

Branes in symplectic manifolds

Marco Zambon

joint work with Charlotte Kirchhoff-Lukat

Rui Fest

Coisotropic submanifolds

Let (M, ω_M) be a symplectic manifold.

Definition

A submanifold Y is **coisotropic** if

$$TY^{\omega_M} \subset TY.$$

Remark

We have

$$TY^{\omega_M} = \ker(\omega),$$

where $\omega := \iota^* \omega_M$.

This is an involutive distribution.

ω descends to a symplectic form on Y/\sim (if smooth).

Examples

- M itself,
- codimension 1 submanifolds,
- Lagrangian submanifolds.

Branes

Let (M, ω_M) be a symplectic manifold.

Definition

A **brane** (Y, F) consists of

- Y a coisotropic submanifold
- $F \in \Omega_{cl}^2(Y)$

such that

1)

$$\ker(F) = \ker(\omega) =: E$$

where $\omega := \iota^* \omega_M$

2) on TY/E have: $I := \omega^{-1} \circ F$ satisfies

$$I^2 = -1.$$

Remark

If smooth, Y/\sim is a complex manifold.

$F + i\omega$ induces a holomorphic symplectic form there (so $\dim(Y/\sim) \in 4\mathbb{Z}$). •

Branes (cont.)

Remark

Branes arose in the study of the A-model [Kapustin-Orlov 2001]

Remark

Branes are natural in terms of the generalized geometry [Gualtieri 2003].

A **generalized submanifold** of M is (Y, L) where

- Y is a submanifold
- $L \subset (TM \oplus T^*M)|_Y$ is a transitive Dirac structure supported on Y . Equivalently, for a unique $F \in \Omega_{cl}(Y)$,

$$L = \{(X, \xi) : X \in TY, \xi|_{TY} = \iota_X F\}.$$

Let $J: TM \oplus T^*M \rightarrow TM \oplus T^*M$ be a generalized complex structure.

A **brane** is a generalized submanifold (Y, L) such that

$$J(L) = L.$$

Notice: ω_M symplectic form \rightsquigarrow generalized complex structure

$$\begin{pmatrix} 0 & -\omega_M^{-1} \\ \omega_M & 0 \end{pmatrix}.$$

Goal

Given a brane (Y, F) , understand the deformation theory of branes, i.e. the **space of nearby branes**:

- To produce new examples
- Is this space smooth? Is the moduli space smooth?
- Are all nearby coisotropic submanifolds also branes?

Notation

Given a 2-form σ , we denote by the same symbol the bundle map

$$TM \rightarrow T^*M, \quad v \mapsto \iota_v \sigma.$$

Lagrangian branes

Example

Let Y be a Lagrangian submanifold of (M, ω_M) .

Then

$$(Y, 0)$$

is a brane, where $0 \in \Omega^2(Y)$.

Spacefilling branes: $Y = M$

Let (M, ω) be symplectic.

Remark

(M, F) is a brane

$\stackrel{Def}{\Leftrightarrow}$ F is symplectic and $I := \omega^{-1} \circ F$ satisfies $I^2 = -1$

$\Leftrightarrow F + i\omega$ is holomorphic symplectic. (The imaginary part of fixed)

Remark

Space-filling brane structures $F \leftrightarrow$ Complex structures I s.t. $\omega(I \cdot, \cdot)$ is skew

$$F \mapsto I := \omega^{-1} \circ F.$$

Examples of spacefilling branes

Example

Let $M = \mathbb{C}^2$ (or $M = \mathbb{T}^4$), with complex coordinates $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Take

$$\begin{aligned}\omega &:= \text{Im}(dz_1 \wedge dz_2) \\ F &:= \text{Re}(dz_1 \wedge dz_2)\end{aligned}$$

Example

The $K3$ manifold is

$$M := \{z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0\} \subset \mathbb{CP}^3.$$

It is a compact, simply connected, 4-dimensional smooth manifold.

Every complex structure on M admits a holomorphic symplectic form $F + i\omega$.

Infinitesimal deformations of spacefilling branes

Let F be a space-filling brane on (M, ω) .

Lemma

Let $\{F_t\} \subset \Omega^2(M)$ a curve with $F_0 = F$ and $(\omega^{-1} \circ F_t)^2 = -1$. Then

$$\dot{F} := \frac{d}{dt}|_0 F_t \in \Omega^{1,1}(M, \mathbb{R}).$$

I.e.: $\dot{F}(Iv, Iw) = \dot{F}(v, w)$.

Thus $\Omega^{1,1}(M, \mathbb{R})$ is the formal tangent space at F to

$$\{\tilde{F} \in \Omega^2(M) : (\omega^{-1} \circ \tilde{F})^2 = -1\}.$$

Corollary

$$\Omega_{cl}^{1,1}(M, \mathbb{R}) = T_F \{ \text{Spacefilling branes on } (M, \omega) \}.$$

Future aim

Given a spacefilling brane F , find a good parametrization of nearby branes.

Infinitesimal deformations of spacefilling branes (cont.)

Let F be a space-filling brane on (M, ω) .

Remark

Let $f \in C^\infty(M)$

- ~ Hamiltonian vector field X_f (w.r.t. ω).
- ~ Flow Φ_t , such that $\Phi_t^* F$ is again a brane.

We have

$$\frac{d}{dt}|_0 \Phi_t^* F = \mathcal{L}_{X_f} F = dI^* df.$$

Corollary

Consider the cochain complex

$$C^\infty(M) \xrightarrow{dI^* d} \Omega^{(1,1)}(M, \mathbb{R}) \xrightarrow{d} \Omega^3(M, \mathbb{R}) \xrightarrow{d} \dots$$

It models infinitesimal deformations of the spacefilling brane F in (M, ω) :

$$H^1 = \frac{T_F \{ \text{Spacefilling branes} \}}{T_F \{ \text{Orbit of hamiltonian diffeomorphisms} \}}.$$

Moduli spaces in dimension 4

Theorem (KIRCHHOFF-LUKAT, Z.)

For any symplectic form on $M = K3$ manifold (resp. $M = \mathbb{T}^4$) admitting a spacefilling brane,

$$\{\text{Spacefilling branes}\} / \text{Symp}(M, \omega)_*$$

is smooth, non-compact, of dimension 20 (resp. 4).

Here $\text{Symp}(M, \omega)_*$ denotes the symplectomorphisms inducing $Id_{H^\bullet(M, \mathbb{R})}$.

Remark

The argument relies on the Local Torelli Theorem on complex structures.

An example of codimension 1 brane

Non-Example

$S^5 \subset (\mathbb{R}^6, \omega_{can})$ does not admit a brane structure.

Reason: $S^5 / \sim = \mathbb{CP}^2$ doesn't admit a holomorphic sympl form: $H^2(\mathbb{CP}^2) = \mathbb{R}$.

Main example (Spacefilling \times Lagrangian)

Let (N, ω_N) be symplectic. Then

$$Y := N \times S^1 \times \{0\}$$

is coisotropic in the symplectic manifold $(N \times S^1 \times \mathbb{R}, \omega_N \times \omega_{T^*S^1})$.

Let F_N be a spacefilling brane¹.

Then

$$(Y, F)$$

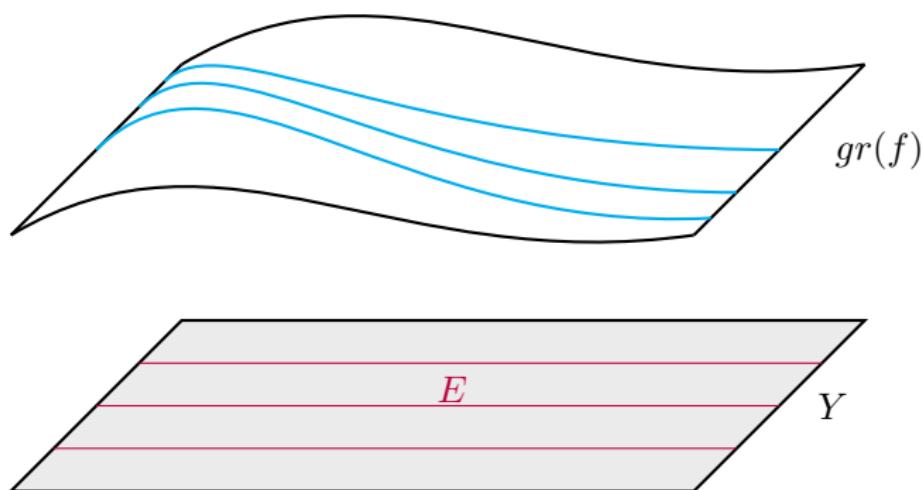
is a brane, where $F :=$ trivial extension of F_N .

¹I.e. $F_N \in \Omega^2(N)$ symplectic s.t. $I := \omega_N^{-1} \circ F_N$ satisfies $I^2 = -1$.

Branes nearby $Y = N \times S^1$

Question:

Let $f \in C^\infty(Y)$. When does $gr(f) := \{(y, f(y))\}$ admit a brane structure?



Branes nearby $Y = N \times S^1$

Question:

Let $f \in C^\infty(Y)$. When does $gr(f) := \{(y, f(y))\}$ admit a brane structure?

Denote

$\Phi_f :=$ time 1 flow of the time-dependent vector field $\{X_{f|_{N \times \{q\}}}^{\omega_N}\}_{q \in [0,1]}$.

Proposition

There is a bijection between

- a) *brane structures* on $gr(f)$,
- b) *spacefilling branes* \tilde{F}_N on N preserved by Φ_f .

Using $gr(f) \cong Y$, the bijection reads

$$\tilde{F} \in \Omega^2(Y) \mapsto \tilde{F}|_{N \times \{0\}}$$

$$\tilde{F}_N \in \Omega^2(N) \mapsto \text{the unique extension invariant along } \ker(i_{gr(f)}^* \omega_M)$$

Remark

Hence $gr(f)$ has “less” brane structures than Y .

Proof of $a) \Rightarrow b)$

Proposition

There is a bijection between

- a) *brane structures* on $gr(f)$,
- b) *spacefilling branes* \tilde{F}_N on N preserved by Φ_f .

Proof: Under $gr(f) \cong Y$, we have

$$\ker(i_{gr(f)}^* \omega_M) \leftrightarrow \mathbb{R}(\partial_q - X_f^{\omega_N}).$$

Let $\tilde{F} \in \Omega^2(Y)$ with this kernel.

Then \tilde{F} is closed iff

- $(\iota_{N \times \{q\}})^* \tilde{F}$ is closed for all $q \in S^1$
- The flow of $\partial_q - X_f^{\omega_N}$ preserves this family.

In this case, $(\iota_{N \times \{0\}})^* \tilde{F}$ is closed and preserved by Φ_f .

Stability of branes

Let (Y, F) be a brane in (M, ω_M) .

Question:

Is the forgetful map

$$\begin{aligned}\{\text{Branes}\} &\rightarrow \{\text{Coisotropic submanifolds}\} \\ (\tilde{Y}, \tilde{F}) &\mapsto \tilde{Y}\end{aligned}$$

surjective near Y ?

Answer: No

Recall the Main Example:

spacefilling brane F_N on the sympl. manifold $(N, \omega_N) \rightsquigarrow$

$$\underbrace{(N \times S^1 \times \{0\}, F)}_Y$$

brane in $(N \times S^1 \times \mathbb{R}, \omega_N \times \omega_{T^*S^1})$.

A) Answer by example

Proposition

Let N be the K3 manifold, and ω_N a symplectic form admitting a space-filling brane F_N .

Let $f \in C^\infty(Y)$. Then

$$gr(f) \text{ admits a brane structure} \Leftrightarrow \Phi_f = Id_N.$$

Proof of " \Rightarrow ":

There is a brane structure \tilde{F} on $gr(f)$

$\Rightarrow \Phi_f$ preserves \tilde{F}_N

$\Rightarrow \Phi_f$ preserves $\tilde{I} := \omega_N^{-1} \circ \tilde{F}_N$.

Use: the only automorphism of (N, \tilde{I}) inducing $Id_{H^2(N, \mathbb{R})}$ is Id_N .

Corollary

There exists a compact brane Y such that:

for every $\epsilon > 0$ there is a coisotropic submanifold which

- is ϵ -close to Y in the C^2 -sense
- does not admit a brane structure.

B) "Answer" by comparing first order deformations

Remark

Let Y be a codimension 1 **submanifold** of (M, ω_M) .

Denote $E = \ker(\omega)$ for $\omega := \iota^* \omega_M$. Choose G s.t. $G \oplus E = TY$.

Gotay's theorem \rightsquigarrow

$M \cong E^*$ as symplectic manifolds.

So $\{\text{deformations of } Y\} = \Gamma(E^*)$.

Lemma

Let (Y, F) be a codimension 1 **brane**. Assume G involutive.

The **first order deformations of Y as a brane** are

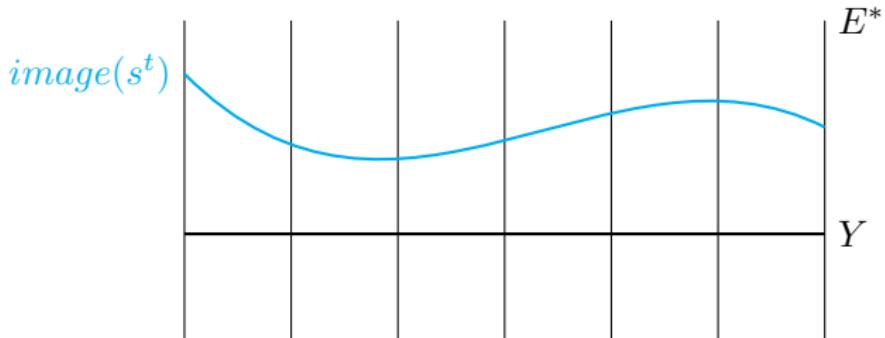
$$(r, B) \in \Gamma(E^*) \oplus \Omega^2(Y) \quad \text{such that}$$

- *closeness*: $dB = 0$
- *condition on $B|_{E \otimes G}$* : for all $v \in E$, on TY/E we have

$$[\iota_v B] = -[\iota_v d\bar{r}] \circ I,$$

where $\bar{r} \in \Omega^1(Y)$ is the extension of r annihilating G ,

- *condition on $B|_{\wedge^2 G}$* : $B|_{\wedge^2 G}$ is of type $(1, 1)$.



Proof:

Take a curve

$$(s^t, F^t) \in \Gamma(E^*) \oplus \Omega^2(Y)$$

such that $(image(s^t), (\pi|_{s^t})^* F^t)$ is a **curve of branes** through (Y, F) . Then

$$(r, B) := \frac{d}{dt}|_0(s^t, F^t)$$

satisfy the above equations, since for $\omega^t := (s^t)^* \omega$ we have

- $dF^t = 0$
- $\ker(\omega^t) = \ker(F^t)$
- $(\omega^t)^{-1} \circ F^t$ squares to -1 .

Proposition

For a brane $Y = N \times S^1$ as above, consider

$$\Upsilon: \{ \text{First order def. of } Y \text{ as a brane} \} \rightarrow \Gamma(E^*),$$
$$(r, B) \mapsto r.$$

Its image consists of $r \in \Gamma(E^*)$ s.t.

$$d_N I^* d_N \left(\int_{S^1} r \right) = 0.$$

Here $\int_{S^1} r \in C^\infty(N)$ is obtained integrating r along the fibers of $Y \rightarrow N$.

Corollary

Υ is not surjective in general.

References

- **M. Gualtieri**
Generalized complex geometry
Ph.D. Thesis, 2003
- **A. Kapustin, D. Orlov**
Remarks on A-branes, mirror symmetry, and the Fukaya category
J. Geom. Phys. 48, pages 84-99, 2003
- **C. Kirchhoff-Lukat, M. Zambon**
Moduli spaces of spacefilling branes in symplectic 4-manifolds
to appear in *Math. Z.*
- **C. Kirchhoff-Lukat, M. Zambon**
Coisotropic branes in symplectic manifolds
Preprint

Thank you for your attention