

Homotopy moment maps

Marco Zambon
(Univ. Autónoma Madrid-ICMAT)
ongoing work

Castro Urdiales, June 2011

Introduction

A moment map α for the action of a Lie algebra \mathfrak{g} on a **symplectic manifold** (M, ω) is given by a **Lie algebra morphism**

$$\mathfrak{g} \rightarrow \text{observables of } (M, \omega).$$

This suggests that the definition of moment map in the case of a **closed 3-form** c be a **Lie-2 algebra morphism**

$$\mathfrak{g} \rightarrow \text{observables of } (M, c).$$

We show that these moment maps are quite easy to construct in practice.

This can be generalized letting c be an arbitrary **closed n -form** (or even a higher Dirac structure) and letting \mathfrak{g} be an arbitrary L_∞ -algebra. A moment map is then a **L_∞ -morphism**

$$\mathfrak{g} \rightarrow \text{observables of } (M, c).$$

In general, there is no induced action of \mathfrak{g} on M , but we expect an action on some object associated to M . When c is a 3-form, for instance, we expect \mathfrak{g} to act on the c -twisted Courant algebroid $(TM \oplus T^*M)_c$.

Reminder: the symplectic case

Given $G \curvearrowright (M, \omega)$ a Lie group action on a symplectic manifold:

Definition

A **moment map** is

$$J: \mathfrak{g} \rightarrow C^\infty(M)$$

such that

- (A) $v_M = X_{J^v}$ for all $v \in \mathfrak{g}$
- (B) $J: (\mathfrak{g}, [\cdot, \cdot]) \rightarrow (C^\infty(M), \{\cdot, \cdot\})$ is a Lie algebra morphism.

Remark

Equivalently, a moment map is J such that $\omega + J$ is a **closed** degree 2 element of

$$((\Omega(M) \otimes S\mathfrak{g}^*)^G, d_G),$$

the Cartan model for equivariant cohomology.

Definition

A **Lie 2-algebra** consists of

$$d := [\cdot]_1: V_{-1} \rightarrow V_0$$

together with linear maps

$$[\cdot, \cdot]: \wedge^2 V_0 \rightarrow V_0$$

$$[\cdot, \cdot]: V_0 \otimes V_{-1} \rightarrow V_{-1}$$

$$T := [\cdot, \cdot, \cdot]: \wedge^3 V_0 \rightarrow V_{-1}$$

such that

$$d[x, f] = [x, df] \quad \text{for all } x \in V_0, f \in V_{-1},$$

$$[x, [y, z]] + c.p. = -d(T(x, y, z)) \quad \text{for all } x, y, z \in V_0$$

and for all $x, y, z, w \in V_0$:

$$\begin{aligned} & [x, T(y, z, w)] - [y, T(x, z, w)] + [z, T(x, y, w)] - [w, T(x, y, z)] = \\ & T([x, y], z, w) + T(y, [x, z], w) + T(y, z, [x, w]) \\ & - T(x, [y, z], w) - T(x, z, [y, w]) + T(x, y, [z, w]). \end{aligned}$$

The case of closed 3-forms

Now let $c \in \Omega_{cl}^3(M)$ be non-degenerate.

Define

$$\Omega_{ham}^1(M) := \{\alpha \in \Omega^1(M) : \exists \text{ a vector field } X_\alpha \text{ with } \iota_{X_\alpha} c = -d\alpha\}$$

$$\{\alpha, \beta\} := c(X_\alpha, X_\beta, \cdot) \in \Omega_{ham}^1(M)$$

Notice: $\{\{\alpha, \beta\}, \gamma\} + c.p. = -d(c(X_\alpha, X_\beta, X_\gamma))$.

Proposition (Baez, Rogers, Hoffnung 2008)

The complex

$$C^\infty(M) \xrightarrow{d} \Omega_{ham}^1(M)$$

together with

- $\{\alpha, \beta\}$
- $\{\alpha, \beta, \gamma\} := c(X_\alpha, X_\beta, X_\gamma)$

is a Lie-2 algebra.

Notation: $\mathcal{O}(M, c)$.

From now on, let $G \circlearrowleft (M, c)$.

Definition

A **homotopy moment map** is a Lie 2-algebra morphism

$$(J, \mu): \mathfrak{g} \rightsquigarrow \mathcal{O}(M, c)$$

such that $v_M = X_{J^v}$ for all $v \in \mathfrak{g}$.

Remark

“Lie 2-algebra morphism” means:

$$\begin{aligned} J: \mathfrak{g} &\rightarrow \Omega_{ham}^1(M) \\ \mu: \wedge^2 \mathfrak{g} &\rightarrow C^\infty(M) \end{aligned}$$

such that

$$\begin{aligned} J^{[v,w]} - \underbrace{\{J^v, J^w\}}_{c(v_M, w_M, \cdot)} &= d \mu^{v \wedge w} \\ - \underbrace{\{J^v, J^w, J^z\}}_{c(v_M, w_M, z_M)} &= \mu^{v \wedge [w,z]} - \mu^{w \wedge [v,z]} + \mu^{z \wedge [v,w]} \end{aligned}$$

Constructing moment maps

Theorem

Suppose we have a linear

$$J: \mathfrak{g} \rightarrow \Omega_{ham}^1(M)$$

with

- (A) $v_M = X_{J^v}$ for all $v \in \mathfrak{g}$
- (B) J is G -equivariant
- (C) $\iota_{v_M} J^v = 0$ for all $v \in \mathfrak{g}$.

Then $(J, \mu): \mathfrak{g} \rightsquigarrow \mathcal{O}(M, c)$ is a homotopy moment map, where

$$\mu^{v \wedge w} := \iota_{v_M} J^w.$$

Remark

The assumptions of the theorem are equivalent to:

$c + J$ is a closed degree 3 element of $((\Omega(M) \otimes S\mathfrak{g}^*)^G, d_G)$.

Remark

- $H^1(\mathfrak{g}) = \{0\}$ (for ex. take \mathfrak{g} semisimple) or $H^2(M) = 0$
⇒ $\exists J$ satisfying (A).
- G compact
⇒ $\exists J$ satisfying (B).
- (A),(B), every v_M vanishes at some point of M (for ex. take $\chi(M) \neq 0$)
⇒ any J satisfies (C).

Example

Let $b \in \Omega^2(M)$ be G -invariant, and consider

$$G \circlearrowleft (M, c := db).$$

Then $J^v := \iota_{v_M} b$ satisfies the assumption of the theorem.
Hence we obtain a homotopy moment map.

Reduction à la Marsden-Weinstein

Lemma

Let $G \circlearrowright (M, c)$ with homotopy moment map (J, μ) . Assume that

$$M_0 := \{x \in M : J^v(x) = 0 \ \forall v \in \mathfrak{g}\}$$

is a smooth submanifold and M_0/G is smooth.

Then c descends to

$$\underline{c} \in \Omega_{cl}^3(M_0/G).$$

Example

Let $G \circlearrowright N$ freely and properly. Then

$$G \circlearrowright (M := \wedge^2 T^* N, db_{can}^N),$$

and $J^v := \iota_{v_M} b_{can}^N$ gives rise to a homotopy moment map.

We have

$$M_0/G \cong \wedge^2 T^*(N/G) \quad \text{and} \quad \underline{c} = db_{can}^{N/G}.$$

Relation to Courant algebroids

Lemma (Bursztyn-Cavalcanti-Gualtieri)

$c + J$ is a closed degree 3 element of $((\Omega(M) \otimes S\mathfrak{g}^*)^G, d_G)$

\Updownarrow

$\mathfrak{g} \rightarrow \Gamma(TM \oplus T^*M), v \mapsto v_M - J^v$

is a trivially extended action on the Courant algebroid $(TM \oplus T^*M)_c$ with isotropic image, integrating to the (co)tangent lift.

Expected:

the above extended action is the composition of

$$\underbrace{\mathfrak{g} \rightsquigarrow \mathcal{O}(M, c)}_{\text{hom. moment map}}$$

with

$$\underbrace{\mathcal{O}(M, c) \rightsquigarrow \text{Lie 2-algebra associated to } (TM \oplus T^*M)_c}_{\text{Weinstein-Roytenberg 1999, Rogers 2009}}$$

All of this should work for closed forms of any degree.

Thank you!

Bibliography I

- **H. Bursztyn, G. R. Caalcanti, and M. Gualtieri.**
Reduction of Courant algebroids and generalized complex structures.
Adv. Math., 211(2):726–765, 2007.
- **J. F. Cariñena, M. Crampin, and L. A. Ibort.**
On the multisymplectic formalism for first order field theories.
Differential Geom. Appl., 1(4):345–374, 1991.
- **Y. Fregier and C. L. Rogers.**
Equivariant cohomology and formal geometry views on n-plectic moment maps.
in progress.
- **T. B. Madsen and A. Swann.**
Multi-moment maps.
12 2010, Arxiv 1012.2048.
- **C. L. Rogers.**
L-infinity algebras from multisymplectic geometry.
05 2010, Arxiv 1005.2230.