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Symplectic Foliations
Definition
A symplectic foliation on M is a foliation F endowed with a leafwise symplectic
structure, i.e. a non-degenerate ω ∈ Ω2(F) := Γ(∧2T ∗F) s. t. dFω = 0.

Definition
A Poisson structure Π ∈ X2(M) is regular if Π] : T ∗M → TM has constant
rank.

Regular Poisson structures Π←→ Symplectic foliations (F , ω)

Π 7−→ (F = im Π], ω[ = −(Π|]TF )−1)

Remark: (h-Principle for Symplectic Foliations) [Fernandes-Frejlich]

Let Π be a regular bivector field on an open manifold M . Then:
Π is homotopic, through regular bivector fields, to a regular Poisson structure
⇔ the distribution im Π] is homotopic to an involutive distribution.
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Deformations of Poisson structures

Often deformations are encoded by an algebraic structure.

Example:
Let π ∈ X2(M) be a Poisson structure.
A deformation of π is a Poisson structure π + π̃, where π̃ ∈ X2(M).

π + π̃ Poisson

⇔ 0 = [π + π̃, π + π̃] = 2[π, π̃] + [π̃, π̃] = 2( dππ̃ +
1

2
[π̃, π̃]︸ ︷︷ ︸

Maurer-Cartan equation

)

⇔ π̃ is a MC element of the DGLA (X•(M)[1], dπ, [·, ·])
(i.e. it is a degree 1 element satisfying the Maurer-Cartan equation).
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Goals

Let Π be a regular Poisson structure.

Goals:
Find a DGLA whose Maurer Cartan elements parametrize regular
Poisson structures at Π

Use it to investigate the “smoothness at Π" of the space of regular
Poisson structures
Use it to relate deformations of regular Poisson structures to those of the
underlying foliations

Immaterial choice: Choose a distribution G s.t. TF ⊕G = TM .
Simplifying assumption: G is involutive.
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Good multivector fields
Problem:
{bivector fields of fixed constant rank} is not an affine subspace of X2(M).

X•good(M) := {W ∈ X•(M) : ιTF◦ιTF◦W = 0}
= Γ(∧•TF)⊕ Γ(∧•−1TF ⊗G)

= C∞(M)⊕ Γ(TM)⊕ Γ(∧2TF ⊕ (TF ⊗G))⊕ ...

Lemma
Let {Πt} be a smooth curve of regular Poisson structures, then

d

dt
|0Πt ∈ X2

good(M)

and is dΠ-closed.

Hence
TΠ{Regular Poisson str} = (X2

good(M))closed.

We will show that X•good(M) carries the desired DGLA structure.
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Parametrizing regular bivector fields

Let γ ∈ Ω2(M) be the unique extension of ω satisfying ker(γ) = G.

Definition
Let Z ∈ X2(M) be “small”. The gauge transformation of Z by γ is the unique
bivector field Zγ s.t.

Gr(Zγ) = (Z]ξ, ξ + ιZ]ξγ).

Proposition A
We have a bijection

(X2
good(M))small←→{W ∈ X2(M) regular s.t. imW ] t G}

Z 7−→ Π + Zγ
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X2(M)

•
0

X2
good(M)

•Π

X2
regular(M)

Z

• Π + Zγ

Figure: A “submanifold chart” for X2
regular(M)

Theorem
The DGLA

(X•good(M)[1], dΠ, [ , ]γ)

controls the deformations of (F , ω). Indeed, we have a bijection

MC(X•good(M)[1])small ←→ {Symplectic foliations (F ′, ω′) with TF ′ t G}

Z 7−→ Π + Zγ

Here [ , ]γ is a graded Lie bracket, specified later.
6 / 24



1 Introduction

2 Deformations of regular Poisson structures

3 Relation to deformations of foliations

4 Infinitesimal deformations

5 The proof: Background on Dirac geometry

6 The proof: Deformations of regular Poisson structures



Deformations of foliations and foliated forms

Recall
There is a DGLA structure on

Ω•(F ;G) := Γ(∧T ∗F ⊗G),

with differential d∇ the Bott-connection.
It controls the deformations of the foliation F :[Huebschmann, Vitagliano, Ji]

MC(Ω•(F ;G))←→ {F ′ s.t. TF ′ t G}
η 7−→ Gr(η) ⊂ TF ⊕G = TM.

Remark:
The complex

(X•(F) := Γ(∧TF), dΠ)

is isomorphic to (Ω(F), dF ), via ω[.
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A short exact sequence

Proposition
There is a short exact sequence of DGLA’s

{0} → X•(F)[1] ↪→ X•good(M)[1]→ Ω•(F ;G)→ {0}

Remark:
In degree 1, it reads

Γ(∧2TF) ↪→ Γ(∧2TF)⊕ Γ(TF ⊗G)
ω[

→ Γ(T ∗F ⊗G).

Remark:
Given a MC element Z ∈ X2(F) (a cocycle), the corresponding deformation of
(F , ω) is

(F , ω +B),

where B := (∧2ω[)(Z) ∈ Ω2
closed(F).

In other words, it is the gauge transformation ΠB̃ for any extension of B.
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Infinitesimal deformations
Let Z(t) be a curve of Maurer-Cartan elements in X2

good(M), with Z(0) = 0.
Since

0 = dΠ(Z(t)) +
1

2
[Z(t), Z(t)]γ

we have

dΠ(Z ′(0)) = 0

[Z ′(0), Z ′(0)]γ = dΠ(Z ′′(0)).

Definition
An infinitesimal deformation of Π is W ∈ X2

good(M) such that

dΠW = 0︸ ︷︷ ︸
linearized Maurer-Cartan equation

Corollary (Kuranishi criterion)
An infinitesimal deformation W can be extended to a curve of deformations

⇒ [W,W ]γ ∈ X3
good(M) is exact.
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Infinitesimal deformations and foliations (I)

There exist infinitesimal deformations of Π (as regular Poisson str.) which are
obstructed, i.e. can’t be prolonged to a smooth curve of MC elements.

Denote
φ : X•good(M)[1]

ω[

→ Ω•(F ;G).

Let W ∈ X2
good(M) be an infinitesimal deformation.

W unobstructed
⇒ φ(W ) unobstructed deformation of F .

Proposition
The converse does not hold.

Intuition: Given a path of foliations {Ft} through F , in general you don’t know
how to put a leaf-wise symplectic form on Ft for all t.
Further, you would want regular Poisson structures {Zt} with d

dt |0Zt = W .
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Infinitesimal deformations and foliations (II)

Example: On M = S1 × T4,

Π =
∂

∂x1
∧ ∂

∂x2
+

∂

∂x3
∧ ∂

∂x4
,

W = f(ψ)
∂

∂x1
∧ ∂

∂x2
+

∂

∂x3
∧ ∂

∂ψ

where f(ψ) non-constant.
(Apply Kuranishi criterion.)

Remark:
There are Π ≡ (F , ω) with this property:

the space of regular Poisson structures is “not smooth at Π”
(there exists an obstructed infinitesimal deformation)
the space of foliations is “smooth at F”
(all infinitesimal deformation are unobstructed)
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Infinitesimal deformations and foliations (III)

Remark:
Infinitesimal deformations W ∈ X2(F) are unobstructed: a prolongation is
given by the path of symplectic foliations

t 7→ (F , ω + tBW )

where BW := (∧2ω[)(W ).

Corollary
Infinitesimal deformations W ∈ X2

good(M) with

[φ(W )] = 0 ∈ H1(F ;G)

are unobstructed, provided M is compact.
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Infinitesimal deformations and foliations (IV)

Proposition
Suppose rank(F) = 2 and M is compact.
Then for all infinitesimal deformations W ∈ X2

good(M):

φ(W ) unobstructed deformation of F
⇒ W unobstructed.

Remark:
Given W = W1 +W2 ∈ Γ(∧2TF)⊕ Γ(TF ⊗G), a desired path of symplectic
foliations is

(Ft, (γ + B̃W1
)|Ft

)

where
Ft is a path of foliations through F ,
BW1 := (∧2ω[)(W1) ∈ Ω2(F),

B̃W1 denotes an arbitrary extension to Ω2(M).
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Infinitesimal deformations and Poisson structures

Let W ∈ X2
good(M) be an infinitesimal deformation. Clearly:

W unobstructed as a deformation of regular Poisson structures
⇒ W unobstructed as a deformation of Poisson structures.

Proposition
The converse does not hold.

Example: On M = T4,

Π = h(x3, x4)
∂

∂x1
∧ ∂

∂x2

W =
∂

∂x1
∧ ∂

∂x3
+

∂

∂x2
∧ ∂

∂x4

where h(x3, x4) no-where vanishing and non-constant.
(Π + tW is Poisson, non-regular. W is obstructed by the Kuranishi criterion.)
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A related question

Stability of symplectic foliations (F , ω):
Does any nearby foliation F ′ carry a (nearby) leaf-wise symplectic structure?

Stability:
Surjectivity of

MC(X•good(M)[1])
φ→ MC(Ω•(F ;G)),

locally near 0.

Infinitesimal stability:
Surjectivity of

Inf. deformations in X2
good(M)

φ→ Inf. deformations in Ω1(F ;G).

Equivalently: surjectivity of the map in cohomology.
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Dirac structures (I)
Recall:
TM := TM ⊕ T ∗M is a Courant algebroid with

non-degenerate symmetric pairing 〈−,−〉 given by

〈X + α, Y + β〉 := ιXβ + ιY α,

Dorfman bracket [[−,−]] on Γ(TM) given by

[[X + α, Y + β]] := [X,Y ] + LXβ − ιY dα.

Remark:
For all Z ∈ X2(M):

tZ : TM → TM, (X,α) 7→ (X + Z]α, α)

preserves 〈−,−〉 but not [[−,−]].
For all closed B ∈ Ω2(M):

tB : TM → TM, (X,α) 7→ (X,α+B[X)

preserves 〈−,−〉 and [[−,−]].
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Dirac structures (II)

Definition
A Dirac structure is a vector subbundle L ⊂ TM which is Lagrangian w.r.t.
〈−,−〉 and involutive w.r.t. [[−,−]].

Remark:

Bivector fields Z 1−1←→ Lagrangian subbundles L s. t. L t TM

Z 7−→ Gr(Z) = {Z]ξ + ξ : ξ ∈ T ∗M}
Z is Poisson ⇐⇒ Gr(Z) is Dirac

17 / 24



Deformations of Dirac structures (I)
Fact
Let L,R ⊂ TM be transverse Lagrangian subbundles.
There is a bijection

ΦR : Γ(∧2L∗) ∼= {Lagrangian subbundles transverse to R}

σ 7→ (graph of the map L σ[

→ L∗ ∼= R).

T ∗M

TM

L

R

ΦR(σ)
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Deformations of Dirac structures (II)

When is ΦR(σ) Dirac?

Proposition ([Liu-Weinstein-Xu])
Let L be a Dirac structure, and R a complementary Dirac structure.

1 There is a DGLA
(Γ(∧L∗)[1], dL, [ , ]L∗)

where
- dL is the differential of Lie algebroid L,
- [ , ]L∗ is the bracket of the Lie algebroid R ∼= L∗, extended by Leibniz rule.

2 Let σ ∈ Γ(∧2L∗)[1].

σ is a Maurer-Cartan element
⇔

the graph ΦR(σ) is a Dirac structure.
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Parametrizing regular bivector fields (I)
A complement to Gr(Π) is TM , but ill-behaved w.r.t. regular Poisson str.
Idea: Deform the Dirac structure Gr(Π) using G⊕G◦ as a complement.

Using Gr(Π) ∼= T ∗M , Fact ⇒

X2(M)←→{Lagrangian subbundles t G⊕G◦}
Z 7→ tΠtγGr(Z)

Here γ ∈ Ω2(M) denotes the unique extension of ω satisfying ker(γ) = G.

Gr(Π)

G⊕G◦

tΠtγ

tΠtγ

TM

T ∗M
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Parametrizing regular bivector fields (II)
Restring the above bijection to “small” bivector fields yields

X2(M)small←→{W ∈ X2(M) s.t. Gr(W ) t G⊕G◦}
Z 7−→ Π + Zγ

where Zγ =(gauge transformation of Z by γ), i.e. Gr(Zγ) = tγ(Gr(Z)).

Lemma
For all Z ∈ X2(M)small:

Z ∈ X2
good(M)⇔ Π + Zγ has constant rank.

Proposition A
We have a bijection

(X2
good(M))small←→{W ∈ X2(M) regular s.t. imW ] t G}

Z 7−→ Π + Zγ
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Deformations of regular Poisson structures (I)

Proposition [LWX]⇒
a DGLA structure on Γ(∧Gr(Π)∗)[1] governing deformations of the Dirac
structure Gr(Π).
We now describe this using Gr(Π) ∼= T ∗M .

The DGLA becomes
(X•(M)[1], dΠ, [ , ]γ)

where
[X,Y ]γ = [XG, YG]−Π](LXG

ιY γ − LYG
ιXγ)

for vector fields X,Y (extend to X•(M) by the Leibniz rule).

Remark:
prG : TM → TM is a Nijenhuis endomorphism.
Further [X,Y ]γ = [X,Y ]prG −Π](ιY ιXdγ).
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Deformations of regular Poisson structures (II)
Proposition B
The map Z 7−→ tΠtγGr(Z) induces a bijection

MC(X•(M)[1], dΠ, [ , ]γ)←→{Dirac structures transverse to G⊕G◦}.

Lemma
X•good(M)[1] is a sub-DGLA.

Propositions A and B together give:

Theorem
The DGLA

(X•good(M)[1], dΠ, [ , ]γ)

controls the deformations of (F , ω).
Indeed, we have a bijection

MC(X•good(M)[1])small ←→ {Symplectic foliations (F ′, ω′) with TF ′ t G}

Z 7−→ Π + Zγ
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