

Deformations of Dirac structures (II)

When is $\Phi_R(\sigma)$ Dirac?

Proposition ([Liu-Weinstein-Xu])

Let L be a Dirac structure, and R a complementary Dirac structure.

1 There is a DGLA

$$(\Gamma(\wedge L^*)[1], d_L, [,]_{L^*})$$

where

- d_L is the differential of Lie algebroid L ,
- $[,]_{L^*}$ is the bracket of the Lie algebroid $R \cong L^*$, extended by Leibniz rule.

2 Let $\sigma \in \Gamma(\wedge^2 L^*)[1]$.

σ is a *Maurer-Cartan element*

\Leftrightarrow

the graph $\Phi_R(\sigma)$ is a *Dirac structure*.

- 1 Introduction
- 2 Deformations of regular Poisson structures
- 3 Relation to deformations of foliations
- 4 Infinitesimal deformations
- 5 The proof: Background on Dirac geometry
- 6 The proof: Deformations of regular Poisson structures

Parametrizing regular bivector fields (I)

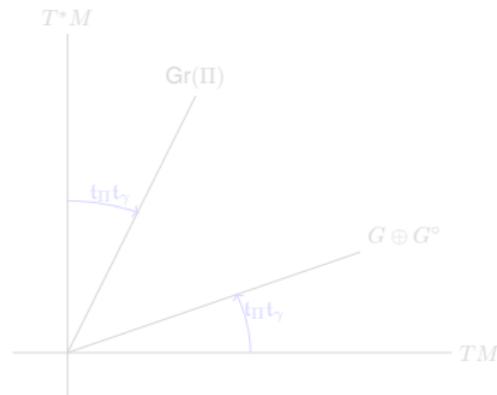
A complement to $Gr(\Pi)$ is TM , but ill-behaved w.r.t. regular Poisson str.

Idea: Deform the Dirac structure $Gr(\Pi)$ using $G \oplus G^\circ$ as a complement.

Using $Gr(\Pi) \cong T^*M$, Fact \Rightarrow

$$\begin{aligned}\mathfrak{X}^2(M) &\longleftrightarrow \{\text{Lagrangian subbundles } \dot{m} G \oplus G^\circ\} \\ Z &\mapsto t_\Pi t_\gamma Gr(Z)\end{aligned}$$

Here $\gamma \in \Omega^2(M)$ denotes the unique extension of ω satisfying $\ker(\gamma) = G$.



Parametrizing regular bivector fields (I)

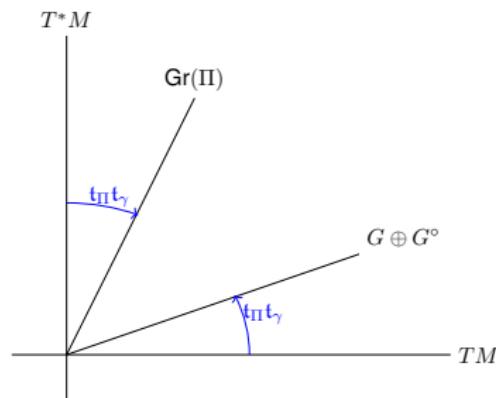
A complement to $Gr(\Pi)$ is TM , but ill-behaved w.r.t. regular Poisson str.

Idea: Deform the Dirac structure $Gr(\Pi)$ using $G \oplus G^\circ$ as a complement.

Using $Gr(\Pi) \cong T^*M$, Fact \Rightarrow

$$\begin{aligned}\mathfrak{X}^2(M) &\longleftrightarrow \{\text{Lagrangian subbundles } \pitchfork G \oplus G^\circ\} \\ Z &\mapsto t_\Pi t_\gamma Gr(Z)\end{aligned}$$

Here $\gamma \in \Omega^2(M)$ denotes the unique extension of ω satisfying $\ker(\gamma) = G$.



Parametrizing regular bivector fields (II)

Restricting the above bijection to “small” bivector fields yields

$$\begin{aligned}\mathfrak{X}^2(M)_{small} &\longleftrightarrow \{W \in \mathfrak{X}^2(M) \text{ s.t. } Gr(W) \pitchfork G \oplus G^\circ\} \\ Z &\longmapsto \Pi + Z^\gamma\end{aligned}$$

where Z^γ = (gauge transformation of Z by γ), i.e. $Gr(Z^\gamma) = t_\gamma(Gr(Z))$.

Lemma

For all $Z \in \mathfrak{X}^2(M)_{small}$:

$$Z \in \mathfrak{X}^2_{good}(M) \Leftrightarrow \Pi + Z^\gamma \text{ has constant rank.}$$

Proposition A

We have a bijection

$$\begin{aligned}(\mathfrak{X}^2_{good}(M))_{small} &\longleftrightarrow \{W \in \mathfrak{X}^2(M) \text{ regular s.t. } \text{im } W^\sharp \pitchfork G\} \\ Z &\longmapsto \Pi + Z^\gamma\end{aligned}$$

Parametrizing regular bivector fields (II)

Restricting the above bijection to “small” bivector fields yields

$$\begin{aligned}\mathfrak{X}^2(M)_{small} &\longleftrightarrow \{W \in \mathfrak{X}^2(M) \text{ s.t. } Gr(W) \pitchfork G \oplus G^\circ\} \\ Z &\longmapsto \Pi + Z^\gamma\end{aligned}$$

where Z^γ = (gauge transformation of Z by γ), i.e. $Gr(Z^\gamma) = t_\gamma(Gr(Z))$.

Lemma

For all $Z \in \mathfrak{X}^2(M)_{small}$:

$$Z \in \mathfrak{X}^2_{good}(M) \Leftrightarrow \Pi + Z^\gamma \text{ has constant rank.}$$

Proposition A

We have a bijection

$$\begin{aligned}(\mathfrak{X}^2_{good}(M))_{small} &\longleftrightarrow \{W \in \mathfrak{X}^2(M) \text{ regular s.t. } \text{im } W^\sharp \pitchfork G\} \\ Z &\longmapsto \Pi + Z^\gamma\end{aligned}$$

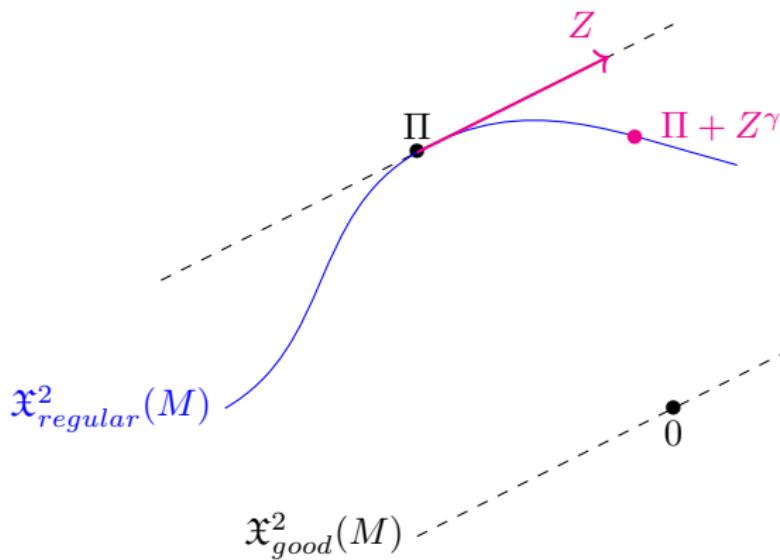
$\mathfrak{X}^2(M)$ 

Figure: A “submanifold chart” for $\mathfrak{X}^2_{regular}(M)$

Deformations of regular Poisson structures (I)

Proposition [LWX] \Rightarrow

a DGLA structure on $\Gamma(\wedge Gr(\Pi)^*)[1]$ governing deformations of the Dirac structure $Gr(\Pi)$.

We now describe this using $Gr(\Pi) \cong T^*M$.

The DGLA becomes

$$(\mathfrak{X}^\bullet(M)[1], d_\Pi, [,]_\gamma)$$

where

$$[X, Y]_\gamma = [X_G, Y_G] - \Pi^\sharp(\mathcal{L}_{X_G} \iota_Y \gamma - \mathcal{L}_{Y_G} \iota_X \gamma)$$

for vector fields X, Y (extend to $\mathfrak{X}^\bullet(M)$ by the Leibniz rule).

Remark:

$pr_G: TM \rightarrow TM$ is a Nijenhuis endomorphism.

Further $[X, Y]_\gamma = [X, Y]_{pr_G} - \Pi^\sharp(\iota_Y \iota_X d\gamma)$.

Deformations of regular Poisson structures (I)

Proposition [LWX] \Rightarrow

a DGLA structure on $\Gamma(\wedge Gr(\Pi)^*)[1]$ governing deformations of the Dirac structure $Gr(\Pi)$.

We now describe this using $Gr(\Pi) \cong T^*M$.

The DGLA becomes

$$(\mathfrak{X}^\bullet(M)[1], d_\Pi, [,]_\gamma)$$

where

$$[X, Y]_\gamma = [X_G, Y_G] - \Pi^\sharp(\mathcal{L}_{X_G} \iota_Y \gamma - \mathcal{L}_{Y_G} \iota_X \gamma)$$

for vector fields X, Y (extend to $\mathfrak{X}^\bullet(M)$ by the Leibniz rule).

Remark:

$pr_G: TM \rightarrow TM$ is a Nijenhuis endomorphism.

Further $[X, Y]_\gamma = [X, Y]_{pr_G} - \Pi^\sharp(\iota_Y \iota_X d\gamma)$.

Deformations of regular Poisson structures (II)

Proposition B

The map $Z \mapsto t_\Pi t_\gamma Gr(Z)$ induces a bijection

$$MC(\mathfrak{X}^\bullet(M)[1], d_\Pi, [,]_\gamma) \longleftrightarrow \{ \text{Dirac structures transverse to } G \oplus G^\circ \}.$$

Lemma

$\mathfrak{X}_{good}^\bullet(M)[1]$ is a sub-DGLA.

Propositions A and B together give:

Theorem

The DGLA

$$(\mathfrak{X}_{good}^\bullet(M)[1], d_\Pi, [,]_\gamma)$$

controls the deformations of (\mathcal{F}, ω) .

Indeed, we have a bijection

$$MC(\mathfrak{X}_{good}^\bullet(M)[1])_{small} \longleftrightarrow \{ \text{Symplectic foliations } (\mathcal{F}', \omega') \text{ with } T\mathcal{F}' \pitchfork G \}$$
$$Z \mapsto \Pi + Z^\gamma$$

Deformations of regular Poisson structures (II)

Proposition B

The map $Z \mapsto t_\Pi t_\gamma Gr(Z)$ induces a bijection

$$MC(\mathfrak{X}^\bullet(M)[1], d_\Pi, [,]_\gamma) \longleftrightarrow \{\text{Dirac structures transverse to } G \oplus G^\circ\}.$$

Lemma

$\mathfrak{X}_{good}^\bullet(M)[1]$ is a sub-DGLA.

Propositions A and B together give:

Theorem

The DGLA

$$(\mathfrak{X}_{good}^\bullet(M)[1], d_\Pi, [,]_\gamma)$$

controls the deformations of (\mathcal{F}, ω) .

Indeed, we have a bijection

$$MC(\mathfrak{X}_{good}^\bullet(M)[1])_{small} \longleftrightarrow \{\text{Symplectic foliations } (\mathcal{F}', \omega') \text{ with } T\mathcal{F}' \pitchfork G\}$$

$$Z \mapsto \Pi + Z^\gamma$$

References

- R. L. Fernandes & P. Frejlich
An h-principle for symplectic foliations
IMRN **2012** (2012): 1505-1518
- S. Geudens, A. Tortorella and M. Zambon
Deformations of symplectic foliations
in progress
- Z.-J. Liu, A. Weinstein, & P. Xu
Manin triples for Lie bialgebroids
J. Differential Geom. **45** (1997) 547-574
- F. Schätz & M. Zambon,
Deformations of Pre-Symplectic Structures: a Dirac Geometry Approach
SIGMA **14** (2018), 128, 12 pages

Thank you for your attention