

# Deformations of presymplectic forms via Dirac geometry

Marco Zambon

based on joint work with  
Florian Schätz

# Pre-symplectic forms

## Definition

Let  $M$  be a manifold. A **pre-symplectic form** is  $\eta \in \Omega^2(M)$  for which

- $\ker(\eta)$  has constant rank
- $d\eta = 0$ .

**Example:** If  $M$  is a coisotropic submanifold of a symplectic manifold  $(X, \Omega)$ , then  $(M, \iota^*\Omega)$  is pre-symplectic.

**Remark:**  $K := \ker(\eta)$  is an involutive distribution, hence tangent to a foliation.

- If  $M/K$  is smooth,  $\eta$  induces a symplectic form there.
- In general,  $\eta$  can be viewed as a “transversely symplectic form” on the foliated manifold  $M$ .

We look at deformations of  $\eta$ , i.e. pre-symplectic forms nearby.

For instance, on  $(\mathbb{R}^4, dx_1 \wedge dx_2)$ , a nearby pre-symplectic form is

$$dx_1 \wedge dx_2 + f(x_1, x_3)dx_1 \wedge dx_3.$$

# Deformations

Often deformations are encoded by an algebraic structure.

**Example:** Let  $\pi \in \Gamma(\wedge^2 TM)$  be a Poisson structure.

A **deformation of  $\pi$**  is a Poisson structure  $\pi + \tilde{\pi}$ , where  $\tilde{\pi} \in \Gamma(\wedge^2 TM)$ .

$\pi + \tilde{\pi}$  Poisson

$$\Leftrightarrow 0 = [\pi + \tilde{\pi}, \pi + \tilde{\pi}] = 2[\pi, \tilde{\pi}] + [\tilde{\pi}, \tilde{\pi}] = 2\left(\underbrace{d_\pi \tilde{\pi} + \frac{1}{2}[\tilde{\pi}, \tilde{\pi}]}_{\text{Maurer-Cartan equation}}\right)$$

$\Leftrightarrow \tilde{\pi}$  satisfies the Maurer-Cartan equation

of the DGLA  $(\mathfrak{X}^{\text{multi}}(M)[1], d_\pi, [\cdot, \cdot])$ .

## The goal

Goal: Find an algebraic structure governing deformations of  $\eta$ .

Notice:  $\{2\text{-forms of constant rank } k\}$  is not an affine subspace of  $\Omega^2(M)$ .

Strategy:

Step A: identify

$$\{\text{constant rank 2-form near } \eta\} \cong \text{a vector space}$$

Step B: Find an  $L_\infty$ -algebra structure such that

$$\{\text{pre-symplectic forms near } \eta\} \cong \text{solutions of the MC equation}$$

## The symplectic case

Suppose that  $\omega$  is symplectic.

### 2-form approach

If  $\tilde{\omega} \in \Omega^2(M)$  is small, then

$\omega + \tilde{\omega}$  is symplectic

$$\Leftrightarrow d\tilde{\omega} = 0$$

$\Leftrightarrow \tilde{\omega}$  satisfies the Maurer-Cartan equation of  $(\Omega(M)[1], d)$ .

# The symplectic case

## Poisson approach

Let  $\pi$  be the Poisson structure corresponding to  $\omega$ .

$$\wedge\pi^\sharp: (\Omega(M)[1], d, [\cdot, \cdot]_\pi) \rightarrow (\mathfrak{X}^{\text{multi}}(M)[1], -d_\pi, [\cdot, \cdot])$$

is an isomorphism of DGLAs.

Here  $[\cdot, \cdot]_\pi$  is the **Koszul bracket** (it extends  $[df, dg]_\pi = d\{f, g\}$ ).

$$\begin{array}{ccc} \{\text{symplectic forms near } \omega\} & \xleftarrow{\text{inversion}} & \{\text{Poisson structures near } \pi\} \\ & & \uparrow \bullet + \pi \\ \{\text{small } \beta \text{ s.t. } d\beta + \frac{1}{2}[\beta, \beta]_\pi = 0\} & \xleftrightarrow{\wedge^2\pi^\sharp} & \{\text{small } \tilde{\pi} \text{ s.t. } -d_\pi\tilde{\pi} + \frac{1}{2}[\tilde{\pi}, \tilde{\pi}] = 0\} \end{array}$$

We obtain a bijection between

- symplectic forms nearby  $\omega$
- small Maurer-Cartan elements of  $(\Omega(M)[1], d, [\cdot, \cdot]_\pi)$

It is this approach that we extend to pre-symplectic forms.

# Parametrizing constant rank 2-forms

Let  $\eta \in \Omega^2(M)$  be of constant rank  $\rightsquigarrow K := \ker(\eta)$  is a distribution.  
Denote

$$\Omega_{hor}^i(M) := \{\alpha \in \Omega^i(M) : \alpha|_{\wedge^i K} = 0\}.$$

## Lemma

Let  $\{\eta_t\}$  be a path of constant rank 2-forms with  $\eta_0 = \eta$ . Then

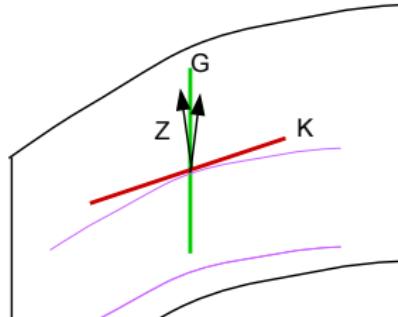
$$\frac{d}{dt}|_0 \eta_t \in \Omega_{hor}^2(M).$$

# Parametrizing constant rank 2-forms

Choose  $G$  such that  $K \oplus G = TM$

$\rightsquigarrow \eta|_{G \times G}$  non-degenerate

$\rightsquigarrow Z \in \Gamma(\wedge^2 G)$ .



Define  $F: \Omega_{small}^2(M) \rightarrow \Omega^2(M)$  by

$$(F(\beta))^\sharp = \beta^\sharp (1 + Z^\sharp \beta^\sharp)^{-1}.$$

## Proposition (A)

*There is a bijection*

$$\begin{aligned} \Omega_{hor, small}^2(M) &\xrightarrow{\cong} \{ \text{Constant rank 2-forms with kernel transverse to } G \} \\ \beta &\mapsto \eta + F(\beta) \end{aligned}$$

**Remark:**  $\Omega_{hor}^2(M) = \Gamma(\wedge^2 G^*) \oplus \Gamma(K^* \otimes G^*)$ .

# $L_\infty[1]$ -algebras

## Definition

A  **$L_\infty[1]$ -algebra** consists of a graded vector space  $V = \bigoplus_{i \in \mathbb{Z}} V_i$  and

$$[\cdot, \dots, \cdot]_n : \otimes^n V \longrightarrow V \quad (n \geq 1)$$

graded symmetric, of degree 1, satisfying “higher Jacobi identities”:

- $d^2 = 0$ , where  $d := [\cdot]_1$
- $d[a, b]_2 = [da, b]_2 \pm [a, db]_2$
- $[[a, b]_2, c]_2 \pm c.p. = \pm d[a, b, c]_3 \pm ([da, b, c]_3 \pm c.p.)$
- ...

## Definition

A **Maurer-Cartan element** of a  $L_\infty[1]$ -algebra  $V$  is an element  $Q \in V_0$  satisfying

$$\sum_{n=1}^{\infty} \frac{1}{n!} [Q, \dots, Q]_n = 0.$$

# $L_\infty[1]$ -algebras

## Examples

- i) If  $V$  is concentrated in degree 0, i.e.  $V = V_0$ , then  $V$  is a **Lie algebra**.
- ii) If only  $d := [\cdot]_1$  is non-zero, then  $V$  is a **chain complex**.

The Maurer-Cartan equation reads

$$dQ = 0.$$

- iii) If only  $d := [\cdot]_1$  and  $[\cdot, \cdot]_2$  are non-zero, then  $W$  is a **differential graded Lie algebra** (DGLA).

The Maurer-Cartan equation reads

$$dQ + \frac{1}{2}[Q, Q]_2 = 0.$$

# The $L_\infty[1]$ -algebra associated to a bivector field

Let  $Z$  be a bivector field on  $M$ .

## Proposition (B)

- $\Omega(M)[2]$  has a  $L_\infty[1]$ -algebra structure, whose only non-trivial multibrackets are:

- 1 the de Rham differential  $d$
- 2 the Koszul bracket  $[\cdot, \cdot]_Z$
- 3

$$(\alpha, \beta, \gamma) \mapsto \left( \alpha^\sharp \wedge \beta^\sharp \wedge \gamma^\sharp \right) \left( \frac{1}{2} [Z, Z] \right)$$

- a 2-form  $\beta$  is a small Maurer-Cartan element of  $\Omega(M)[2] \Leftrightarrow$  the 2-form  $F(\beta)$  is closed.



## Main theorem: the $L_\infty[1]$ -algebra associated to $\eta$

Let  $\eta \in \Omega^2(M)$  be a pre-symplectic form  $\rightsquigarrow K := \ker(\eta)$  is a distribution.  
Choose  $G$  such that  $K \oplus G = TM \rightsquigarrow Z \in \Gamma(\wedge^2 G)$  bivector field.

Remark:

- i)  $Z$  is not Poisson in general (it is iff  $G$  is involutive)
- ii)  $[Z, Z]$  has no component in  $\wedge^3 G$ , because  $Z$  descends to a Poisson structure on  $M/K$  (locally).

## Theorem

- $\Omega_{hor}(M)[2]$  is a  $L_\infty[1]$ -subalgebra of  $\Omega(M)[2]$   
(with the  $L_\infty[1]$ -algebra structure associated to the bivector field  $Z$ )
- The map  $\beta \mapsto \eta + F(\beta)$  gives a bijection

$$\begin{aligned} \{ \text{small Maurer-Cartan elements of } \Omega_{hor}(M)[2] \} &\longrightarrow \\ \{ \text{pre-symplectic forms with kernel transverse to } G \} \end{aligned}$$

- First item: follows from Remark
- Second item: follows from Propositions A and B

# Dirac structures

The vector bundle  $TM \oplus T^*M$  is an instance of Courant algebroid, with the non-degenerate pairing

$$\langle (X, \alpha), (Y, \beta) \rangle := \alpha(Y) + \beta(X)$$

and the Dorfman bracket

$$[(X, \alpha), (Y, \beta)] = ([X, Y], \mathcal{L}_X \beta - \iota_Y d\alpha).$$

## Definition

A **Dirac structure** is a Lagrangian subbundle  $L \subset TM \oplus T^*M$  such that  $\Gamma(L)$  is involutive.

## Examples:

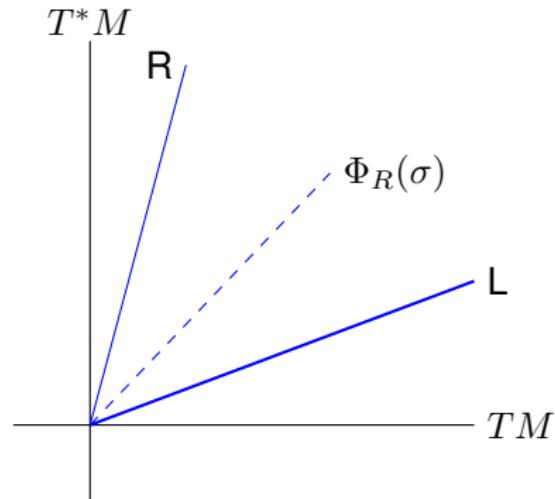
Given  $\omega \in \Omega^2(M)$ : its graph is Dirac  $\Leftrightarrow \omega$  is closed.

Given  $\pi \in \mathfrak{X}^2(M)$ : its graph is Dirac  $\Leftrightarrow \pi$  is Poisson.

# Dirac structures

Suppose  $L, R$  are transverse Lagrangian subbundles. There is a bijection

$$\begin{aligned}\Phi_R: \Gamma(\wedge^2 L^*) &\cong \{\text{Lagrangian subbundles transverse to } R\} \\ \sigma &\mapsto (\text{graph of the map } L \xrightarrow{\sigma^\sharp} L^* \cong R).\end{aligned}$$



When is  $\Phi_R(\sigma)$  Dirac?

# Dirac structures

## Proposition (Deformations of Dirac structures, [Lwx]... )

Let  $L$  be a Dirac structure and  $R$  a complementary Lagrangian subbundle.

- $\Gamma(\wedge L^*)[2]$  has an  $L_\infty[1]$ -algebra structure, whose only non-trivial multibrackets are:
  - 1  $d_L$ , the differential associated to the Lie algebroid  $L$ ,
  - 2 the extention of  $[\cdot, \cdot]_{L^*} := \text{pr}_R[\cdot, \cdot]$ , the bracket of the almost Lie algebroid  $R \cong L^*$ ,
  - 3

$$\alpha, \beta, \gamma \mapsto (\alpha^\sharp \wedge \beta^\sharp \wedge \gamma^\sharp) \psi$$

where  $\psi \in \Gamma(\wedge^3 L)$  is  $\langle \text{pr}_L([\cdot, \cdot]), \cdot \rangle|_{\wedge^3 L^*}$ .

- An element  $\sigma \in \Gamma(\wedge^2 L^*)[2]$  is a Maurer-Cartan element  $\Leftrightarrow$  the graph  $\{(X - \iota_X \sigma) : X \in L\}$  is a **Dirac structure**.

## Deforming $\eta$ as a Dirac structure

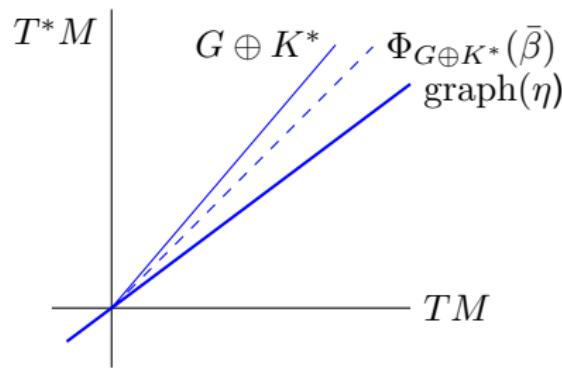
Let  $\eta$  be a pre-symplectic form  $\rightsquigarrow K = \ker(\eta)$ .

Choose a complement  $G \rightsquigarrow Z \in \Gamma(\wedge^2 G)$ .

Idea: View  $\eta$  as a Dirac structure, and deform it using  $G \oplus K^*$  as a complement.

The Lagrangian subbundles near  $\text{graph}(\eta)$  are of the form  $\Phi_{G \oplus K^*}(\bar{\beta})$ , where

$$\bar{\beta} \in \Gamma(\wedge^2((\text{graph}(\eta))^*)) \cong \Omega^2(M) \ni \beta.$$

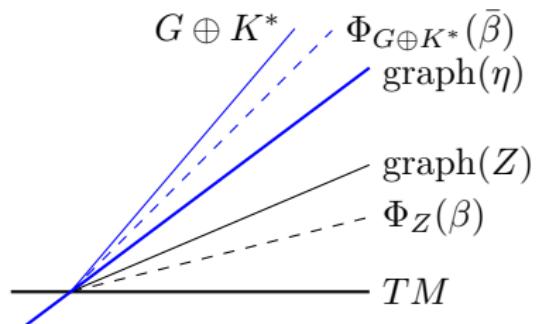


Lemma

$$\text{rank}(\Phi_{G \oplus K^*}(\bar{\beta}) \cap TM) = \text{rank}(K) \Leftrightarrow \beta \in \Omega_{hor}^2(M).$$

# Deforming $\eta$ as a Dirac structure

Apply the Courant algebroid automorphism  $\tau_{-\eta}: (X, \xi) \mapsto (X, \xi - \iota_X \eta)$ :



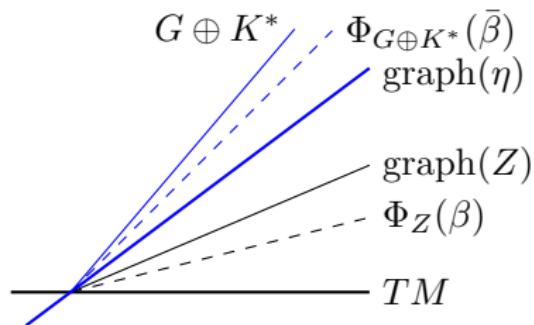
Consequence 1:

$$\begin{aligned}\Phi_Z(\beta) &= \text{graph}(F(\beta)) \\ \Rightarrow \Phi_{G+K^*}(\bar{\beta}) &= \text{graph}(\eta + F(\beta)) \\ \Rightarrow \text{Proposition A.}\end{aligned}$$



## Deforming $\eta$ as a Dirac structure

Apply the Courant algebroid automorphism  $\tau_{-\eta}: (X, \xi) \mapsto (X, \xi - \iota_X \eta)$ .



Consequence 2:

Deforming  $\text{graph}(\eta)$  using the complement  $G \oplus K^* \leftrightarrow$   
Deforming  $TM$  using the complement  $\text{graph}(Z)$

Apply the proposition on deformations of Dirac structures to the latter  
 $\Rightarrow$  Proposition B.



## Infinitesimal deformations

Let  $\beta(t)$  be a curve of Maurer-Cartan elements in  $\Omega_{hor}^2(M)$ , with  $\beta(0) = 0$ . Since

$$0 = d(\beta(t)) + \frac{1}{2}[\beta(t), \beta(t)]_2 + \frac{1}{3!}[\beta(t), \beta(t), \beta(t)]_3$$

we have

$$\begin{aligned} d(\beta'(0)) &= 0 \\ [\beta'(0), \beta'(0)]_2 &= d(\beta''(0)). \end{aligned}$$

### Definition

An **infinitesimal deformation** of  $\eta$  is  $B \in \Omega_{hor}^2(M)$  such that

$$\underbrace{dB = 0}_{\text{linearized Maurer-Cartan equation}}$$

### Corollary (Kuranishi criterium)

An infinitesimal deformation  $B$  can be extended to a curve of deformations

$$\Rightarrow [B, B]_2 \in d\Omega_{hor}^2(M).$$

# Obstructed infinitesimal deformations

## Proposition

*The infinitesimal deformations of  $\eta$  are generally **obstructed**, i.e. they might not be extended to a smooth curve of pre-symplectic forms.*

## Example

Let  $(M, \eta) = (\mathbb{T}^4, dx_3 \wedge dx_4)$ .

Then  $B = \cos(x_3)dx_1 \wedge dx_3 + \cos(x_4)dx_2 \wedge dx_4$  is an infinitesimal deformation, but

$$[B, B]_Z \notin d\Omega_{hor}^2(M).$$

(Here  $Z = \frac{\partial}{\partial x_3} \wedge \frac{\partial}{\partial x_4}$ .)

## Remarks on the $L_\infty[1]$ -algebra $\Omega_{hor}(M)[2]$

Let be  $\Omega_{hor}(M)[2]$  the  $L_\infty[1]$ -algebra associated to a pre-symplectic form  $\eta$ .

- It is **independent** of the choice of complement  $G$ ,  
up to  $L_\infty[1]$ -isomorphism. [GUALTIERI, MATVIICHUK, SCOTT]
- Two small Maurer-Cartan elements are **gauge equivalent**  $\Leftrightarrow$   
the corresponding pre-symplectic forms are related by an isotopy of  $M$ .
- The map of Maurer-Cartan elements

$$(\text{pre-symplectic form } \eta') \mapsto \ker(\eta')$$

lifts to a strict  $L_\infty[1]$ -morphism

$\Omega_{hor}(M)[2] \rightarrow (L_\infty[1]\text{-algebra governing deformations of the foliation } K)$ .

## Future work:

- Check whether these two deformation problems are equivalent:
  - pre-symplectic forms
  - **coisotropic submanifolds** and ambient symplectic forms
- Apply these ideas to deformations of regular Poisson structures.

Thank you for your attention!