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Abstract
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a Riemannian manifold. We give an improvement of Weinstein’s averaging procedure
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Chapter 1

Introduction

The main result of [We] is a procedure to average a family { Ny} of submanifolds of a Rie-
mannian manifold M: if the submanifolds are close to each other in a C! sense, one can
produce canonically! an “average” N which is close to each member of the family {Ng}.
The main property of this averaging procedure is that it is equivariant with respect to
isometries of M, and therefore if the family { Ny} is obtained by applying the isometric
action of a compact group G to some submanifold Ny of M, the resulting average will
be invariant under the G-action. This generalizes results about fixed points of group
actions [We].

In Chapter 2 we will present Weinstein’s averaging procedure. We will also exhibit re-
sults on the shape operators of certain parallel tubes in M, obtained with the help of
Hermann Karcher. These results allow us to improve the estimates in Weinstein’s theo-

rem and are interesting in their own right.

The main result of this thesis is the adaptation of Weinstein’s averaging to the setting
of symplectic geometry: given a family of isotropic submanifolds {N,} of a symplec-
tic manifold M, we obtain an isotropic average L. We achieve this in two steps: first
we introduce a compatible Riemannian metric on M and apply Weinstein’s averaging
to obtain a submanifold N. This submanifold will be “nearly isotropic” because it is

C'-close to isotropic ones, and using the family {Ny} we will deform N to an isotropic

'The construction is canonical because it does not involve any arbitrary choice but uses only the
Riemannian metric on M.



submanifold L.?2 Our construction depends only on the the symplectic structure of M
and on the choice of compatible metric. Therefore applying our construction to the case
of compact group actions by isometric symplectomorphism we can obtain isotropic sub-
manifolds which are invariant under the action.

In Chapter 3 we will present our isotropic averaging theorem and give an outline of the
proof. The proof itself is presented in Chapter 4, with some very technical estimates

deferred to the three appendices.

We give two simple applications of the isotropic averaging theorem in Chapter 5. First
we show that the image of an almost invariant isotropic submanifold under a compact
Hamiltonian action is “small”. Then we show that, when a certain technical assump-
tion is satisfied, we can deform almost equivariant symplectomorphisms to equivariant
ones. More precisely: given a symplectic action of a compact group G on two sym-
plectic manifolds M; and My together with an almost equivariant symplectomorphism
¢ : My — M, we can apply the averaging procedure to graph(¢) C M; x My, and
if the resulting G-invariant submanifold L is a graph, then it will be the graph of a

G-equivariant symplectomorphism.

Moving to the setting of contact geometry, in Chapter 6 we give a procedure to average
C'-close Legendrian submanifolds of contact manifolds. As in the Riemannian and sym-
plectic set-ups, we obtain that, whenever a compact group action leaves a Legendrian

submanifold almost invariant, there is an invariant Legendrian submanifold nearby.

The proof of our isotropic averaging theorem breaks down if we try to apply it to
coisotropic submanifolds of a symplectic manifold. The reason is essentially this: if
a submanifold is coisotropic with respect to two distinct symplectic forms, then it is
not necessarily coisotropic with respect to their average. If one could average any two
coisotropic submanifolds Ny and N; which are close to each other, then by “shifting
weights” in the parameter space G = {0, 1} one would produce a continuous path of
coisotropic submanifolds connecting Ny to N1. Therefore if the space of coisotropic sub-

manifolds were not locally path connected, we would have an obstruction to the averaging

2It would be interesting to find a way to deform any given “nearly isotropic” submanifold to an honest
isotropic one in a canonical fashion.



problem for coisotropic submanifolds. This leads us to analyze the set of coisotropic sub-
manifolds nearby a fixed one in Chapter 7. We can only prove that this set does not have
a nice manifold structure. A much deeper analysis of the geometry of coisotropic sub-
manifolds was developed in [OP] by Oh and Park, but the question of whether the space

of coisotropic submanifolds is locally path connected or not still remains unanswered.



Chapter 2

Weinstein’s averaging and
improved error estimates for the

shape operators of parallel tubes

In this chapter we will present the improvement of Weinstein’s averaging procedure
(Theorem 2.3 in [We]) obtained with the help of Hermann Karcher. In the first section
we will state the improved theorem (Theorem 2). In Section 2.2 we will give estimates for
the shape operator (extrinsic curvature) of tubes about certain submanifolds (Theorem
1), thus improving Proposition 3.11 in [We|. Then in Section 2.3 using these results we

will follow Weinstein’s proof to obtain the improved theorem.

2.1 The Riemannian averaging theorem

We first recall some definitions from [We] in order to state the averaging theorem in the

Riemannian setting.

If M is a Riemannian manifold and N a submanifold, (M, N) is called a gentle pair if
(i) the normal injectivity radius of N is at least 1; (ii) the sectional curvatures of M in
the tubular neighborhood of radius one about N are bounded in absolute value by 1;

(iii) the injectivity radius of each point of the above neighborhood is at least 1.



The C-distance between two submanifolds N, N’ of a Riemannian manifold is do(N, N') =
sup{d(x, N') : x € N}. The distance between two subspaces of the same dimension F, F’
of a Euclidean vector space FE, denoted by d(F, F'), is equal to the C°-distance between
the unit spheres of F' and F”’ considered as Riemannian submanifolds of the unit sphere
of E. This distance is symmetric and satisfies d(F, F') = d(F+, F'*). Tt is less than or

equal to 7, and it is equal to 5 iff F' and F 'L are not transversal.

One can define a C'-distance between two submanifolds N, N’ of a Riemannian manifold
if N’ lies in the tubular neighborhood of N and is the image under the normal expo-
nential map of N of a section of vN. (N and N’ are necessarily diffecomorphic.) This is
done by assigning two numbers to each 2’ € N’: the length of the geodesic segment from
2’ to the nearest point z in N and the distance between T,y N’ and the parallel translate
of T, N along the above geodesic segment. The C'-distance is defined as the supremum
of these numbers as z’ ranges over N’ and is denoted by d;(N, N').

Note that this distance is not symmetric, but if (M, N) and (M, N’) are both gentle
pairs with di(N, N’) < %, then di(N’, N) < 250d;(N, N') (see Remark 3.18 in [We]).

Our improvement of Theorem 2.3 in [We] reads!:

Theorem 1 Let M be a Riemannian manifold and {Ny} a family of submanifolds of
M of the same dimension parametrized in a measurable way by elements of a probability
space G, such that all the pairs (M, Ng) are gentle. If di(Ng, Np) < € < m forall g and
h in G, there is a well defined center of mass submanifold N with di(Ng, N) < 2500€
for all g in G. The center of mass construction is equivariant with respect to isometries

of M and measure preserving automorphisms of G.

Remark 1: This theorem differs from Theorem 2.3 in [We] only in that there we have
the bound 136+/¢ for di(N4, N), whereas here we have a bound linear in e.
Remark 2: For any g € G the center of mass N is the image under the exponential

map of a section of ¥ N, and do(Ng, N) < 100e.

From Theorem 1 one gets immediately a statement about invariant submanifolds under

compact group actions (see Theorem 2.2 of [We]).

!We omit the compactness assumption on the N,’s stated in [We] since it is superfluous.



2.2 Estimates for the shape operators of parallel tubes

In this section we will improve Proposition 3.11 and Corollary 3.13 of [We] using Jacobi

fields techniques.

Let us start by recalling Weinstein’s construction, assuming the set-up of Theorem 1
above. Given the family of C"-close submanifolds {N,}, consider the functions Py, =
% p?vg on M, where py, is the distance function from the submanifold N,. Consider the
gradient grad |, o Pn, of the average of the Py,’s and project it onto the “averaged vertical
bundle” obtained by parallel translation from the normal bundles ¥N,. Weinstein shows
that, near the N,’s, the zero set of the projected gradient forms a smooth submanifold,
which he defines to be the average of the family {N,}.

The C'-closeness of the Ny’s ensures that all objects used in the construction are well-
defined, and the average submanifold is C'-close to each N, because of the gentleness of
the pairs (M, Ny), which allows us to give bounds on the Hessian of Py,. Our aim is to
improve the estimates on this Hessian using Jacobi fields. Until the end of this section

[AP™))

we will fix a submanifold N, and drop the index “g” in the notation.

The Hessian of Py is the symmetric endomorphism of each tangent space of the tubular
neighborhood given by Hy(v) = V,gradPy. Differentiating the relation gradPy = py -
gradpy we see that

Hy(v) = (Uy,v)Ux + pn - Sn(pr(v))

where Uy = gradpy is the radial unit vector (pointing away from N), pr denotes or-

thogonal projection onto U ﬁ, and Sy is the second fundamental form? of the tube given

by a level set 7(t) of py in direction of the normal vector Uy .

Proposition 3.11 of [We] states that, at a point p of distance t < % from IV, the following

estimate holds for the decompositions into vertical and horizontal parts® of T, M:
0.64-71 0 1.32-1 0

< Hy < )
0 —3t-1 0 3t-1

2So Snyv = pr(V,Un) for all vectors v tangent to 7(t), where V is the Levi-Civita connection on M.
3See our Section 4.1 or Section 2.1 in [We] for the definition of vertical and horizontal bundle at p.



where for two symmetric matrices P and @) the inequality P < ) means that () — P is
positive definite.

The above proposition is proved using the Riccati equation. An immediate consequence is
Corollary 3.13 in [We], which states that, if v is a horizontal vector and w a vertical vector
at p, then |(Hy(v),w)| < 3v/t|v||w|. This square root is responsible for the presence of
upper bounds proportional to /€ rather than € in Theorems 2.2 and 2.3 of [We].

We will improve the estimates of [We| determining Sy by means of Jacobi-field estimates
rather than by the Riccati equation. More precisely, we will make use of this simple

observation:

Lemma 2.2.1 Let M be any Riemannian manifold, N a submanifold, and fiz t <
normal injectivity radius of N. Let p lie in the tube T(t) := py'(t), and let Sy : T,7(t) —
T,7(t) be the second fundamental form in the direction of Un. For any v € Tp7(t) con-
sider the Jacobi field J(r) arising from the variation r — expy(s) TUN (c(8)), where c(s)

is any curve in 7(t) tangent to v. Then
Syv = J(0).
Proof: Denoting by f(s,r) the above variation and by V the Levi-Civita connection on
M we have
J(0) =
= —|05|0f(877")
= Lol (e(s)

= V,Un

V. d
5|0£|0f(877")
V. d

ds
:pr(vaN)

= Syv.

Using the above lemma we will be able to prove the following improvement of Proposition

3.11 in [We], for which we don’t require (M, N) to be a gentle pair, but only bounds on



the second fundamental form?* B of N and on the curvature of M.

Theorem 2 Let M be a Riemannian manifold with curvature |K| <1, N a submanifold
with second fundamental form B, and fix t < normal injectivity radius of N. Let v be a
unit speed geodesic emanating normally from N. Let 7(t) be the t-tube about N, and let
Sn(t) denote the second fundamental form of T(t) in direction §(t) at v(t). Then w.r.t.
the splitting into vertical and horizontal spaces of T.)7(t), as long ast < min{%, ﬁ},

we have
I 0 16t2 16t2

t-Sn(t) < +
0 tB 16t% (22 +2|B|?)t?

Remark : We adopt the following unconventional notation: If M, M are matrices and
¢ a real number, M < M + ¢ means that M — M has operator norm < ¢. Generalizing

to the case where we consider also vertical-horizontal decompositions of matrices,
A B A B a b
<|. .|+
C D C D c d
means that the above convention holds for each endomorphism between horizontal /vertical

spaces, i.e. A — A has operator norm < a and so on.

Proof:  Choose an orthonormal basis {E1,...,E,_1} of 4(0)* C T, 0)M such that
FEq, ..., Eg lie in the normal space to N and Ejy1,..., E,_1 lie in the tangent space to
N. (Here dim(M) = n.) Now we define Jacobi fields J; along v with the following initial

conditions:
Ji(0) =0, J/(0) =E; if i < k (vertical Jacobi fields)
Ji(0) = E;, J{(0) = ByyE; ifi >k + 1 (horizontal Jacobi fields).

Notice that, among all N-Jacobi fields (see Section 4.1 for their definition) satisfying

Ji(0) = E;, our J; are those having smallest derivative at time zero. Also notice that

4We adopt the following convention for the second fundamental form: Bev := (V,&)T for tangent
vectors v of N and normal vector fields &, where (-)7 denotes projecting to the component tangent to N
and V is the Levi-Civita connection on M. In the case that (M, N) is a gentle pair one has |B| < %, see
[We, Cor 3.2].



all J; and their derivatives are perpendicular to (0), therefore, as long as the J;(t) are
linearly independent, they form a basis of 4(t)* = ST (t). Also, the J;’s are N-Jacobi
fields, i.e. Jacobi fields for which J;(0) is tangent to N and J;(0) — Bjg)Ji(0) is normal
to N, or equivalently Jacobi fields that arise from variations of geodesics emanating nor-
mally from N (see [Wa, p. 342]). Moreover the J;’s are a basis of the space of N-Jacobi
fields along v which are orthogonal to 4, and this space coincides with the space of N-
Jacobi fields arising from a variation of unit-speed® geodesics normal to N. The velocity
vectors of such variations at time t coincide with Upy. Therefore applying Lemma 2.2.1

with v = J;(t) we conclude that Sy (t)J;(t) = J.(¢) for all 7.

Now consider the maps
J(t) R A/(15)’7'(75), e; — Jl(t)

and

J(t) : R W(t)T(t), e; > Ji(t),

where {e;} is the standard basis of R"~!. As long as the J;(¢)’s are linearly independent,
we clearly have

Sn(t)=J(t)-Jt)

Propagating the F;’s along v by parallel translation we obtain an orthonormal basis
{E;(t)} of Typy7(t). Furthermore, {E1(t), ..., Ex(t)} together with ¥(t) span the verti-
cal space at y(t) and {Fxy1(t),..., E,—1(t)} span the horizontal space there. We will
represent the maps J(t),J'(t) and Sy(t) by matrices w.r.t. the bases {e;} for R"~! and
{E;(t)} for Tyy7(2).

Now we use Jacobi field estimates as in [BK 6.3.8iii]® to determine the operator norm
of J(t), or rather of the endomorphisms J(t)vy, J(t) gy, J(t)vg and J(t)gm that J(t)

induces on horizontal and vertical subspaces.” This will allow us to obtain corresponding

®Indeed, connecting the points of an integral curve in 7(t) of some J;(t) to N by unit speed shortest
geodesics we obtain such a variation, and the Jacobi field arising from this variation must be J; since it
is an N-Jacobi field orthogonal to 4 which coincides with J;(t) at time ¢.

6See also our Lemma 4.1.1

"To be more precise: J(t)mv : R* x {0} — Hor(t) is given by restricting J(t) and then composing
with the orthogonal projection onto the horizontal space at 7(¢).
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estimates for J~1(¢) and J'(t), and therefore for Sy (t).
For all i let us define the vector fields A;(t) = \(J;(0)+t-J/(0)), where \\ denotes parallel

translation along v. The map R~ ! — ST (1), e — Ai(t), in matrix form reads

tI 0
A(t) =
0 I+tB

For i < k we have J;(0) = 0 and {J/(0)} is an orthonormal set. If (c1,---, ¢, 0,---,0)
is a unit vector in R"~!, we have |(3_ ¢;J;)'(0)] = 1, so applying [BK, 6.3.8iii] we obtain
| > ci(Ji(t) — Ai(t))| < sinh(t) — ¢.

Similarly, for ¢ > k+1, the set {.J;(0)} is an orthonormal set and J/(0) = B(J;(0)). Again,
if (0,---,0,Cpy1, -, Cu_1) is aunit vector in R" 1, since [(3_ ¢;.1;)"(0)| = | B(X_ ¢;J;(0))| <
|B|, we have | > ¢;i(J;(t) — Ai(t))| < cosh(t) — 1+ | B|(sinh(t) — t). Therefore we have

J(t) — A(t) =: Fi(1) sinh(t) —t  cosh(t) — 1 + | B|(sinh(t) — 1) - %ts %tz
1 sinh(t) — ¢  cosh(t) — 1 + |B|(sinh(t) — t) - %ts %tz

Now we want to estimate tJ~1(t). Notice that, suppressing the t-dependence in the

notation, J = A - [I + A~' Fy], so that
tJ =T+ A R AT

Clearly A is invertible and

|1 0 1 0
tA™! = <
0 t-(I+tB)~! 0 2t
since we assume t < ﬁ We have
1,2 3
12 3y
ATR < g 3 342
517 gt

Clearly® its norm is less than \/5%75 1+442 < %t < 1since t < % Therefore I + A~ Fy

is invertible and [[ + A~'Fy]~! = Z;‘;O[—A_lFl]j. Using the above estimate for A1 F}

81f {A B] < <Z Z) then the full operator norm of the matrix is bounded by

C D
\/max{

a
C

)

2'}—|—ab—|—cd§ V2 max{

a
C

I I
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we have

Lpd 343
[A—1F1]2 S 2 2
o 3t
Using the coarse estimate A~'F < %t and ¢t < % we have Z;‘;?)[—A_lFl]j < 14¢3.
Putting together these estimates we obtain

el 1542 5t
[I+ A F||7" =1+ F; where F, <
15¢3 ¢

To estimate J'(t) we first estimate |J”(t) — A”(t)| and then integrate. For all ¢ we have
i () = A{ ()] = |/ ()] < [i(1))

by the Jacobi equation using the bound on curvature, and an analogous estimate holds
for linear combinations Y ¢;J;(t).

If (c1,---, ¢k, 0,---,0) is a unit vector in R"~! we have | Y ¢;J;(t)| < sinh(¢) by Rauch’s
theorem.

Similarly, if (0,---,0, k1, ,Cn_1) is a unit vector in R"~! we have | > ¢;J;(0)] = 1
and | > ¢;J/(0)] < |B], so by Berger’s extension of Rauch’s theorem (see Lemma 2.7.9 in
[K1]) we have | Y ¢;J;(t)| < cosh(t) + | B sinh(¢).

In both cases integration delivers

1> elJit) — )] < /OIZCi(Jé’(t)—Aé’(t))Idt

cosh(t) — 1 < 3¢ ifi <k

sinh(t) 4+ |B|(cosh(t) — 1) < 3t ifi>k+1.

So altogether we obtain

/ / . %tz %t
J'(t) — A'(t) =: F3(t) where F3(t) <
a5t
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Now finally we can estimate
tSn(t) = tJJ1
= (A B (4B tA

I 0 312 3¢ 42 5t 30t 18t3 .
< + + + tA
0 B 312 3¢ 15|B|t*  1|B|t? 30t 1843
I 0 0 0 312 3t2 D2 1082 30t 36t
<

+ + + +
0 tB 0 2|B|*? 312 3¢ 15|B|t> 19|B|t3 30t 36t

Here we used

1 I 0 0 0 1 0

tA™ < + <

0 tI 0 2|B|t? 0 2t

in the last inequality. Using our bounds on t and the fact that Sy (¢) is a symmetric

operator this gives the claimed estimate. a

Returning to the case when (M, N) is gentle pair, so that |B| < % by [We, Cor 3.2], we
obtain our improvement of Corollary 3.13 in [We]. Now we can achieve an upper bound

proportional to t2, versus the bound proportional to v/# of Corollary 3.13 in [We].

Corollary 2.2.1 Let M be a Riemannian manifold, N a submanifold so that (M, N)
form a gentle pair. If v is a horizontal vector and w a vertical vector at some point of

distance t < % from N, then [(Hy(v), w)| < 16t2|v||w].

2.3 Improvement of Weinstein’s averaging theorem

In this section we use our Corollary 2.2.1 to replace some estimates in [We| that were
originally derived using Corollary 3.13 in that paper. We will improve only estimates
contained in Lemma 4.7 and Lemma 4.8 of [We|, where the author considers the covari-
ant derivative of a certain vector field ¥V on M in directions which are almost vertical or

almost horizontal® with respect to a fixed submanifold N,. (V is obtained by a certain

9See our Section 4.1 or Section 3.2 in [We] for the definitions of almost horizontal and almost vertical
bundle.
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projection of grad [ Py,). As in [We] all estimates will hold for € < m, and we set
t = 100e.

«d»

« 89 »
t 5

500 as follows:

We will replace the constan in Lemma 4.7 by

Lemma 2.3.1 For any almost vertical vector v at any point of N,
4
(DY, v) > lJol .

Proof: By Theorem 2 (applied to the gentle pair (M, N,)) for the operator norm of Hy
we have 1 —16¢ < |Hy|, so that one obtains Hy(Pr,v,Pr,v) > % in the proof of Lemma
4.7 in [We]. Similarly, Theorem 2 together with footnote 8 imply that |H,| < 1.01. Using

these estimates in the proof of Lemma 4.7 in [We] gives the claim. 0

Similarly, we will replace the term “60+/€” in Lemma 4.8 by “1950¢”.

Lemma 2.3.2 For any almost horizontal vector v at any point of N
[|IDV(v)|| > 1950¢||v]].

Proof: By Corollary 2.2.1 we can replace “3v/t” by “16t?” in the proof of Lemma 4.8
in [We| and we can use 1.01 instead of 1.32 as an upper bound for |Hy|. Furthermore,
we replace the constant 1000 coming from Lemma 4.3 in [We] by 525.1 This delivers
the improved estimate H, (v, Prpw) < 850¢||v|| - ||w|| and simple arithmetic concludes the

proof. a

From these two lemmas it follows that the operator from (aVert®)’ to aVert® whose
graph is T, N has norm at most % - 1950¢. Following to the end the proof of Theorem
2.3 in [We] allows us to replace the bound “1364/¢” by a bound linear in € and obtain

Theorem 1.

0T emma 4.3 of [We] quotes incorrectly Proposition A.8 from its own appendix.
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Chapter 3

Averaging of isotropic

submanifolds

In this chapter we adapt Weinstein’s averaging procedure (see Chaper 2) to isotropic
submanifolds of symplectic manifolds. In Section 3.1 we will state our results (Theorems
3 and 4), and in Section 3.2 we will outline the proof, which will be carried out in detail

in the next chapter.

3.1 The isotropic averaging theorem

Recall that a symplectic manifold is a manifold M endowed with a closed, non-degenerate
2 form w. A submanifold of (M,w) is called isotropic if the pullback of w to the sub-
manifold vanishes. For any symplectic manifold (M,w) we can choose a compatible
Riemannian metric g, i.e. a metric such that the endomorphism I of TM determined by
w(-,I)=g(-, -)satisfies I? = —Idgy;. The tuple (M, g,w, I) is called an almost-Kdhler
manifold. To prove our Theorem 3 we need assume a bound on the C’-norm of Vw (here
V is the Levi-Civita connection given by ¢), which measures how far our almost-Kéahler
manifold is from being Kéhler!. We state the theorem with the bound choosen to be 1

(but see Remark 1 below).

'Recall that an almost-Kéahler manifold is Kihler if the almost complex structure I is integrable, or
equivalently if VI =0 or Vw = 0.



15

Theorem 3 Let (M™,g,w,I) be an almost-Kdahler manifold satisfying |Vw| < 1 and
{N;L} a family of isotropic submanifolds of M parametrized in a measurable way by ele-
ments of a probability space G, such that all the pairs (M, Ng) are gentle. If di(Ng, Np) <
€< m for all g and h in G, there is a well defined isotropic center of mass sub-
manifold L™ with dy(Ng, L) < 1000€ for all g in G. This construction is equivariant with
respect to isometric symplectomorphisms of M and measure preserving automorphisms

of G.

Remark 1: The theorem still holds if we assume higher bounds on |Vw|, but in that
case the bound Wloo for € would have to be chosen smaller. See the remark in Section
4.5.4.

Remark 2: Notice that we are no longer able to give estimates on the C'-distance of
the isotropic center of mass from the NN,’s. Such an estimate could possibly be given
provided we have more information about the extrinsic geometry of Weinstein’s center
of mass submanifold; see Remark 1 in Section 4.6. Instead we can only give estimates

on the C-distances do(Ny, L) = sup{d(z, Ny) : = € L}.

An easy consequence of our Theorem 3 is a statement about group actions. Recall
that, given any action of a compact Lie group G on a symplectic manifold (M, w) by
symplectomorphisms, by averaging over the compact group one can always find some
invariant metric g. Using w and § one can canonically construct a metric g which is
compatible with w (see [Cal); since g is constructed canonically out of objects that are
G-invariant, it will be G-invariant too. Therefore G acts on the almost Kahler manifold
(M, g,w). But it does not seem possible to give any a priori bound on |Vw|, where V is

the Levi-Civita connection corresponding to the averaged metric.

Theorem 4 Let (M, g,w, I) be an almost-Kdhler manifold satisfying |Vw| < 1 and let
G be a compact Lie group acting on M by isometric symplectomorphisms. Let Ny be
an isotropic submanifold of M such that (M, Ny) is a gentle pair and di(Ny, gNg) <
€ < m for all g € G. Then there is a G-invariant isotropic submanifold L with
do(No, L) < 1000€.

The invariant isotropic submanifold L as above is constructed by endowing G with the

bi-invariant probability measure and applying Theorem 3 to the family {gNo}4eq. The



16

resulting isotropic average L is G-invariant because of the equivariance properties of the

averaging procedure.

3.2 Outline of the proof of Theorem 3

We will try to convince the reader that the construction we use to prove Theorem 3

works if only one chooses € small enough. Let us begin by requiring € < m.

e PART I We start by considering the Riemannian average N of the submanifolds
{Ng4} as in Theorem 1. We will use the notation expy to indicate the restriction of
the exponential map to T'M|y, and similarly for any of the N,’s. For any ¢ in G, the
average N lies in a tubular neighborhood of N, and is the image under exp N, of a
section o of vNy (see [We]). Therefore for any point p of N, there is a canonical path
Y¢(t) = exp,(t - o(p)) from p to the unique point ¢ of N lying in the normal slice of
N, through p. Here, using the notation (vNy); for the open unit disk bundle in VN,
we denote by the term “normal slice” the submanifold expy, (1pNg)1. We define the

following map (see also the figure below):

Pg : €XPy, (VNg)l — M, epr(U) — equ(“/q\\,U)'

Here p, g, and v, are as above, v € (1,,Ny)1, and “,\\” denotes parallel translation along
Yq- S0 4 takes the normal slice exp,(1,Ng)1 to exp,(Vert]):, where Verty C T,M is
the parallel translation along v, of v, N, C T, M.

We have d(Verty,vyN) < di(Ng, N) < 2500¢ < %, so Verty and T,N are transversal.
Therefore ¢, is a local diffeomorphism at all points of Ny, and it is clearly injective
there. Using the geometry if Ny, N and M in Proposition 4.4.1 we will show that ¢, is
an open embedding if restricted to the tubular neighborhood expy, (vNg)o.05 of Ny.

We restrict our map to this neighborhood and we also restrict the target space to obtain

a diffeomorphism, which we will still denote by ¢ .
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e PART II Now we introduce the symplectic form
Wy 1= (90;1)’%

on expy(Vertd)oos. Notice that N is isotropic with respect to w, by construction,
therefore it is also with respect to the two-form fg Wy = fG wgdg which is defined on
Ngec expy (Vert?)o.os and which is the average of the wy’s. We would like to apply
Moser’s trick? (see [Ca, Chapter III]) to w and fg wg. To do so we first restrict our forms
to a smaller tubular neighborhood tub® of N, which we will define in Section 4.5.1. To
apply Moser’s trick we have to check:

1. On tub® the convex linear combination wy = w —I—t(fg wg —w) consists of symplectic
forms.
Indeed we will show that on tub® the differential of gog_l is “close” to the parallel
translation \\ along certain “canonical” geodesics that will be specified at the

beginning of Section 4.1. This and the bound on |Vw| imply that for any ¢ € tub®

*Recall that Moser’s Theorem states the following: if Q; (¢ € [0,1]) is a smooth family of symplectic
forms lying in the same cohomology class on a compact manifold then there is a family of diffeomorphisms
pt with po = Id satisfying p;Q; = Qo.
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and nonzero X,Y € T, M:

(@9)a(X,Y) =w,1y (957,(X) 657,(1)
Wit @) <\\X’ \\Y>
~we(X,Y),

i.e. wy, and w are very close to each other. So w(X,IX)~ w(X,IX)=|X|*>>0.

Therefore each w; is non-degenerate, and it is clearly also closed.

2. On tub® the forms w and fg wy belong to the same cohomology class (the zero class).
Fix g € G. The inclusion i : tub® — expy, (¥NNg)1 is homotopic to @ 11 tub® —
expy, (VNg)1. A homotopy is given by thinking of IV as a section of vN; and
“sliding along the fibers” to the zero-section. Therefore these two maps induce the

same map in cohomology, and pulling back w we have

[wleae] = i*[w] = (05 1)"[w] = [wy].

Integrating over G finishes the argument. (Since N is isotropic w.r.t. [ g Wgs the

cohomology class of w and fg wy is actually zero.)

Now we can apply Moser’s trick: if « is a one form on tub® such that da is equal to
%wt = fg wg — w, then the flow p; of the time-dependent vector field v; := —a?t_l(oz) has
the property pfw; = w (and in particular pj( fg wg) = w) where it is defined. Therefore if
L:= pl_l(N ) is a well-defined submanifold of tub®, then it will be isotropic with respect
to w since N is isotropic with respect to fg wg.

We will construct canonically a primitive a as above in Section 4.5.2. Using the fact that
the distance between the N,’s and N is small, we will show that o has small maximum-
norm. So, if € is small enough, the time-1 flow of the time-dependent vector field {—wvy_;}

will not take N out of tub® and L will be well-defined.

Since our construction is canonical after fixing the almost-Kéhler structure (g, w, I) of

M and the probability space G, the construction of L is equivariant with respect to
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Chapter 4

The proof of the isotropic

averaging theorem

The purpose of this chapter is to give the proof of Theorem 3, as outlined in Section 3.2.
Using the notation introduced there, we can summarize the chapter as follows: in Section
4.1 we will study the map 4. In Section 4.2 we will state a proposition about geodesic
triangles, and in Section 4.3 we will apply it in our set-up. This will allow us to show
in Section 4.4 that each ¢g is injective on expy, (vNg)o.05- The proofs of some estimates
of Sections 4.2 and 4.3 are rather involved, and we present them in three appendices at
the end of this thesis. This will conclude the proof of the first part of the theorem. In
Section 4.5 we will make use for the first time of the symplectic structure of M. We
will show that the w;’s are symplectic forms and that the 1-form «, and therefore the
Moser vector field vg, are small in the maximum norm. Comparison with the results of
Section 4.4 will end the proof of Theorem 3. Finally we will make a few remarks about

the theorem.

4.1 Estimates on the map ¢,

Fix g € G and let p be a point in the tubular neighborhood of Ny, and X € T,,M. The
aim of this section is to estimate the difference between ¢, X and \X (this will be

achieved in Proposition 4.1.4) where “\ X” denotes the following parallel translation of
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X. First we parallel translate X along the shortest geodesic from p to my,(p) (where
TN, is the projection onto N, along the normal slices), then along the shortest geodesic
from 7y, (p) € Ny to its image under ¢4, and finally along the shortest geodesic to ¢4(p).

We view “\\” as a canonical way to associate a vector in T, (,)M to X € T, M.

Before we begin proving our estimates, following Section 2.1 of [We| we introduce two
subbundles of T'M |CXpNg(V N,), and their orthogonal complements.

The wvertical bundle Vert? has fiber at p given by the parallel translation of Vin, »Ng
along the shortest geodesic from 7y, (p) to p.

The almost vertical bundle aVertd has fiber at p given by the tangent space at p of the
normal slice to Ny through 7y, (p).

The horizontal bundle Horf9 and the almost horizontal bundle aHor9 are their orthogo-

nal complements.

Remark: Notice that aVert? is the kernel of (7y,)s, and that, according to Proposi-
tion 3.7 in [We|, we have d(Vert), aVert)) < %d(p, Ny)? for any p in expy, (vNg)1, and
similarly for Hor? and aHor?.

Since %d(p, Ng)2 < 3, Vert? and aHor? are always transversal (and clearly the same
holds for Hor? and aVert?). As we have seen in Section 3.2, Vert? and T'N are transver-
sal along N, and aVertd and TN are also transversal since N corresponds to a section

of YNy and aVert? = Ker(mny, )«

Now we are ready to give our estimates on the map ¢,. Recall from Section 3.2 that,
for any point ¢ of the tubular neighborhood of Ny, we denote by 7, the geodesic from
7N, (q) € Ng to g. Until the end of this section all geodesics will be parametrized by
arc-length.

1

In Sections 4.1 to 4.4 all estimates will hold for € < 59000 °

4.1.1 Case 1: p is a point of N,
Proposition 4.1.1 If p € Ny and X € T,N, is a unit vector, then

g, (X) = \X| < 3200€.



22

Remark: Notice that if X is a vector normal to N, by definition of ¢, and \\ we have
©q,(X) =\X. Therefore in this subsection we will assume that X is tangent to Nj.

Let p € Ny, X € T,N, a unit vector, and ¢ := ¢4(p). We will denote by E the distance
d(p, pg(p)) < 100€ (see end of Section 4 in [We]).
We will show that at ¢

\X ~ J(E) = H~ ¢y, (X)

where the Jacobi field J and the horizontal vector H will be specified below.

Lemma 4.1.1 Let J be the Jacobi-field along the geodesic vy, such that J(0) = X and
J'(0) = By, 0yX, where B is the second fundamental form of Ng. Then

I(B) = \X| < 3¢ ~ 1),

Proof: This is an immediate consequence of [BK,6.3.8.iii]! which will be used later again
and which under the curvature assumption |K| < 1 states the following: if J is any

Jacobi field along a unit-speed geodesic, then we have
’J(t) A (J(O) +t- J’(O))’ < |J(0)| (cosh(t) — 1) + ’J’(O)’ (sinh(t) — 1),

where ?\\ denotes parallel translation to the starting point of the geodesic. Since (M, N,)
is a gentle pair, the second fundamental form B of Ny satisfies | By, )X | < 3 by [We, Cor
3.2], so the above estimate gives |J(E) — \X| < (cosh(E)—1)+3 sinh(E). Alternatively,
this Lemma can be proven using the methods of [We, Prop 3.7]. ad

Before proceeding we need a lemma about projections:

Lemma 4.1.2 IfY € T,M is a vertical unit vector, write Y = Y4, +Y}, for the splitting
into its almost vertical and horizontal components. Then

2

E 1
|| < tan (T) and  |Ya| <

COS(ETZ)'

'[BK,6.3.8] assumes that J(0) and J'(0) be linearly dependent. However statement iii) holds without
this assumption, as one can always decompose J as J = J1 + Ja2, where J; and J2 are Jacobi fields such
that J1(0) = J(0),J1(0) = 0 and J1(0) = 0,J;(0) = J'(0) respectively. Furthermore we make use of
[7]"(0) < [J(0)].
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Proof: By [We, Prop 3.7] we have d(Vert),aVert]) < ETZ < 3, so the subspace aVert]
of TyM is the graph of a linear map ¢ : Vert) — Horj. So Yy, =Y + ¢(Y) and
Yy = —¢(Y). Since the angle enclosed by Y and Y,, is at most d(Vert], aVert]) < ETZ,
one obtains |Y| > COS(ETZ)|YM| which gives the second estimate of the Lemma. From

this, using |Y5,|? = |Yau|? — |Y|? we obtain the first estimate. 0

Lemma 4.1.3 If H is the unique horizontal vector at q such that mn, (H) = X, then
1
COS(ETZ)'

Proof: Let J be the Jacobi-field of Lemma 4.1.1. Write J(E) = W +Y for the splitting

[J(E) = H| < S(e® ~ 1)

into horizontal and vertical components. Then, using the notation of Lemma 4.1.2,
we have J(E), = W + Y}, and J(E)4 = Yaw. Notice that the Jacobi field J arises
from a variation of geodesics orthogonal to N, (see the Remark in Section 4.1.2), so

(7N, )«J(E) = X = (7n,)«H. Using aVert? = ker(ny, )« it follows that H = J(E). So

1 3 1
J(E)— H| =Y, <|Y <Z(ef-1) ———
|J(E) | = |Yau| < ICOS(ETZ) 2( ) COS(ETZ)

where we used Lemma 4.1.2 and |Y| < [J(E) — \ X| together with Lemma 4.1.1. O

Now we will compare H to ¢4, (X) and finish our proof.

Proof of Proposition 4.1.1: 'We have
NX =g, (X)| < NX = J(B)] + |J(E) — H| + |H — ¢g,(X)].

The first and second terms are bounded by the estimates of Lemmas 4.1.1 and 4.1.3. For
the third term we proceed analogously to Lemma 4.1.3: since ¢4, (X) and H are both
mapped to X via 7y, one has (g, (X))aw = ¢q,(X) —H. As earlier, if p 4, (X) = W+Y
is the splitting into horizontal and vertical components, we have (g, (X))aw = Yao-
Therefore

~ ~ 1 sin(2500¢)
(09, (X) = H| = [Yao| <Y [——75+ < g (X)|— 5
cos(7) cos(7)
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Here we also used Lemma 4.1.2 and the fact that the angle enclosed by ¢, (X) and
its orthogonal projection onto Horg is at most d(Horf, T,N) < 2500¢ by Theorem 1.
Altogether we have

sin(2500¢)
OS(ETZ) '

Using this inequality we can bound |¢g4 (X)| from above in terms of £ and e. Substi-

NX — g, (X)] < 5P —1) |1+ + g, (X))

N W

COS(ETQ)

tuting into the right hand side of the above inequality we obtain a function of € (recall

that E' = 100¢) which is increasing and bounded above by 3200e. a

4.1.2 Case 2: p is a point of Jexpy (vN,)r and X € T,M is almost

vertical

In this subsection we require L < 1, as in the definition of gentle pair.

Remark: Jacobi-fields J along v, (the geodesic from my, (p) to p) with J(0) tangent to
Ny and —Bﬁ-/p(o)j(O) + J'(0) normal to N, are called Ny Jacobi-fields. They clearly form
a vector space of dimension equal to dim(M) and they are exactly the Jacobi-fields that
arise from variations of vy, by geodesics that start on N, and are normal to N, there.

Since (M, Ny) is a gentle pair, there are no focal points of my, (p) along 7,, so the map
{N, Jacobi-fields along v,} — T,M, J +— J(L)

is an isomorphism. The N, Jacobi fields that map to aVert) are exactly those with the
property J(0) =0, J'(0) € v,

field of the variation

Ny (D) Ny. Indeed such a vector field is the variational vector

fs(t) = expry () t[1p(0) + 5T (0)],

so J(L) will be tangent to the normal slice of Ny at my, (p). From dimension considera-
tions it follows that the IV, Jacobi-fields that satisfy J(0) € T, Ny and Bs, (0)/(0) =
J'(0) - which are called strong N, Jacobi-fields - map to a subspace of T, M which is

Ng ()

a complement of aVerty. As pointed out in [Wa, p. 354], these two subspaces are in

general not orthogonal.
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Proposition 4.1.2 If p € Jexpy, (vNg)r, and X € TyM is an almost vertical unit

vector, then
sinh(L) — L
X)—\WX|I<2————
We begin proving

Lemma 4.1.4 Let J be a Jacobi-field along 7y, such that J(0) =0 and J'(0) € v,
normalized such that |J(L)| = 1. Then

Ng(:n)Ng’

sinh(L) — L

0~ £\ 0] < S

Proof: Again [BK, 6.3.8iii] shows that |[J(L) — L\\J'(0)| < |J'(0)|(sinh(L) — L). Using
the upper curvature bound K < 1 and Rauch’s theorem we obtain |J'(0)] < =

we are done. a

We saw in the remark above that X is equal to J(L) for a Jacobi-field J as in Lemma
4.1.4, and that J comes from a variation fs(t) = XPrry (p) t[p(0) + sJ(0)]. So ¢4, (X)

comes from the variation

g (fs(t)) = exy, (rx. ()t [\p(0) + s\J(0)]

along the geodesic ¢4(7,(t)). More precisely, if we denote by J(t) the Jacobi-field that
arises from the above variation, we will have ¢, (X) = J(L). Notice that J(0) = 0 and

J'(0) = \J'(0).

Lemma 4.1.5
~ 5 sinh(L) — L
L. <\ T
Proof: Exactly as for Lemma 4.1.4 since J(0) = 0 and [.J'(0)| = |J/(0). 0

Proof of Proposition 4.1.2: We have X ~ LJ'(0) = LJ'(0) = ¢, (X). Here we identify
tangent spaces to M parallel translating along 7,, along the geodesic Vg (7, (p)) from

7N, (p) to its pg-image and along ¢4 o 7, respectively. Notice that these three geodesics
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are exactly those used in the definition of “\\”.
The estimates for the two relations “~” are in Lemma 4.1.4 and Lemma 4.1.5 respectively

(recall X = J(L) and ¢, (X) = J(L)), and the equality holds because J'(0) = \\J'(0).0

4.1.3 Case 3: p is a point of dexpy, (vN,;)r and X = J(L) for some strong
N, Jacobi-field J along 7,

From now on we have to assume L < 0.08.

Proposition 4.1.3 Ifp € Jexpy, (vNg)r and X is a unit vector equal to J(L) for some
strong Ny Jacobi-field J along vyp, then

18
|0g, (X) =\ X| < =L +3700c.
We proceed analogously to Case 2.

Lemma 4.1.6 For a vector field J as in the above proposition we have

(" —1)

3 S
D)

L.

| |noleo
o] ©

[ J(L) =, W O)] < ¢

Furthermore we have |J(0)| < %

Proof: By Lemma 4.1.1 we have [J(L) —, \J(0)| < 3(e* — 1)|J(0)|, from which we
obtain the estimate for |J(0)| and then the first estimate of the lemma. 0

J comes from a variation fs(t) = expy(y) tv(s) for some curve o in Ny with &(0) = J(0)
and some normal vector field v along 0. We denote by J the Jacobi-field along the

geodesic ¢g4(7,(t)) arising from the variation

fs(t) = g (fs(t)) = exps(s) (F\0(s))

where & = ¢, 0 o is the lift of ¢ to N. Then we have J(L) = ¢,, (X). Notice that here
\\v(s) is just the parallel translation of v(s) along vz(5) =: 7s-
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Lemma 4.1.7
L

ol ©

[T(L) =405, VT (0)] <

Proof: Using [BK 6.3.8iii] as in Lemma 4.1.1 we obtain

J(L) —gogowp\\j(O)( <[J'(0)|(sinh(L)) + [J(0)|(cosh(L) — 1), (%)

so that we just have to estimate the norms of .J(0) and .J'(0).

Since J(0) = ¢,,J(0), applying Proposition 4.1.1 gives |J(0) —, \J(0)| < 3200¢|.J(0)].
Using the bound for |.J(0)| given in Lemma 4.1.6 we obtain |J(0)| < %.

To estimate J'(0) notice that in the expression for f,(t) we can choose v(s) =4, \[0(0) +

sJ'(0)], where ,_\\ denotes parallel translation from ¢ (0) to o(s) along . So

Vo (s) =4, N\ [F0(0) + s7'(0)]

and
T0) = 2| (W) = 22| 00, Vo) +,\70)

where we used the Leibniz rule for covariant derivatives to obtain the second equality.

To estimate the first term note that the difference between the identity and the holonomy
around a loop in a Riemannian manifold is bounded in the operator norm by the area of a
surface spanned by the loop times a bound for the curvature (see [BK, 6.2.1]). Therefore
we write 4\ ; \70(0) as 5,\1\J0(0) +¢(s) where (s) is a vector field along & (s) with norm
bounded by the area of the polygon spanned by ¢(0), o(s),d(s) and (0). Assuming that
o has constant speed |J(0)| we can estimate d(o(0), o(s)) < s|J(0)| and using Proposition
4.1.1 to estimate |5(s)| = |¢g,5(s)| we obtain d(5(0),5(s)) < s(1 + 3200¢)|.J(0)|. Using

d(c(s),0(s)) < 100e and Lemma 4.1.6 we can bound the area of the polygon safely by

100es(2+3200¢)

1-3(cb-1) So we obtain

‘ ‘%\\as\\% ‘ ‘— ‘ 100€(2 + 3200¢)

1—3(el—1)"

To bound ~,\J'(0) notice that |.J'(0)
field and [We, Cor. 3.2], so |J'(0)| < %
(0

Substituting our estimates for |.J(0)| a

| < 2|J(0)| using the fact that J is a strong Jacobi-
1
e L-1)°

3
——(
2

d |J'(0)| in (%) we obtain a function which, for
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€< m and L < 0.08, is bounded above by %L. O

The vectors J(0) and \J(0) generally are not equal, so we need one more estimate that

has no counterpart in Case 2:

Lemma 4.1.8
~ 3200¢
JO)=\J0)| < ————— < 3700e.
O = VIO = gy g <9700
Proof: Since J(0) = ¢4, J(0), Proposition 4.1.1 gives
- 3200¢
J(0) = \J(0)] < 3200¢|J(0)| € ————.
|7(0) = \J(0)] < €|()|_1—§(eL—1)
Since 1_%(17_1) < 1.15 when L < 0.08 we are done. O

Proof of Proposition 4.1.8:  We have X ~ J(0) ~ J(0) ~ ¢, (X) where we identify
tangent spaces by parallel translation along 7,, 70 and ¢4 o 7, respectively. Combining

the last three lemmas and recalling X = J(L), ¢4, (X) = J(L) we finish the proof. O

4.1.4 The general case

This proposition summarizes the three cases considered up to now:

Proposition 4.1.4 Assume ¢ < m and L < 0.08. Let p € dexpy, (vNy)r and
X € T,M a unit vector. Then

|09, (X) — \X| < 4L + 4100e.

We will write the unit vector X as J(L) + K (L) where J and K, up to normalization,
are Jacobi fields as in the next lemma. We will need to estimate the norms of J(L) and

K (L), so we begin by estimating the angle they enclose:

Lemma 4.1.9 Let J be a N, Jacobi-field along ~y, with J(0) = 0, J'(0) normal to N,
(as in Case 2) and K a strong N4 Jacobi-field (as in Case 3), normalized such that J(L)
and K (L) are unit vectors. Then

S(el —1) 1 _sinh(L) — L

[(J(L), K(L))| < 1E%(€L—1) T 1_%(6L_1) sin(L)

<2L.
)
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Proof: Identifying tangent spaces along -, by parallel translation, we have
[(J(L), K(L))| = [(J(L), K(L)) — (LJ'(0), K(0))]
<[(J(L), K(L) = K(0))| + [{(J(L) — LJ'(0), K(0))]
<|K(L) - K(0)| + K (0)| - |J(L) — LJ'(0)],

which can be estimated using Lemma 4.1.6 and Lemma 4.1.4 a

Lemma 4.1.10 Let X € T,M be a unit vector such that X = J(L) + K (L) where J, K

are Jacobi-fields as in the Lemma 4.1.9 (up to normalization). Then

|J(L)],|K(L)| € ———= < 1.1.

Proof: Let ¢ := <%, %}, so |c| < %L. There is an orthonormal basis {ej, €2} of
span{J(L), K(L)} such that J(L) = |J(L)|e; and K(L) = |K(L)|(ce1 + V1 — c?e3). An
elementary computation shows that 1 = [J(L) + K(L)|> > (1 — |¢|)(|J(L)|* + | K (L)|?),

from which the lemma easily follows. O

Proof of Proposition 4.1.4: The remark at the beginning of Case 2 implies that we can
(uniquely) write X = J(L) + K (L) for Ny Jacobi-fields J and K as in Lemma 4.1.10.
So, using Lemma 4.1.10, Proposition 4.1.2 and Proposition 4.1.3

|09, (X) = \X| <|g, J(L) = \J(L)| + |g. K (L) — \K(L)|

sinh(L) — L 18
<11 |(2——F——+ —L
< ( sin(L) + 5 + 37006>

<4L + 4100e.

4.2 Proposition 4.2.1 about geodesic triangles in M

Fix g in G and let ¢ 4 be the map from a tubular neighborhood of N, to one of N defined

in Section 3.2. Our aim in the next three sections is to show that expy, (vNg)o.05 is a
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tubular neighborhood of N, on which ¢, is injective.
We will begin by giving a lower bound on the length of the edges of certain geodesic

triangles in M.

In this section we take M to be simply any Riemannian manifold with the following two
properties:

i) the sectional curvature lies between -1 and 1
ii) the injectivity radius at any point is at least 1.

In our later applications we will work in the neighborhood of a submanifold that forms

a gentle pair with M, so these two conditions will be automatically satisfied.

Now let us choose points A, B,C in M and let us assume d(C, A) < 0.15 and d(C, B) <
0.5. Connecting the three points by the unique shortest geodesics defined on the interval
[0, 1], we obtain a geodesic triangle ABC'.

We will denote by the symbol C'B the initial velocity vector of the geodesic from C' to
B, and similarly for the other edges of the triangle.

Proposition 4.2.1 Let M be a Riemannian manifold and ABC' a geodesic triangle as
above. Let Po, Pa be subspaces of ToM and TaM respectively of equal dimensions such
that CB € Pg and AB € P4. Assume that:

L(Py,AC) > = -6

o] 3

and

0 := d(Py4, cA\Pc) < Cd(A,C)

for some constants §,C. We assume C < 2. Then

10 1
d(C,B) > — :
( ) 11(C + 6)Vv1 + tan?s

Remark 1: Here ¢4\ denotes parallel translation of Po along the geodesic from C' to
A.

The angle between the subspace P4 and the vector AC is given as follows: for every

nonzero v € P4 we consider the non-oriented angle £ (v, AC) € [0, 7]. Then we have

£(Py, AC) := Min {A(U,AC’) : v € P4 nonzero } € [0, g} .
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Notice that £(Pa, AC)) > Z—§ iff for all nonzero v € P4 we have £(v, AC) € [5—8, Z+4].
Remark 2: This proposition generalizes the following simple statement about triangles
in the plane: if two edges C'B and AB form an angle bounded by the length of the base
edge AC times a constant C, and if we assume that C'B and AB are nearly perpendicular
to AC, then the lengths |CB| and |AB| will be bounded below by a constant depending
on C (but not on |AC|).

In the general case of Proposition 4.2.1 however we make assumptions on d(Pa, oA\ Pc)
from which we are not able to obtain easily bounds on the angle A(C’.B,A.B) at B
(such a bound together with the law of sines would immediately imply the statement of

Proposition 4.2.1).

Proof: Using the chart exp, we can lift B and C' to the points B and C of TyM. We
obtain a triangle 0BC, which differs in one edge from the lift of the triangle ABC.
Denoting by @ the endpoint of the vector (B — C’) translated to the origin, consider the
triangle 0BQ. Let P be the closest point to Q in Pj.

Claim 1:
|]§ — P| <tan(4)|Q — P].

Using £(Pjy, AC’) > 5 — 0 and AC = C — 0 we see that the angle between any vector in
P4 and C — 0 lies in the interval [5 — 6,5 +4]. Since C — 0 and Q — B are parallel, the
angle between any vector of P4 and Q — B lies in [5 — 0,5 + 0]. Since P — B € Py we
have

4(P-B,Q—B> c [g—é,g—i—é .

The triangle BPQ has a right angle at P, so the angle £(P — Q, B — Q) is less of equal

than §, and claim 1 follows.

Claim 2:
|Q — P| <sin[(6+C)-d(C,A)]-|Q —0|.

(exp;")+CB does not coincide with B —C' € Ty(T4M). Estimating - see Corollary A.1.2
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in Appendix A - the angle between these two vectors we will be able to estimate the
angle between B— C =Q — 0 € TyM and CA\\CB € TaAM, i.e. the parallel translation
in M of C'B along the geodesic from C to A (see Corollary A.1.3). Our estimate will be
£ (cA\\CB, o 0) < 4d(A, C).

Now let P’ be the closest point to ¢4\ CB in P4. Since P’ —0 € P4 and CB € Pg, using
the definition of distance between subspaces we get £(cA\CB, P'—0) < d(Py4, ¢cA\Pc) =
0 <Cd(C,A).

Finally we will show - see Corollary A.1.1 - that £(P — 0, P’ — 0) < 2d(C, A).
Combining the last three estimates we get £(P —0,Q —0) < (6 + C)d(C, A), which is

less than 5

Claim 2 follows since 0PQ is a right triangle at P.

Claim 3:

d(C, B) > = .
( ) 1(C +6)V1+ tan2)

The triangle BPQ is a right triangle at P, so using claim 1 and claim 2 we have
|Q— B> =B~ P +|Q — PP
< (1+tan®s) - |Q — P?
< (1 +tan?s) - (6+C)*-d(C, A)*-|Q — 0]*.
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The vector Q — B is just 0 — C, the length of which is d(A, C), and the vector Q — 0 is
B—-C. So
d(A,C) < /(1 +tan26)(6 4 C) - d(C, A)|B — C|,

and
1

(6 +C)V1+ tan?d

Using standard estimates - see Corollary A.1.4 - we obtain |B — C| < 1+d(C, B), and the

<|B-C|.

proposition follows. a

4.3 Application of Proposition 4.2.1 to Vert’.

Fix g in G. Let C and A be points on Weinstein’s average N with d(C, A) < 0.15 joint
by a minimizing geodesic v in M. Suppose that exp-(v) = exp4(w) =: B for vertical
vectors v € Vert% and w € VertY of lengths less than 0.5. In this section we will apply
Proposition 4.2.1 to the geodesic triangle given by the above three points of M and
Py =Verty, Po = Vertgc. We will do so in Proposition 4.3.5

To this aim, first we will estimate the constants § and C of Proposition 4.2.1 in this
specific case. As always our estimates will hold for € < m.

Roughly speaking, the constant § - which measures how much the angle between C'A =
4(0) and Vert!, deviates from 5 - will be determined by using the fact that N is Cl-
close to Ny, so that the shortest geodesic v between C' and A is “nearly tangent” to the
distribution Hor9.

Bounding the constant C - which measures how the angle between Verty and Vertf,
depends on d(A, C) - will be easier, noticing that both spaces are parallel translations of

normal spaces to N4, which is a submanifold with bounded second fundamental form.

Since we have

£ (3(0), Vertl,) = g — £ (4(0), Horl,) ,
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to determine § we just have to estimate the angle
o= £ (7(0), Hor{,) .

We already introduced the geodesic () from C to A, which we assume to be parametrized
by arc length. We now consider the curve 7(t) := 7, oy(t) in Ny. We can lift the curve
7 to a curve @4 o7 in N connecting C' and A; we will call ¢(t) the parametrization by
arc length of this lift.

V+ will denote the connection induced on vN, by the Levi-Civita connection V of M,
and 7Jr_b\\ applied to some § € v )Ny will denote its V-t-parallel transport from 7 (t) to
7m(0) along 7. (The superscript “b” stands for “backwards” and is a reminder that we
are parallel translating to the initial point of the curve 7.)

Further we will need

r = 100e + @ > SLtlp{d(y(t), Ng)} and f(r) := cos(r) — gsin(r).

Notice that r < 0.08 due to our restrictions on € and d(C, A).

c(t A

N

N y(®)

Vertg

Using the fact that ¢ is a curve in N and N is C'-close to Ny, in Appendix B we will
show that the section ¢ := eXp]_Vi (c(t)) of YNy along 7 is “approximately parallel”. This

will allow us to bound from above the “distance” between its endpoints as follows:

Proposition 4.3.1
3150e
f(r)

expy! O =5 \(expy! A)| < L(7)
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Using the fact that « is a geodesic and our bound on the extrinsic curvature of Ny, in
Appendix C we will show that the section 4 := eXp]_Vi (7(t)) of N, along m approximately
“grows at a constant rate”. Since its covariant derivative at zero depends on «, we will
be able to estimate the “distance” between its endpoints - which are also the endpoints

of ¢ - in terms in a. We will obtain:

Proposition 4.3.2

ra 3
et 1) [ o) e o -+ )

Comparison of Proposition 4.3.1 and Proposition 4.3.2 gives

3150 _ 99 8 3
€ >~ sin (oz— 2) — 500e — 3r — gL(y) (r—l— Tf—(l;)2> .

Recall that » = 100e + # If L(v) and € are small enough one can solve the above

inequality for o.. With our restriction € < s=-— this can be done whenever L(v) < 0.1.
20000 v

One obtains

100 [ 3150 5
d(e, L()) := 2 + arcsin{ [—6 + 500€ + 3r + %L(y) (r + Tty )] } > .

99 | f(r) f(r)

We can now state the main results of this section. First we determine the constant ¢ of

Proposition 4.2.1 in our setting.

Proposition 4.3.3 Let C, A be points in N and ~ the shortest geodesic in M from C
to A. Assume € < 55555 and L(7y) < 0.1. Then (e, L(7)) is well defined and

£ (Horl,,%(0)) = a <6 (e, L(7)).

Therefore

£ (Vertd, %(0)) > = — 8 (e, L(v))

o] 3

and for symmetry reasons

£ (Vert)y, =4(L(v))) > 5 — 6 (¢, L(7))..

ol 3

To determine the constant C we only need Lemma C.1.3:
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Proposition 4.3.4 Let C, A and v be as above and assume L(y) < 0.1. Then

d(Vertd,, )\Vert})) < 2L(y).

3
Proof: By Lemma C.1.3 we have d(Vertl,, )\Vert’) < arcsin[L(v)(r + ?(——T%)], where
r = 100e+ # For the above values of € and L(+y) this last expression is bounded above
by 2L(7). 0

Now making use of the estimates in the last two propositions we can apply Proposition

4.2.1.

Proposition 4.3.5 Fiz g € G. Let C, A be points in N such that d(A,C) < 0.1 and

suppose that expg(v) = exp4(w) =: B for vertical vectors v € Vertl,, w € Vert’,. Then

1
v, jw| = — '
[v1; [w] 9 /1 +tan? (3(e, d(A, C))

Proof: If |v| > 0.5 than the estimate for |v| clearly holds, as the right hand side is <
So we assume |v| = d(B, C) < 0.5.
Since d(B, Ng) < 0.5+ 100e < 1 and (M, N,) is a gentle pair, the triangle ABC' lies in

Nellog

an open subset of M with the properties

i) the sectional curvature lies between -1 and 1
ii) the injectivity radius at each point is at least 1.

Therefore we are in the situation of Proposition 4.2.1. Setting Po = Vert{, and Py =
Vert’ in the statement of Proposition 4.2.1, Proposition 4.3.3 and Proposition 4.3.4

allow us to choose:

d=0(e,d(A,C)) and C = 2.

Therefore, since %(zlﬁ) > &, we obtain

o] > + L .
9 /1 + tan? (3(e, d(A, C))

The statement for |w| follows exactly in the same way. O
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4.4 Estimates on tubular neighborhoods of N, on which ¢,
is injective

In this section we will finally apply the results of Section 4.2 and Section 4.3, which

were summarized in Proposition 4.3.5, to show that expy, (vNg)o.05 is a tubular neigh-

borhood of N on which ¢, is injective. We will also bound from below the size of

Ngea expy (Vert9)o.os (where the 2-form fg wy is defined).

Proposition 4.4.1 Ife < m the map

pg : expy, (VNg)o.os — expy(Vert?)o.os
s a diffeomorphism.

Proof: From the definition of ¢, it is clear that it is enough to show the injectivity of
expy : (Vert?)p.os — expy(Vert?)o.os.

Let A,C € N and v € Vert%,w € Verti be vectors of length strictly less than 0.05.
We suppose that exps(v) = exp 4(w) and argue by contradiction. Clearly d(A,C) < 0.1.

L . Since the

o . 3. . . . > l
We can apply Proposition 4.3.5, which implies |v], [w| > 3 T A0

function d(e, L) increases with L we have

1
v, lw| > = .
ol o 9 /1 + tan? (5(¢,0.1))

For e < m the above function is larger than 0.05, so we have a contradiction.

So expe(v) # expy(w) and the above map is injective. 0

For each L < 0.05 we want to estimate the radius of a tubular neighborhood of N
contained in Ngegexpy(Vert?)r. This will be used in Section 4.5 to determine where
[ wy is non-degenerate, so that one can apply Moser’s trick there. As a by-product, the
proposition below will also give us an estimate of the size of the neighborhood in which

fg wy is defined.
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Proposition 4.4.2 For L < 0.05 and € < using the notation

1
20000

R, := sin(L) cos (6(e,2L) + 2L2)

we have

expy (VN )rs C Ngegexpy(Vertd) .

Remark: The function Rj 5 decreases with € and assumes the value 0.039... at € = 0

and the value 0.027... when € = WIOO'

To prove the proposition we will consider again geodesic triangles:

Lemma 4.4.1 Let ABC' be a geodesic triangle lying in expy, (vNg)1 such that d(A, B) <
d(C,B) =: L < 0.05. Let~y denote the angle at C, and suppose that vy € [§ — 5, 7+ 5]
Then

d(A, B) > sin(L) cos (5 + 2L2> .

/

Proof: Denote by a, 3 the angles at A and B respectively, and denote further by o, 3/,
the angles of the Alexandrov triangle in S? corresponding to ABC (i.e. the triangle in
S? having the same side lengths as ABC). By [KI, remark 2.7.5] we have sin(d(A, B)) =
sin(d(C, B))S.in(ﬁ/,) > sin(d(C, B)) sin(v/).

sin(a/)

By Toponogov’s theorem (see [Kl]) 4/ > 7. On the other hand, using the bound L?
for the area of the Alexandrov triangles in S? and H? corresponding to ABC, we have
v —~ < 2L? (see proof of Lemma A.1.1). So 7' € [§ — 5, 5+ 6 + 2L2]. Altogether this

gives

d(A, B) > sin (d(A, B)) > sin(d(C, B)) sin(~) > sin(L) sin (g +5+21%).

Now we want to apply the Lemma 4.4.1 to our case of interest:

Lemma 4.4.2 Let C € N and B = expg(w) for some w € Vertl, of length L < 0.05,

and assume as usual € < Then

20000

d(B,N) > sin(L) cos (0(¢,2L) + 2L*) = RS,

Here the function § is as in Section 4.3.
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Proof: Let A be the closest point in N to B. Clearly d(A, B) < d(C,B) = L, so the
shortest geodesic v from C to A has length L(v) < 2L. By Proposition 4.3.3 we have

£ (3(0), Vertd,) >

o] 3

- 5(67 L(V)) >

o] 3

—0(€,2L).
So, since w € Vert%,
1(7(0)7 w) € [g - 5(67 2L) ) g + 5(67 2L) :

Using the fact that, for any g € G, the triangle ABC' lies in expy, (vNg)1, the lemma
follows using Lemma 4.4.1 with 6 = (e, 2L). 0

Proof of Proposition 4.4.2: For any g € GG and positive number L < 0.05, by Lemma 4.4.2
each point B € d(expy(Vert?)) has distance at least sin(L) cos(d(e, 2L) + 2L?) = RS
from N. Therefore tub(RS) lies in expy(Vert?)r, and since this holds for all g we are
done. O

4.5 Conclusion of the proof of Theorem 3

In sections 4.1-4.4, making use of the Riemannian structure of M, we showed that the
two-form fg wy is well-defined in the neighborhood Nyeq exp(Vert?)o.os of N (Recall
that w, = (¢, !)*w was defined in Section 3.2). In this section we will focus on the
symplectic structure of M and conclude the proof of Theorem 3, as outlined in Part II

of Section 3.2.

First we will show that fg wy is a symplectic form on a suitably defined neighborhood tub*
of N. Then it will easily follow that the convex linear combination wy := w—+¢( fg Wy —w)
consists of symplectic forms.

As we saw in Section 3.2, [w]| = [fg wg] € H?(tub,R), so we can apply Moser’s trick. The
main step consists of constructing canonically a primitive a of small maximum norm for
the two-form %wt.

Comparing the size of the resulting Moser vector field with the size of tub® we will
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determine an e for which the existence of an isotropic average of the N,’s is ensured.

In this section we require L < 0.05. Notice that the estimates of Section 4.1 hold for

such L. We start by requiring ¢ < m and introduce the abbreviation
Df :=4L + 4100€

for the upper bound obtained in Proposition 4.1.4 on expy (Vert?)r.

4.5.1 Symplectic forms in tub®

In Section 4.1 we estimated the difference between (¢4).X and \X. This lemma does

the same for 90;1.

Lemma 4.5.1 Let q € dexpy(Vertd) and X € T,M a unit vector. Then

DE
-1 L
X -\X| < )
(651X —\X| < 7
Furthermore,
1 ) 1
< X < .
1+D2_|w9) |—1—DEL

Proof: Let p := go;l(q). By Proposition 4.1.4, for any vector Z € T,M we have

|£9.(2)]
1+ D5

Z
1- D

The second statement of this lemma follows setting Z = (gog_l)*X .
Choosing instead Z = (90;1)*X —\X € T, M and applying once more Proposition 4.1.4

gives
X~ (p)\X| _ DS
1-Df ~1-D¢’

(71X — \X] < |

Since (90;1)*X is close to \ X and since our assumption on Vw allows us to control to
which extent w is invariant under parallel translation we are able to show that w and

Wy = (90;1)’% are close to each other:
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Lemma 4.5.2 Let X,Y be unit tangent vectors at q € expy(Vertd)p. Then

D5 D5
—w)(X,Y)| < —£ L_ 4+ 2) + 2L+ 100e.
(=) (X.V)] < T2 (2 2) + 2L+ 100e

Proof: Denoting p := ¢, '(q) we have
(wg = @)g(X, ¥) =wp (67X, (97127 ) —wy(X,Y)
—p (WX = [(; 0. X = \X] L VY = [(9; )Y = \Y] ) = wy(X, V)
=up (951X =\X , (97 )Y = \Y)
+up (VX ()Y = \Y) +p (010X = VX, \Y)
+wp(\X, \Y) = (X, V).
Now since “\” is the parallel translation along a curve of length < 2L+ 100¢ (see Section

4.1) and |Vw| < 1 we have w,(\X,\Y) —wq(X,Y) < 2L 4 100€ and using Lemma 4.5.1

we are done. a

Since the symplectic form w is compatible with the metric and the wy’s are close to w

we obtain the non-degeneracy of w; for L and € small enough.

Corollary 4.5.1 Let X be a unit tangent vector at ¢ € Ngegexpy(Vert?)r. Then for
all t € [0, 1]

D¢ D¢
X IX)>1-— L L 2 2L + 100€| .
)21 [ 2 (2 )+ 2n 100

Proof: By definition

wi(X, IX) = w(X,IX)+t- /(wg —w)(X,IX).
g

The first term is equal to 1 because w is almost-Kéhler, the norm of the second one is

estimated using Lemma 4.5.2. O

Remark: The right hand side of Corollary 4.5.1 is surely positive if D7 < 0.1. We set?

~0.1—4100€
- 4

and require € < ==—. We obtain immediately:
70000

L¢:

2This choice of L€ will allow us to obtain good numerical estimates in Section 4.5.4.
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Proposition 4.5.1 On
tub == expy (VN )R, C Ngeg expy (Vert?) e
the convex linear combination wy := w + t(fg wg —w) consists of symplectic forms.

Remark: Recall that the function R} was defined in Proposition 4.4.2. See Section
4.5.4 for a graph of Rf., a function of e.

4.5.2 The construction of the primitive of %wt

We want to construct canonically a primitive o of %wt = [wy—w on Ngeg expy(Vert?)o. os.
We first recall the following fact, which is a slight modification of [Ca, Chapter III].

Let N be a submanifold of a Riemannian manifold M, and let £ — N be a subbundle
of TM|y — N such that E @ TN = TM|y. Furthermore let U be a fiber-wise convex
neighborhood of the zero section of E — N such that exp : U — U C M be a diffeomor-

phism. Denote by 7 : U — N the projection along the slices given by exponentiating
the fibers of E and by ¢ : N <— M the inclusion.
Then there is an operator Q : Q°*(U) — Q*~Y(U) such that

Id— (iom)* =dQ+Qd: Q°(U) — Q°(U).

A concrete example is given by considering p; : U — U, exp,(v) — exp,(tv) and

Wil py () = L|s=tps(p). Then

1
Qf = /0 Qufdt, Quf == p(iwf)

gives an operator with the above property.

Note that for a 2-form w evaluated on X € T, M we have
|(Qtw)pX| = |wp (wt|pt(p)7 Pt*(X)”
<|@plop - d(p, T(P)) - | e (X)] (%)

where |y |op is the operator norm of @, : T,M — T;M and the inner product on T; M

is induced by the one on 7T,,M.
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For each g in G' we want to construct a canonical primitive o of wy —w on exp (Vert?)o.os

We do so in two steps:

Step I We apply the above procedure to the vector bundle Verty — N to obtain an

operator Q?V such that
Id — (7)) o (in)" = dQ}, + Q3d

for all differential forms on expy (Vert?)o.os. Since N is isotropic with respect to wy and

wg — w is closed we have
wyg — w = dQY (wy — w) + (73)"(in)" (~w).

Step II Now we apply the procedure to the vector bundle vN, — Ny to get an
operator @y, on differential forms on exp N, (vNg)100e- Since N is isotropic with respect
to w we have

W= dQNng

so we found a primitive of w on expy, (¥Ng)100e-
Since N C expy, (#Ng)100e the 1-form 39 := i} (Qn,w) on N is a well defined primitive

of iyw.
Summing up these two steps we see that

09 1= QY (wy — w) — (x4) 57
is a primitive of wy — w on expy (Vert?)o.os.

So clearly o := fg a9 is a primitive of %wt = fg wg —w on Ngeg expy(Vertd)o.os.

4.5.3 Estimates on the primitive of %wt

In this subsection we will estimate the CY-norm of the one-form « constructed in Section

4.5.2.

Step I  We will first estimate the norm of 39 := i} (Qn,w) using (%) and then the

norm of (7%;)*39.
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Lemma 4.5.3 If p € eXpNg(yNg)moE and X € T,M s a unit vector, then for any
t € 0,1]

NS

’(PNg)t*X’ <

Proof: Let L := d(p, Ng) < 100 < = and write X = J(L) 4+ K (L), where J and K
are N, Jacobi fields along the unit speed geodesic v, from p’ := 7N, (p) to p such that
J(0) vanishes, J'(0) is normal to Ny, and K is a strong N, Jacobi field (see the remark
in Subsection 4.1.2).

J(t) is the variational vector field of a variation fs(t) = exp, (tv(s)) where the v(s)’s are

unit normal vectors at p’. Therefore

d

(on,)e, T(E) = | (G, 0 expy(Lu(s))] = | [expys (tL0(s))] = T(L).

L

Using Lemma 4.1.4 we have on one hand |LJ'(0)| < (1+ o(L))|J(L)| and on the other
hand |J(tL)|(1 — o(tL)) < tL|.J'(0)| where o(z) = S22®)=r g,

sin(x)
1+ o0(L)

|J(tL)] Stm

21
[J(L)] < 55t T (L))

Similarly we have (pn,)¢ K(L) = K(tL). Using Lemma 4.1.6 we have |K(0)] < (1 +

9
0)|K(L)| and |K(tL)] < EOL therefore |K(tL)] < 15 [K(L)| < Z|K(L)].

Altogether we have
(o, )e, X|” = | (tL) + K (L)

SWIGL)E + K (L) +2- SL1I(L)] K (L))

<2 @+ KW + SL ) IE )]
<(? [+ K@+ Tl K@)
S(%V :1 + % 1120 < Z

where in the first and third inequality we used Lemma 4.1.9 and in the fourth in addition

we used Lemma 4.1.10. O
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Corollary 4.5.2 The one-form (39 on N satisfies
|39 < 125e.

Proof: At any point p € N C expy, (vNg)100e, using (%) , |@|op = 1 and Lemma 4.5.3,

we have |(Qn,w),| < 125¢. Clearly [(Qn,w)p| > in(Qn,w)p| = 65| 0

Now we would like to estimate (7%),X for a unit tangent vector X. Since % = (p%),
we prove a stronger statement that will be used again later. Recall that we assume

L <0.05.

Lemma 4.5.4 Ifq € expy(Vert?), and X € TyM is a unit vector then for any t € [0, 1]
we have
1+ Dj

9, . X| < 1. )
(pAr X < 15—

Proof: Using Lemma 4.5.1 we have

[(p8)e, X | < (14 D) (95 s (), X

Clearly (p%)t © ¢g = @g© (pn,)t, since - up to exponentiating - ¢, maps vNy to Vert?,
and (pn, )¢ and (p%); are just rescaling of the respective fibers by a factor of ¢.

If we reproduce the proof of Lemma 4.5.3 requiring p to lie in expy, (vNg)r we obtain?
|(pn,)e, Y| < 1.5 for unit vectors Y at p. Using this and Lemma 4.5.1 respectively we

have

[(pny)e, (05 DX <15 |9 )X ] and (95 ") X[ < -
L

Altogether this proves the lemma. a

Corollary 4.5.3 On expy(Vertd)r we have

1+ DS
1-D5°

|(73)" 39| < 200e

3Since L < 0.05 now we have to replace the constant % in that proof by the constant g.
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Proof: This is clear from |((7%)*89)X| = [89((n%)«X)|, Corollary 4.5.2 and Lemma
4.5.4. ad

Step I Now we estimate |Q% (wy —w)|. This is easily achieved using Lemma 4.5.2 and

Lemma 4.5.4 to estimate the quantities involved in (¥ ):

Corollary 4.5.4 For q € Oexpy(Vert?d)r we have

14 Dg DS, DS,
Q% (wg —w)g| < 1.5 'L'[l—DﬁL<1—D2+2 + 2L + 100¢ | .

Remark: By Proposition 5.2 d(¢, N) > R$. Furthermore, when € < m and L < 0.05,

one can show that Ry > %L. So L < 3d(q,N).

Now finally using Corollary 4.5.3 and Corollary 4.5.4 we can estimate the norm of o :=
g.
f, ot

Proposition 4.5.2 Assuming L < 0.05 at ¢ € Ngexpy(Vert?)r we have

lag| < 1.5% - gd(q, N)- [1 ?%32 (1 ?%?2 +2> + 2L+ 100€:|
1+ D5
+ 200e7 J_r D%.
4.5.4 The end of the proof of Theorem 3
Proposition 4.5.1 showed that the Moser vector field v; := —; Lo is well-defined on

tub® C Ngegexpy(Vertd)re. Recalling that Dj. = 0.1, Corollary 4.5.1 immediately

implies

Corollary 4.5.5 At g € tub® C Ngexpy(Vert?)pe we have

< 1.53.

’((;t)l;llop < Dj e D5 e 1
1 | 25 (2 +2) + 2L + 100¢

From Corollary 4.5.5 and Proposition 4.5.2 we obtain:

Proposition 4.5.3 For allt € [0,1] and q € tub®

(gl < [(@0)g 1], - lag] < 1.45d(g, N) + 374e.
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Let () be an integral curve of the time-dependent vector field v; on tub® such that p :=
v(0) € N. Where d( -, p) is differentiable, its gradient has unit length. So £d(y(t),p) <
(8.

By Proposition 4.5.3 we have |§(t)| < 1.45d(vy(t), p) + 374e. So altogether

d

&d (v(t),p) < 1.45d (y(t), p) + 374e.

The solution of the ODE §(t) = As(t) + B satisfying s(0) = 0 is Z(e4* — 1). Hence, if

BN [os}

the integral curve v is well defined at time 1, we have

374¢
<

d(y(1), N) < d(v(1),p) < T =

(e —1) < 842e.

Let us denote by p; the time-1 flow of the time dependent vector field v, so that P1_1
is the time-1 flow of —v1_¢. Since by definition tub® := expy (vN)gs. the submanifold
L := p; }(N) will surely be well defined if

842¢ < RS..

.. . 1
This is always the case since € < =555-

0. 02
0. 015;
0.01;

0. 005}

5.10°° 0. 00001 0.000015 0.00002

GRAPHS OF 842¢ (INCREASING) AND RS. (DECREASING).

The estimate for do(INg, L) is obtained using do(N, L) < 842¢ and do(Ng, N) < 100e.

The proof of Theorem 3 is now complete.
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Remark: In Theorem 3 we assumed that |Vw| < 1. When the bound on |Vuw|
is bigger than one, the statement of Theorem 3 still holds verbatim if one makes the
bound on e smaller, as follows. The bound on |Vw| enters our proof directly only in
Lemma 4.5.2; if |Vw| is bigger than one, the right hand side of that lemma should read
| (wg —w)(X,Y)] < 1—D—L%€L (1—D—]%€L + 2> +|Vw|(2L +100¢) instead. Similarly, the quantity
“2L + 100€” appearing in Corollary 4.5.1, Corollary 4.5.4 and Proposition 4.5.2 should

1 100 and let us replace L€

be multiplied by |Vw|. Now let us assume that € < TT'w] 70000

2l 4100€

everywhere by L¢ := ¢l Then the bounds on ’(Jt

1 and |(v)g| given in

-1

)q ’op
Corollary 4.5.5 and Proposition 4.5.3 still hold, and our isotropic average L will be well
defined if 842¢ < R%e. This is satisfied for € small enough, since R%e is a continuous

. 0 . oy .
function and R, is positive.

4.6 Remarks on Theorem 3

Remark 1: Is the isotropic average L C'-close to the Ny's?

The main shortcoming in our Theorem 3 is surely the lack of an estimate on the C'-
distance di(Ng, L).

To bound dq(Ny, L) it is enough to estimate the distance between tangent spaces T),L
and T}, ,)N. Indeed, this would allow us to estimate the distance between T),L and

Ty (p)Ng, using which - when e is small enough - one can conclude that 7y, : L — N,

Ng (P
is agdiffeomorphism and give the desired bound on the C'-distance.

Using local coordinates and standard theorems about ODEs it is possible to estimate
the distance between tangent spaces T),L and T}, (,) N provided one has a bound on the
covariant derivative of the Moser vector field, for which one would have to estimate
V(@)™ To do so one should be able to bound expressions like Vy ((¢,!).X) for par-
allel vector fields X along some curve.

This does not seem to be possible without more information on the extrinsic geometry
of N. We recall that it is not known whether the average N forms a gentle pair with

M, see Remark 6.1 in [We]. We are currently trying to improve Weinstein’s theorem so

that one obtains a gentle average.
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Remark 2: The case of isotropic N.

Unfortunately, if the Weinstein average N happens to be already isotropic with respect
to w, our construction will generally provide an isotropic average L different from V.
Indeed, while Step I of Section 4.5.2 always gives a one-form vanishing on points of N,
Step II does not, even if N is isotropic for w.

The procedure outlined in Remark 3 below, on the other hand, would produce N as the
isotropic average, but in that case the upper bound for € would depend on the geometry

of N.

Remark 3: Averaging of symplectic and coisotropic submanifolds.

The averaging of C'-close gentle symplectic submanifolds of an almost-K#hler manifold
is a much simpler task than for isotropic submanifolds. The reason is that C'-small
perturbations of symplectic manifolds are symplectic again and one can simply apply
the Riemannian averaging procedure (Theorem 1) .

Unfortunately our construction does not allow us to average coisotropic submanifolds.
In our proof we were able to canonically construct a primitive of fg wy —w using the fact
that the IV,’s are isotropic with respect to w. In the case that the IV, are not isotropic it
is still possible to construct canonically a primitive, following Step I of our construction
and making use of the primitive d*(A™1i% (wy —w)) of i%(wy —w) (but the upper bound
on its norm would depend on the geometry of N).

Nevertheless, our construction fails in the coisotropic case, since the fact that N is

coisotropic for all w,’s does not imply that it is for their average fg Wy
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Chapter 5

Applications of the isotropic

averaging theorem

In this chapter we will present two simple applications of Theorem 4 (see Chapter 3). The
first one concerns isotropic submanifolds which are almost invariant under Hamiltonian
actions, the second one concerns symplectomorphisms which are almost equivariant with

respect to a compact group action.

5.1 Application to Hamiltonian actions

We apply Theorem 4 to almost invariant isotropic submanifolds of a Hamiltonian G-

space and deduce some information about their images under the moment map.

We start by recalling some basic definitions (see [Cal): consider an action of a Lie group
G on a symplectic manifold (M,w) by symplectomorphisms. A moment map for the
action is a map J : M — g* such that for all v € g we have w(vys, ) = d{J,v) and
which is equivariant with respect to the G action on M and the coadjoint action of G on
g. Here vy is the vector field on M given by v via the infinitesimal action. An action

admitting a moment map is called a Hamiltonian action.

This simple lemma is a counterpart to ([Ch], Prop 1.3).
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Lemma 5.1.1 Let the compact connected Lie group G act on the symplectic manifold
(M, w) with moment map J. Let L be a connected isotropic submanifold of (M, w) which
is invariant under the group action. Then L C J~1(u) where u is a fized point of the

coadjoint action.

Proof: Let X € T, L. For each v € g we have
dIE<J7 U>X = W(UM(:E)v X) =0,

since both wvys(x) and X are tangent to the isotropic submanifold L. Therefore every
component of the moment map is constant along L, so L C J~!(u) for some u € g*.

Now let zg € L and G - xg C L the orbit through zy. Then from the equivariance of J
it follows that for all g we have = J(g-xo) = g- J(x9) = g - i, s0 p is a fixed point of

the coadjoint action. O

Now we apply the lemma above to the case where L is almost invariant.

Corollary 5.1.1 Let the compact Lie group G act on the symplectic manifold (M,w)
with moment map J : M — g*. Suppose M is endowed with a G-invariant compatible
Riemannian metric so that the Levi-Civita connection satisfies |[Vw| < 1. If a connected
isotropic submanifold L C M satisfies:

i) (M, L) is a gentle pair

i1) di(L,g- L) < e < Wloo forallg € G

then J(L) lies in the ball of radius 1000e- C about a fixed point u of the coadjoint action.
Here g* is endowed with any inner product and C' := Max{|vp| : v € g has unit length}.

Proof: By Theorem 4 there exists an isotropic submanifold L’ invariant under the
G action with do(L, L') < 1000e. By Lemma 5.1.1 L lies in the some fiber J~!(u) of
the moment map, where p is a fixed point of the coadjoint action. We will show that
|J(p) — u| < 1000€- C for all p € L.

Let p’ a closest point to p in L’. The shortest geodesic v from p to p/, which we choose

to be defined on the interval [0, 1], has length < 1000e. Therefore for any unit-length
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v € g (with respect to the inner product induced on g by its dual) we have
1
O I RO
1
- / A0, oY)t
0
1
— [ wlow i

0

Since for all ¢ we have |w(var, ¥(t))| < |var| - [7(¢)] < 1000€ - C' we are done. 0

Remark: Notice that the bound 1000¢ - C' does not depend on L, unlike the bounds
that one obtains if one replaces the assumption that L be “C' almost invariant” with

the assumption that the vector fields vys’s be “almost tangent” to L.

5.2 Application to equivariant symplectomorphisms

In this section we present a preliminary result about almost equivariant symplectomor-

phisms.

Fact 5.2.1 Let (M,w1) and (Ms,ws) be symplectic manifolds, G a compact group acting
on My and My by symplectomorphisms and ¢ : M1 — My a symplectomorphism. Suppose
we can endow M; with a G-invariant compatible metric g; satisfying |Vw;| < 1 and
such that graph(¢) C (M1 X Ms, g1 X go,w1 — wa) satisfies the following properties:
(M7 x Ms, graph(¢)) is a gentle pair and dy(graph(¢), g- graph(¢)) < e < m for all g
(where G acts on My x My diagonally).

If the isotropic average of the family {g - graph(¢)} is of the form graph(y), then v :
My — My is a G-equivariant symplectomorphism and do(graph(¢), graph(y)) < 1000€.

Proof: First notice that (My x M, g1 X g2, w1 —w2) is an almost Kéhler manifold satisfying
|V (w1 —we)| < 1, that graph(¢) is contained in it as a Lagrangian submanifold, and that
the diagonal action of G on M; x My is by isometric symplectomorphism. Therefore we
can apply Theorem 4 to obtain a G-invariant Lagrangian submanifold (which is exactly
the isotropic average of the family {g - graph(¢)}), and by assumption this submanifold
is of the form graph(v). It is easy to check that a map from M; to M, is G-equivariant
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if and only if its graph is invariant under the diagonal G action on M; x My, therefore

1 is indeed a G-equivariant symplectomorphism. a

Remark 1: Fact 5.2.1 is a symplectic version of a theorem by Grove and Karcher [GK]
stating that if two actions of a compact group G on a compact manifold M are C'-
close to each other, then there exists a diffeomorphism ) intertwining them. Indeed,
given an action v1 of G on a manifold M; and an action 15 of G on My together with
a “C'-almost equivariant” diffeomorphism ¢ : M; — Mo, the action of G on M; given
by g-m = ¢~ (12(g, ¢(m)) is C* close to v1, and if ¢ is an intertwining diffeomorphism
as in Karcher and Grove’s theorem, then ¢ o ¢ : M7 — M> intertwines between 4, and
1. Grove and Karcher’s theorem exhibits explicitly the intertwining diffeomorphism by

means of a center of mass construction for maps.

Remark 2: In the above Fact we have to assume that the average of the family {g -
graph(¢)} is a graph. An improvement of Theorem 3 to include a bound on the C!-
distance of the average submanifold from the original isotropic family (see also Remark
1 in Section 4.6) together with a mild assumption on the C'-norm of ¢ (see the remark

below) would allow us to remove this assumption.

Remark 3: It would be nice to express the assumptions of Fact 5.2.1 in terms of maps
instead of graphs, however the formulation in terms of maps is more involved. Indeed,
let us adopt the following definitions for the C° and C* distances (norms) of maps, where

f and g are differentiable maps between Riemannian manifolds M and N:

a) do(f,g) := sup,ep d(f(z), g())

b) |f|1 = SUP{yeTM unit vector} |f*’U|

C) dl(fa g) = SUP{yeT M unit vector} |f*’U - \\g*v|,
defined whenever dy(f,g) < injectivity radius of N, where “\\” denotes parallel

translation of v € T, M from g(x) to f(x) along the shortest geodesic.
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(When M = N is compact and f is a diffeomorphism we have |f|; > 1, with equality iff

f is an isometry). For the C° distances we have the simple estimates

do(graph(f), graph(g)) < do(f, 9),

do(f,g9) < (2+ |fl1)do(graph(f), graph(g)),

however the corresponding C' estimates are more complicated and involve suitably de-

fined C? norms of f and g.
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Chapter 6

Averaging of Legendrian

submanifolds

In this chapter we will consider the setting of contact geometry and give a construction
to average Legendrian submanifolds. After presenting the results in Section 6.1 (The-
orems 5 and 6), in Section 6.2 we will outline the proof, which consists of considering
the symplectization of the given contact manifold and applying the isotropic averaging

theorem there. The details of the proof are given in Section 6.3.

6.1 Results

Recall that a contact manifold is a manifold M?"*! together with a hyperplane distri-
bution H on M such that locally H = ker § for some locally defined 1-form 6 satisfying
(dO)" A9 # 0. A submanifold N of (M?"*+!, 'H) is called Legendrian if it is tangent to H
and it has maximal dimension among submanifolds with this property, i.e. dim(N) = n.
Also recall that a contact one-form on a manifold M?"*! is a (global) 1-form € such that
(d@)™ A 0 is a volume form. The unique vector field E satisfying (E) = 1, df(FE,-) =0
is called Reeb vector field. Any contact manifold (M, H) for which the distribution H is
co-orientable can be endowed with a contact form 6 representing H (i.e. ker 6 = H).

Now consider a manifold with a contact form (M, ), and endow it with a “compatible”
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Riemannian metric g as follows: for each fiber H, of the vector bundle H = ker — M,
(Hp, df|,) is a symplectic vector space, and we can choose a compatible positive inner
product g (i.e. df(X,IY) = g(X,Y) determines an endomorphism I of H, satisfying
I? = —Id). We can do so in smooth way (see [Ca], Ch. 12). We extend g to a Rie-
mannian metric on M by imposing that the Reeb vector field E have unit length and be
orthogonal to H.

We state our theorem for Legendrian submanifolds, even though it equally applies to
submanifolds tangent to H of lower dimension. As a technical assumption we will re-
quire that the CY%-norms of the covariant derivatives of # and df with respect to the

Levi-Civita connection be bounded by 1 (but see the remark below).

Theorem 5 Let (M, 0) be a manifold with a contact form, endowed with a Riemannian
metric g as above so that |[V0)|,|Vdf| < 1. Let {Ny} be a family of Legendrian submani-
folds of M parametrized in a measurable way by elements of a probability space G, such
that all the pairs (M, Ng) are gentle. If di(Ng, Np) < € < m for all g and h in G,
there is a well defined Legendrian average submanifold L with do(Ng, L) < 1000e for
all g in G. This construction is equivariant with respect to isometric contactomorphisms

of (M, 0) and invariant with respect to measure preserving automorphisms of G.

Remark: The theorem holds even if the bound on |V#| and |Vdf)| is larger than 1, but

in that case the bound on € has to be chosen smaller.

A simple consequence, which we want to state in terms of contact manifolds, is the

following;:

Theorem 6 Let (M, H) be a contact manifold for which H is co-orientable, let G be a
compact Lie group acting on M preserving H, and let Ng be a Legendrian submanifold.
Endow (M, H) with a contact form 6 and a Riemannian metric g as above, both invariant
under the G action. Suppose that |V0|,|Vdl| < 1. Then if (M, Ny) is a gentle pair and
d1(No, gNo) < e < Wloo for all g € G, there exists a G-invariant Legendrian submanifold
L of (M, H) with do(Ny, L) < 1000€.

Indeed, we just need to endow G with its bi-invariant probability measure and apply

Theorem 5 to the family {gNp}: their average will be G-invariant by the equivariance
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properties of Theorem 5.

Remark We can always find § and g which are G-invariant: by averaging over G we
can obtain a G-invariant one-form 6 representing H, and using some G-invariant metric
on the vector bundle H — M as a tool we can construct a “compatible” metric g which
is G-invariant (see Ch. 12 in [Cal]). However in general we can not give any a priori

bounds on the covariant derivatives of § and df.

6.2 Idea of the proof of Theorem 5

An approach to prove Theorem 5 is to use the idea that worked in the symplectic setting
(see Section 3.2). This would be carried out as follows: first construct the Weinstein
average NN of the Legendrian submanifolds { Ny}. For each g € G, using the Riemannian
metric construct a diffeomorphism ¢, from a neighborhood of N, to a neighborhood of
N and denote by 6, the pullback of § to the neighborhood of N. Since the submanifolds
Ny are close to N, each form in the convex linear combination 6, = 6 + ([ 6, — 0) is
a contact form, say with contact distribution H;. Therefore we can apply the contact
version of Moser’s Theorem (see [Ca|, Ch. 10). It states that if the vector field v is
the inverse image of —( [ 6, — 6)|y, by (the isomorphism induced by) db;|y,, then the
time-one flow py of {v;} satisfies (p1).H = Hi. Therefore, since N is tangent to Hy, its
pre-image L under p; is tangent to H, i.e. it is a Legendrian submanifold of (M, #).

This construction can indeed be carried out and satisfies the invariance properties stated
in Theorem 5 since all steps are canonical. However it delivers a numerically quite
unsatisfactory estimate for do(Ny, L); therefore we choose not to use this approach but

rather a different one, which we outline now.!

Recall that the symplectization of a manifold with contact form (M, 6) is the symplectic

manifold (M x R, d(e®f)), where s denotes the coordinate on the R factor. Here and in

IThe estimates needed for our first approach are completely analogous to those needed for the second
approach, i.e. those of Chapter 4. A difference though is that in the first approach we make use of a
bound on the norm of the C°-small one-form fg 04 — 0, whereas in the second approach we will need the
norm of a primitive of a certain C°-small two-form. While passing to the primitive we will improve the
C°-norm by “one order of magnitude” (see equation (%) in Section 4.5.2), and this is responsible for the
better estimates obtained using the second approach.
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the following we abuse notation by writing € in place of 7*0, where m : M xR — M. The
main observation is the following lemma, whose proof consists of a short computation

and is omitted.

Lemma 6.2.1 L is a Legendrian submanifold of M if and only if L xR is a Lagrangian
submanifold of M x R.

Using this lemma and making use of the averaging procedure for Lagrangian submani-
folds (Theorem 3) the strategy for our (second) approach is straightforward: given the
family {4} of Legendrian submanifolds of (M, 6) we consider the Lagrangian family
{Ngy x R} in the symplectization of M, apply the Lagrangian averaging theorem, and if
the average is a product L x R then L will be our Legendrian average. The invariance
properties stated in Theorem 5 are satisfied because this construction is canonical after

we choose the contact form and metric on M.

6.3 The proof of Theorem 5

We endow the symplectization M x R with the product metric obtained from (R, ds ®
ds) and (M, g), and by abuse of notation denote this metric by g. Unfortunately
(M x R,d(e%0),g) does not satisfy the assumptions of Theorem 3: indeed it is not
an almost-Kéhler manifold (however g is compatible with the non-degenerate 2-form
e *d(e®f) = ds N 0 + df). Furthermore the condition on the boundedness of Vd(e®0)
is also violated. Therefore we can not just apply Theorem 3 but we have to follow the
construction in the theorem and check that it applies to (M x R, d(e®0), g).

The remaining assumptions of Theorem 3 concerning the gentleness of the pairs (M x
R, Ny x R) and the distances di(Ngy x R, Nj, x R) are satisfied, since the metric g on

M x R is a product metric.

In the remainder of the proof we will follow the construction of Theorem 3. We do so for
two reasons: firstly, in order to make sure that the Lagrangian average of the { N, x R}
is of the form L x R for some submanifold L of M, and secondly to check that the
construction applies to (M xR, w := d(e®0), g) even though the assumptions of Theorem

3 are not satisfied.
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We refer the reader to Section 3.2 for the outline of the construction of Theorem 3 and

adopt the notation used there. We divide the construction into 5 steps.

Step 1: Construct the Weinstein average of the family { N, x R}.

Step 1 applies to our manifold M x R because Step 1 involves only the Riemannian
structure of M x R, which satisfies the assumptions of Weinstein’s averaging theorem
(see Chapter 3). Notice that the Weinstein average is of the form N x R because the
group R acts isometrically on M x R by translation of the second factor and Weinstein’s

averaging procedure is equivariant w.r.t. isometries.

Step 2: The restriction of
g : Neighborhood of Ny x R — Neighborhood of N x R

to expy, xr (V(Ng X R))o.05 15 a diffeomorphism onto.
Step 2 applies to M xR because it involves only its Riemannian structure. Notice that ¢,
preserves M x {s} for each s € R and that the g/ (s} coincide for all s (under the obvi-

ous identifications M x {s} = M x{s'} ), since the metric on M xR is the product metric.

Step 3: On tub® the family w; := w + t(fg wg —w) consists of symplectic forms lying in
the same cohomology class, where wy 1= (wg_l)*w and tub® is a neighborhood of N.
Define @ := ds A0+ df, a non-degenerate 2 form compatible with the metric g on M x R.
Below we will show that |V x| < 2 for “horizontal” unit vectors X. Since w = e*w using
this we see that the statements of Lemma 4.5.2 and Corollary 4.5.1 hold if one multiplies
the right hand sides there by e* and multiplies by 2 the term “2L + 100€”2. This shows
that the w; are non-degenerate on tub®. One sees that the w; lie in the zero cohomology
class exactly as in Section 3.2.

Now we derive the bound on |V x|, where X € T'(M x {s}) is a unit vector:
IVx(ds Am*0 +dr*0)| = |VxdsA7*0+ds ANVxn* 0+ Vxr*db|
= |ds|- |[Vx7"0| + |Vx7*dl|
< 1-141.

2This factor of 2 does not affect the numerical estimates that follow.
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Step 4: Construct canonically a primitive o of fg Wy — w.

A primitive of wy —w is given in a canonical fashion by es((gogl)*ﬁ—ﬁ), however we do not
want to use this primitive since it would deliver bad numerical estimates, as it happens
in our first approach. Instead we construct one using the (more involved) procedure of
Section 4.5.2.

Because of the remark in Step 2 we can write w, = e*w, where &, := (90;1)*@, therefore
the 2-form wy —w can be written as e*(wy, —@). Notice that w is “constant in R-direction”
(i.e. the Lie derivative L l w = 0), and by the remarks in Step 2 the same holds of @,.
The construction in Section 4.5.2 commutes with multiplication of forms by functions of
s and furthermore preserves the condition of being “constant in R direction” (this follows
from the explicit formula for af in Section 4.5.2 and from the fact that the vector bun-
dles used there are pullbacks of vector bundles over subsets of M viaw: M x R — M).
Therefore that construction applied to [wy —w delivers a primitive o = e*@ where @ is
“constant in R direction”. Furthermore |a| is estimated as in Proposition 4.5.2, because

@ is compatible with the metric.

Step 5: Obtain the Lagrangian average by following backwards the Moser vector field
vy = —w; H(a) starting from N x R.

The key observation is that

therefore the vector field v; is independent of s (i.e. Laov, = 0 for ¢ € [0,1]). This
Os

implies that the Lagrangian average is of the form L x R. Further, this implies that |vy

is bounded as in Proposition 4.5.3, so that the proof of the theorem can be concluded

verbatim as in Chapter 4.



61

Chapter 7

Neighborhoods of coisotropic

submanifolds

In Remark 3 of Section 4.6 we saw that the proof of the isotropic averaging theorem
(Theorem 3) breaks down if we try to apply it to coisotropic submanifolds. If one could
average coisotropic submanifolds, then the space of coisotropic submanifolds would neces-
sarily be locally path connected. In this chapter we will consider the space of coisotropic
submanifolds close to a given one, in an attempt to determine whether it is locally path
connected. While we are not able to do so, we will display some of the properties of this

space.

In the case of a compact Lagrangian submanifold L of a symplectic manifold (N, ), it
is well known that a tubular neighborhood of L is symplectomorphic to (a neighborhood
of the zero section of) the cotangent bundle 7L endowed with its canonical symplectic
structure. Furthermore, it is easy to see that Lagrangian submanifolds of (N, Q) which

are C''-close to L correspond exactly to C'-small closed one-forms on L [Ca, Chapter 3]!.

For the general case where M is a compact coisotropic submanifold of (N, ) — that

1We use the terms “C'-close” and “C'-small” in a loose way here. To make these notions precise one
has to introduce a Riemannian metric on N. Then“C"-close to L” refers to d(L,-) being small, where
d(-,-) is the C*-distance introduced in Section 2.1. Similarly “C'-small” refers to || - ||1 being small,
where || -||1 is the norm we introduce in Example 2 of Section 7.3.
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is, TM** ¢ TM — we will proceed analogously: In Section 7.1, following Gotay [Go],
we will see that a tubular neighborhood of M is symplectomorphic to (a neighborhood
of the zero section of) a subbundle of 7" M, and in Section 7.2 we will determine which
sections of this subbundle correspond to coisotropic submanifolds. The condition we
obtain, unlike in the Lagrangian case, is not linear.

In Section 7.3 we will point out features of characteristic leaves which suggest that the
coisotropic submanifolds C'-close to M do not form a“nice” set and, in Theorem 7, we
will make this statement precise in terms of Fréchet manifolds and prove it by means of

a very simple counterexample.

7.1 Neighborhoods of coisotropic submanifolds

In analogy to the statement that the neighborhood of a Lagrangian submanifold is sym-
plectomorphic to its cotangent bundle, in this section (which is based on Gotay’s paper

[Go]) we will give an explicit form for the neighborhood of a coisotropic submanifold.

Let M™ be a compact coisotropic submanifold of the symplectic manifold (N, Q) and
let us denote by w the pullback of 2 to M. Notice that the kernel of w has constant
dimension equal to k. Modifying slightly the proof of the Existence Theorem in [Go],
we will now construct another symplectic manifold (E*, Qpg+) in which (M, w) embeds
coisotropically. According to the Local Uniqueness Theorem in [Go], any two coisotropic
embeddings of the presymplectic manifold (M, w) in symplectic manifolds Ny and N, are
neighborhood equivalent, i.e. there exists a symplectomorphism between suitable tubu-
lar neighborhoods of M in N7 and N» fixing M. It follows that tubular neighborhoods
of M in (N,Q) and (E*, Qg-) are symplectomorphic.

Now we construct (E* Qp«). Let E* be the characteristic distribution of (M,w), i.e.
E = ker(w). Then E* := U,cp EZ is a vector bundle over M, whose projection map we
denote by 7. Let G be any fixed smooth distribution on M such that TM = E® G. We
have a decomposition T*M = E*@ G*, which gives an embedding ig« 7«pr : B — T*M:
if (m,&) € E*, then ig r+p(m,§) is the element of T, M that acts on E,, like £ and
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annihilates G,,,. Consider now
QE* = 71w+ (Z'E*7T*M)*(—da),

where « is the canonical one-form on 7* M, so that —da is the canonical symplectic form
on T*M.

In the following we will use that at m € M we have a natural splitting T}, E* = T,,, M X
E} =FEp, x Gy x B

Lemma 7.1.1 Letme M, X,Y € T,,M, and write X = Xg + X¢g + Xpg+ according to
the above splitting (similarly for Y'). Then

Qp-(X,Y) =w(Xa, Yo) + (Xg, Ye+)) — (Xp+, YE)),
where (-, ) denotes the natural pairing of vectors and covectors.

From this lemma it is clear that Qg+ is non-degenerate at each m € M, and therefore
in a tubular neighborhood of M in E*. Furthermore, on whole of E*, the two-form Qg
is closed, because w and da are closed. Therefore a neighborhood of M in E* (which
by abuse of notation we still denote by E*), endowed with the above two form, is a
symplectic manifold . It is clear that the pullback of Qg+« to M is exactly w, and that
the embedding of (M,w) in (E*,Qg+) is coisotropic.

Proof of the Lemma: We only need to prove that at m € M we have (ig= 7+p)*(—da)(X,Y) =
(XE, Yp-)) — (XE=, YE)).

We claim that Ty,ig= a2 T E* — T (T* M) is just the natural embedding of E,, x

Gm X Ef, in Ep, X Gy, X EY X G =T, (T*M). To this aim we just have to check that
Tig=r+n maps (v, w,0) to (v, w,0,0) and (0,0,&) to (0,0,&,0). Both statements are

obvious. Now the lemma follows because
(ipe=m)*(—da)(X,Y) = (—do)((Xp, Xa, Xp+0),(Ye, Ya, Ye-,0))

= ((Xg, Xg), (Ye+,0)) = ((YE, Y5), (XE+, 0))
= (Xp,Yp<) — (Yp, Xp+).
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Remark: When the distribution G is integrable, a computation in coordinates shows
that Qg+ is non-degenerate on the whole vector bundle E*, and not just in a neighbor-

hood of the zero section.

7.2 The set C of coisotropic submanifolds C'-close to M

We have already seen that a neighborhood of the coisotropic submanifold M in (N, )
is symplectomorphic to a neighborhood of M in (E*, Qg+ = m*w + (ig=7+m)" (—da)). In
analogy to the fact that Lagrangian submanifolds near a given one correspond to closed
one forms, in this chapter we will characterize the sections of E* that correspond to
coisotropic submanifolds.

The inclusion igs 7+ : E* < T*M determined by the splitting TM = E © G induces
an identification between sections of E* and one forms on M which annihilate the dis-
tribution G, which we denote by Q'(M)g . So submanifolds of N C'-close to M are
identified with C'-small elements of I'(E£*) and C'-small elements of Q' (M)g.

Proposition 7.2.1 Using the above identifications the coisotropic submanifolds of (N, Q)

which are C*-close to M correspond to
C:={B3eQY(M)qg | B is C*-small and w — df has the same rank as w}.

Remark 1: In Section 7.3 we will endow the set of smooth submanifolds of IV which are
Cl-close to M, T'(E*) and Q'(M)g with Fréchet manifold structures compatible with
our identifications. Then the above statement can be made more precise by saying that
the embedding of the Fréchet manifold of submanifolds of N C'-close to M into the
Fréchet manifold Q'(M)g maps the coisotropic submanifolds onto C.

Remark 2: When M C (N,QQ) is Lagrangian, i.e. when w = 0, we recover the well

known description of Lagrangian submanifolds C*-close to M as closed one-forms on M.

Proof: Tt is enough to show that under the above identification of I'(E*) and Q'(M)q
the coisotropic submanifolds of (E*, Qg«) C'-close to M are given by C. So let 8 be a

section of the vector bundle E* — M and let ’L'Im(B) o denote the inclusion into E* of
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the image of 3: M — E*. We will denote by 3 the corresponding one-form on M which
annihilates G C TM. From dimension considerations we have

Im(() is a coisotropic submanifold of (E*, Qp+) <

the kernel of (ilm( 3 g+) Q-+ has constant dimension equal to k.

We want to restate this condition in terms of the presymplectic manifold (M, 5*(Qg-)).
We have

F(Qps) = B (r*w+ (ig-reu)*(—da))
= w+ (igreum 0 B)*(—dav)

= w—d(fa)

= w—dp,

where in the last equality we used that, for any manifold M and one-form 3 on M, the
pullback (to M) of the canonical one-form on T*M via (3 is exactly 3 (see [Ca, Chapter

3]). Therefore we have:

Im() is a coisotropic submanifold of (E*, Qg+) <

the kernel of (M,w — df3) has constant dimension equal to k,

which finishes the proof. ad

Now we consider a simple example that will be used again in the following sections.

Example 1: Consider the presymplectic manifold (M,w) = (T% dz; A dxa), where

(x1,---,x4) are canonical coordinates on T. The characteristic distribution is E =
Span{a%g, 8%4}. We choose G = Span{a%l, 8%2}. The symplectic manifold (E*, Qp«)

as in Section 7.1 in which (M, w) embeds coisotropically is easily seen to be (N, Q) :=
(T* x R?, dxy A dxg + dxs A dés + dzy A dEy) where (€3,&4) are canonical coordinates on
R2.

Fact 7.2.1 shows that the set of coisotropic submanifolds of (V, 2) which are C'-close to
of M is given exactly by

C = {fdxs + gdz4|f, g € C°(T?) Cl-small , dz; A dzo — d(fdxs + gdzy) has rank 2}.
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Two-forms on T as above, at each point, can have rank 2 or rank 4. The first case
occurs exactly when, at each point of T, the determinant of the corresponding bilinear

form is zero, i.e. when

fa—93 = fi92 — f2q1. (»)

Here the subscripts denote partial derivatives. Notice that this is a non-linear partial
differential equation for f and g.

In this specific example, it is easy to determine directly the coisotropic submanifolds of
(N, Q) C-close to M without making use of Fact 7.2.1: any submanifold C'-close to T* is
of the form My , = graph(f, g) where (£, g) : T* — R2. The condition (T'M; )t C TM;,

translates exactly into the partial differential equation above.

7.3 Some properties of the set C.

As earlier, let (N, Q) be a symplectic manifold, (M,w) a compact coisotropic submani-
fold with characteristic distribution F/, and G a fixed complement of £ in T'M. In this
section we will investigate some properties of the set of coisotropic submanifolds C'-close
to M, which we can identify with the set C as in Fact 7.2.1, and show in Theorem 7 that

it does not have a “nice” structure.

When dim(M) = %dim(N), i.e. when M is Lagrangian, C consists of the C'-small
elements of a subspace of Q'(M)g = Q(M), namely the closed one-forms on M. When
dim(M) = dim(N) — 1 the set C consists of all C'-small sections of Q(M)g, because
any codimension one submanifold is coisotropic .

In the general case, looking into the leaves of the characteristic distributions of coisotropic

submanifolds seems to indicate that the subset C of Q'(M)g does not have a “nice”

structure. We will exhibit this by considering the following two lemmas.

Lemma 7.3.1 Consider (M,w) = (T*, dziAdxs) as a coisotropic submanifold of (N, ) =
(T*xR?, dzy Adxo+drzNdés+drgNdEy). Arbitrarily Ct-close to M there exist coisotropic

submanifolds of (N, Q) with characteristic leaves not homeomorphic to those of M.
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Proof: Let (f,g) : T* — R? such that f; — g3 = fig2 — f2g1. Then, as in Example
1, My, = graph(f,g) is a coisotropic submanifold of T4 x R%2. As in the proof of
Fact 7.2.1, (My,g, (in; , n)*$2) is symplectomorphic to (T4, dy A dxy — d(fdxs + gdry)),
which has characteristic distribution Ey g spanned by (—f2, fi,1,0) and (—g2, 1,0, 1).
Applying [CL, Prop. 1, Ch. V.2] we see that the restriction of the projection pr : T* —
T2, (21, -+, 24) — (23, 24) to any leaf of Ey , is a covering map. In particular the leaves
are homeomorphic to either R?, S' x R or T2. When f = g = 0, i.e. when My, = M,
the characteristic leaves are all homeomorphic to T?2.

Now, for any € > 0, let f = esin(27wz1), g = 0. The pair (f, g) clearly satisfies equation
(») of Section 7.1. Let v be any curve in T* tangent to Ey 4 and (1, #2, T3, 74) = 7(0).

Using the fact that Ey , is always orthogonal to 8%1 we have

0
5(0) = a(t) fmos(ml) B

0

= o o O

for some functions «, 3. Now we have

v is a closed curve

& St (te) —7(0) = /0 "4yt € 7

to to to
& Jdtg: / a(t)dt € Z, B(t)dt € Z, (/ oz(t)dt) - 2me cos(2mxy) € Z.
0 0

0

Now suppose that the characteristic leaf L in which v lies is homeomorphic to T?. Then,
since the covering map pr : L — T? induces an injection at the level of fundamen-
tal groups, we can find a loop in T? through (#3,4) whose class lies in the image of
m1(L) and which “winds around in zs-direction” a non-zero number of times. The lift
of this curve is a loop in L with fgo a(t)dt # 0. So the above conditions imply that
2me cos(2may) € Q.

Therefore leaves through points z of T with 2me cos(2r#;) ¢ Q must be homeomor-

phic to S! x R (they cannot be homeomorphic to R? because the curve (z1, o, 3, 74) +
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t(0,0,0,1) in L is closed and not contractible). All other leaves are easily seen to be

homeomorphic to T?. Making e arbitrarily small finishes the argument. ad

Now we want to consider the “formal tangent space” at M to the set of coisotropic

submanifolds of (N, 2). Under our identifications it corresponds to
d t 1 . 0
FTyC := {&‘Oﬁ : 0 (—€,€) = Q(M)g is smooth, Im(3) C C, 3" = 0}.

Since we have not specified the differentiable structure of (M )¢ (this will be done in
Section 7.3) the term “smooth” above is not defined. The definition of FTpC and the
proof of Lemma 7.3.2 below will become rigorous only after introducing the appropriate

definitions.

Lemma 7.3.2
FToC C {B € Q'(M)g|dgB = 0},

where dg denotes the leaf-wise differential along the leaves of the characteristic distribu-

tion E.

Proof: Let 3t be as in the definition of TFyC. For each t the one-form 3! satisfies
Bte = 0, and w — dB* has same rank as w. The first condition immediately implies
(&los)le = 0.

The second condition implies that ker(w — d3?) is a smooth time-dependent distribution

on M, so locally we can choose a smooth basis {e},---, e} } for it. For each i, j we have

d

R
0 d

=[Gl =]t + (G eteed) +o et | ).

Now {ef,---,e?} is a basis for E = ker(w), and %|o(w —dpt) = —d(%bﬁt), so the above
identity implies that d(<]o3") is zero on E A E, i.e. dg(%|o8) =0 0
Now we combine the statements of the above two lemmas. Lemma 7.3.2 says that
the “formal tangent space” of the set of coisotropic submanifolds at some point M is

contained in a vector space which depends on the characteristic leaves of M. Lemma
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7.3.1 says that an arbitrary small perturbation of M can change drastically the topology
of the characteristic leaves. Altogether this suggests that at different points of the set
of coisotropic submanifolds, even within the same connected component, the “formal
tangent spaces” are not isomorphic. This would imply that the set itself does not have
a‘“nice” manifold structure.

Notice that in the Lagrangian case the characteristic leaves are all diffeomorphic, and
that in the codimension one case the characteristic leaves are one-dimensional, so the
closedness condition of Lemma 7.3.2 is vacuous. Therefore, in these two special cases,

the argument above does not apply.

Now we are ready to show that the set C defined in Fact 7.2.1 does not have a “nice”
structure. More precisely, we will show that C is not a submanifold of the Fréchet mani-
fold Q! (M)g. We first recall the notion of Fréchet manifold following Richard Hamilton’s
work [Ha].

Definition: ([Ha 1.1.1] or [Fo 5.4]) A Fréchet space is a complete topological vector
space with topology induced by a countable family of seminorms.

Example 2: ([Ha 1.1.5]) Let V' be any smooth vector bundle over a compact manifold
M. Choose a vector bundle metric and a connection V on V, as well as a Riemannian

metric on M. For each n € N we have a norm on I'(V'), the smooth sections of V, given

by
2. _ j 2
I[£]17 : ;:(]gg%lv f(z)]

where V7 f is the j-th covariant derivative of f and its norm is defined using any choice
of orthonormal basis of T, M and the bundle metric on V. (This is not the norm used
in [Ha 1.1.5] but us equivalent to it.)

Then I'(V') together with the topology induced by {|| - ||»}nen is a Fréchet space. Fur-
thermore the induced topology is independent of the choices we made, so that this

construction is canonical after we fix the smooth vector bundle V.

Definition: ([Ha 4.1.1]) A Fréchet manifold is a Hausdorff topological space with an
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atlas of coordinate charts taking their values in Fréchet spaces such that the coordinate
transition maps are smooth.

Example 3: ([Ha 4.1.7]) Let N be a finite dimensional manifold and let S(NN) be
the space of all compact submanifolds of N. For each M € S(N), any diffeomor-
phism between a tubular neighborhood of M and the normal bundle T'N |y, /T M gives
rise to a bijection between a neighborhood of M in S(N) and a neighborhood of 0 in
I(T'N|p/TM), which by the above example is canonically a Fréchet space. Since the
transition maps between charts as above are smooth ([Ha 4.4.7]), S(N) is endowed with
the structure of a Fréchet manifold . Notice that each connected component of S(N)
consists of manifolds diffeomorphic to each other, and that the Fréchet manifold struc-

ture on S(NV) is canonical after fixing the differentiable structure on N.

Now let us apply the above definition to the usual setting where (M, w) is a compact
coisotropic submanifold of the symplectic manifold (NN, Q), E is the characteristic distri-
bution of (M, w), and G is a fixed complement of F in TM. As shown in Example 3, the
set S(N) of compact submanifolds of N has a canonical Fréchet manifold structure, and
the same holds for S(E*). In Example 2 we saw that ['(E*) and Q'(M)g = I'(G®) have
canonical structures of Fréchet spaces and hence of Fréchet manifolds. Here G° C T*M
is the annihilator of G in T'M. It is clear that the identifications we made at the begin-
ning of Section 7.2 respect these structures, so the statement of Remark 1 in Section 7.2

follows at once.

Now we can make precise and prove that the set C does not have a‘“nice” structure:

Theorem 7 Let (N, Q) be a symplectic manifold and M a compact coisotropic subman-
ifold. Then the set C as in Fact 7.2.1 is not a Fréchet submanifold of Q*(M)¢.

It follows that the set of compact coisotropic submanifolds of (N,Q) is not a Fréchet
submanifold of S(N), the collection of all compact submanifolds of N.

Proof: We consider again Example 1, i.e. (N,Q) = (T* x R2?,dxy A doo + dws A dé3 +
dry Ndéy), M=T*C N, G = Span{a%l, 8%2}. There we showed that

C = {fdxs + gdz4|f, g are Cl-small and fy — g3 = f1g2 — foqr}
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To prove the theorem it is enough to show that FTyC, as defined in Section 7.3, is not
a vector subspace of Q' (M)g = C(T*)®2. Let first (f,g) : (—e,€) — C®(T*)®? ¢t
(ft, ¢") be any smooth curve with image lying in C such that (f°,¢") = (0,0). For all ¢

0—/ / 93 d$3d$4—/ / f192 fzgl)dwgdu.

Applying %b and using the notation F := E|0ft, G:= %|og we obtain fol fol(Fng —
F>,Gy)dxsdry = 0. Therefore all elements (F,G) of FTyC are subject to the above

we have

constraint, which is clearly non-linear.
Now consider the curves (f%, g*) = (tsin(27z1),0) and (f%,§") = (0,tsin(27z2)). Both
curves lie in C, so their derivatives at time zero (F,G) and (F, G) lie in FTyC. But their

sum (F + F, G + G) does not, because it violates the above constraint:
1 ~ ~ ~ ~
/ / (F+ F)1(G+ G)a— (F+ F)o(G + C)1)dasdas =
0o Jo

1,1
/ / sin(27zq) sin(27wzg)dxsdry # 0.
o Jo

Remark: In the particular case of Example 1 we have
1 1
FT,C C {FdiL'g + Gdxy | F,—G3=0 , / / (F1G2 — FgGl)d$3d$4 = 0}.
0o Jo

The first restriction is obtained by linearizing the equation f; — g3 = f1g2 — fog1 and is
equivalent to the fact that the restriction of Fdxs A Gdz4 to the characteristic leaves of
T* be closed (compare to Lemma 7.3.2). The second restriction was derived in the proof
of Theorem 7. These two restrictions can be explained in terms of a strong homotopy
Lie Algebroid structure (see [OP]) on the vector bundle E — M, and Corollary 10.5 and
Example 10.3 of [OP] show that the right hand side of the above inclusion is exactly the

space of infinitesimal formal deformations of (T*, dz1 A dx2).
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Appendix A

The estimates of Proposition 4.2.1

Here we will prove the estimates used in the proof of Proposition 4.2.1 in Section 4.2.

See Section 4.2 for the notation.

Applying a series of lemmas we will show first that
L(P—0,P' —0)<2d(C, A).
Then we will show
£((exp;")«CB, B —C) < 3d(A, ),
from which it will follow very easily that
£L(cA\CB, Q —0) < 4d(C, A).

This will conclude the proof of claim 2 in the proof of Proposition 4.2.1.
Finally using standard arguments we will obtain the estimate used in claim 3, namely

11

B-Cl< =
| |_10

d(C, B).

A.1 Estimates

We begin by stating an easy result without proof:
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Fact Let c: [0,1] — R"™ is a differentiable curve such that |é(s) — ¢(0)| < e for all
€ [0,1]. Then
[e(1) — c(0)] = é(0)] <.

If in addition C < |¢(s)| < D for all s € [0,1], then

2 _ &
C_z

cos (K[c(l) — (0), é(@)]) R
Now we introduce the following notation: o(s) will be the shortest geodesic from C
to B, defined on [0, 1], and &(s) will be its lift to T4M via exp,. For any s € [0, 1],
fs(t) = expy(ta(s)) will be the shortest geodesic from A to o(s). Notice that, since

d(A,C)+d(C, B) < 0.7, we have |&(s)| <0.7.

For a fixed s, consider the geodesic triangle Ao (s)C in M, and denote by «, 85 and ~
the angles at A, o(s) and C respectively.

Lemma A.1.1

d(C, A)

sin(70°) = |5(s)|, then sin(fs) < 8d(C, A)

=7 5(s)]

If% < sin(70°).

Remark: The lemma says that if o(s) is far enough from A, the direction of the geodesic
o there does not deviate too much from being radial with respect to A. This will allow
us to estimate the radial and orthogonal-to-radial components of ¢(s) in Lemma A.1.3

and Lemma A.1.5.

Proof: Consider the Alexandrov triangle in S? corresponding to Ao (s)C, i.e. a triangle
in S? with the same side lengths as Ac(s)C, and denote its angles by o/, 3, and .
Consider also the corresponding triangle in standard hyperbolic space H? and denote
its angles by o/, 3 and 4”. The sum of the angles of the triangle in S? deviates from
180° by the area of the triangle, which is bounded by 0.7 - 0.15 < 10° (see [BK] 6.7 and
6.7.1.), so that the sum is at most 190°. For the same reason the sum of the angles of the
triangle in H? is at least 170°. Since for the sectional curvature x we have |x| < 1, by
Toponogov’s Theorem (see Thm. 2.7.6 and Thm. 2.7.12 in [KI]) we have 37 < 3 < 3.
(and similarly for «, ) and by the above 3. — 57 < 20°.

Case 1: s < 90°.
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By the law of sines (see [Kl, Remark 2.7.5]) we have

siny/ < d(A, Q)
sin d(o(s), A) ~ sin d(o(s), A)

d(A,C)

d(o(s), A)’

where we used % > % for z € [0,0.8]. By our assumption this quantity is bounded
above by sin(70°), so (. € [0,70°] or 3, € [110°,180°]. Since 3, — 35 < 20° and 35 < 90°,
we must have 3, € [0,70°]. Therefore 35 < (. implies sin 3 < sin 3., which we already

sin 3, = sin(d(4, 0)) - < g

bounded above.

Case 2: (s > 90°.

One has to proceed analogously, but comparing with triangles in H?2. a

We now state a general fact about the exponential map:

Lemma A.1.2 If~ is a geodesic parametrized by arc length and W € T, )M, then for
t<0.7

sinh(t) — |W| < i
t

‘w\\(dm(o) exp ) W — W‘ <

2 2
(1——>|W|<|exp*W| < ( €>|W|

Proof: The unique Jacobi-field along « such that J(0) = 0,J(0) = W is given by
J(t) = (dis(0) €XDy(0)) (EW) (see [Jo, Cor. 4.2.2]). The estimate % follows from
[BK 6.3.8iii]. This expression is bounded above by & ® when ¢ < 0.7. The second estimate

and

follows trivially from the first one. We prefer to use these estimates rather than more
standard ones (see [BK 6.4.1]) in order to keep the form of later estimates more concise.

O

Using Lemma A.1.1 we obtain a refinement of Lemma A.1.2 for 5(s) = (ds(s) exp 4)(s):

Lemma A.1.3 For all s € [0, 1]

d(C; A)o(s)]-

O1|>—\

|, \o(s) — 6(s)| <
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Proof: By the Gauss Lemma, the decomposition into radial (denoted by %) and orthogonal-
to-radial (denoted by *) components of &(s) = (da(s) exp )G (s) € T,syM and o(s) €
T5(5)(TaM) is preserved by ds(s) exp,. Hence \a(s)ft =y, \(da(s) exp ) [o(s)F] =
&(s)® € Ty M. Introducing the notation D := |5(s)| < 0.7 this implies

()] = [\ ()" —5(s)

by Lemma A.1.2. From this we obtain |5(s)*] < CLL < 2|5L(s)[. So |;\e(s)—5(s)| <

1-22 =
2.
Bl (s)l-

5

. 8 d(CA)
Case 1: 7 S (70°) < D.
Using the notation of Lemma A.1.1 we have |6(s)f| = |cosBs| - |o(s)], so |o(s)*] =

sin(3s)|o(s)|. Applying the same lemma we obtain |5 (s)t| < %@M(S)L Therefore
2. 2 8 d(C,A) .
Blo(s)t] < B24G 8 o(s)| < 2d(C, A)|6(s)-

8 d(C,A)
7 sin(70°)

We simply use |6 (s)*| < |o(s)| to estimate

2
Dot < (FACDY Listo < e a7isto)

Case 2: > D.

which is less than the estimate of Case 1 since d(C, A) < 0.15. O

We want to apply the above Fact to the curve 6 : [0, 1] — T4 M. We begin by determining

the constant e.

Lemma A.1.4 For all s € [0, 1]
|5(s) —a(0)] < d(C, A4) - d(C, B).

Proof: We will show that ¢(s) ~ \d(s) = ;\¢(0) = 5(0), where in the first and last
relation tangent spaces are identified by parallel translation along fs and fy respectively.
The estimates needed for the first and last relation are given by Lemma A.1.3 since
lo(s)| = d(C, B) for all s.

For the second relation we use the fact that o is a geodesic and [BK, 6.2.1]. We see that
[t\a(s) =, \o(0)| is bounded above by the product of |¢(0)| = d(C, B) and of the area
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spanned by the triangle o(s)AC - which is surely less than 0.6 d(C, A) by [BK, 6.7.1] -

and we are done. O

Now we determine the constants C and D. Recall that |6(s)| = d(C, B), so that the

constants we obtain are really independent of s.

Lemma A.1.5 For all s € [0, 1]

o(s . o(s
T lé(g = Pel= A - é(g AP
Remark: Since we need estimates involving d(C, A), the classical Jacobi-field estimate
|5 (s)] < %M(sﬂ or |5(s)| < (1 — %2)_1|c'f(s)| (given by Lemma A.1.2) are not good
enough for us. Here D := d(o(s), A). Furthermore, making use of Lemma A.1.1, in
Lemma A.1.3 we bounded above |;\&(s) — &(s)|, which at once implies |5(s)| < (1 +
@)M(S)L This however is also not sufficient, because it would only allow us to

bound the left hand side of Corollary A.1.2 by a multiple of /d(C, A). Instead, we

()]
5(5)]

will use Lemma A.1.1 to bound directly in order to obtain a bound of the form

[1+0(d(C, A)?)]|6(s)| in Lemma A.1.5.

Proof: We fix s and adopt the notation D := |5(s)| = d(o(s), A) < 0.7.
Case 1: D < %Sﬁ%o@).
In Case 2 of the proof of Lemma A.1.3 we showed that | {\&(s)—&(s)| < f’—od(C’, A)25(s)].

So

lo(s)] (1 — %d(C’, A)2> <l|a(s)] < |a(s)] (1 + 13—0d(0, A)2> .

. 8 d(C.4)
Case 2: D > 7 Sm(70°7

In view of the remark above we will use simple Jacobi field estimates only for the

orthogonal-to-radial components of ¢(s) and &(s), which we can bound above using
Lemma A.1.1, whereas for the radial components we just have to notice that they have
the same length.

Recall that fs(t) = expy(td(s)) is a variation of geodesics emanating from A. We

denote by f,(t) = t&(s) its lift to TAM. Fixing s € [0,1], we denote by J(t) and



77

J(t) the Jacobi-fields along f, and f, arising from the variations fy(t) and f(t). So
J(t) = (dis(s) exp4)té(s) and J(t) = t&(s) have the same initial covariant derivative
E :=5(s).

We decompose E € T4 M into its components parallel and orthogonal to 6(s) as E =
EfR 4 EL JR(t) := (dig(s) expa)tET and J*(t) := (dys(s) expa)tEL are Jacobi fields,
since exp4 maps lines through 0 € T4M to geodesics through A € M. They both
vanish at zero and their initial covariant derivatives are Ef* and E-' respectively, so by
the uniqueness of Jacobi fields to given initial data we have J = J® + JL. The Gauss
Lemma implies that this is the decomposition of J into radial and orthogonal-to-radial

components.

To show the second inequality in the statement of the lemma we want to bound below

(o) _ TP BR[O

G(s)2 T2 |EJ?

Applying Lemma A.1.2 to J(1)+ = (do(s) exp4)(s)* we obtain |[J(1)*| > (1— %2)|El|,

SO
o) |ERP (- BB 2D DY B -
o (s)? B - 53 ' 25) B
Now we bound % from above. We already saw that |E+| < %, and by Lemma
Al26(s)) < (1+ %2)|5(s)| Both 1_1D_2 and 1 + %2 are bounded by % since D <

0.7. Now Lemma A.1.1 allows us to relate |J-(1)] and |5(s)| € Ty M. Namely, we
have |JL+(1)| = sin(By)|o(s)| < %d(CD’A)|d(s)|. The last three estimates give |EL| <

(%)3@|E|. Substituting into (V) gives

e (0 (355 571 () e

To take care of the first inequality in the statement of the lemma we show that

S <y <§>6 Ja(c, Ay

by repeating the above proof and using the estimate |J*(1)] < (1 + %2)|El|

To finish the proof we have to compare the estimates obtained in Case I and Case 2.
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To do so notice that (2)62 < 1, that (1 + d(C, A)?) < W and W <
(1 - 13_(]d(07 A)z) a

Now finally we can apply the Fact A.1 to the curve 6 : [0, 1] — T4 M. The first statement

of Fact A.1 allows us to prove

Corollary A.1.1
L(P—0,P' —0)<2d(C, A).

Proof: We first want to bound |P" — P| from above and |P’ — 0] from below.
Since P’ and P are the closest points in P4 to ¢cA\C'B and @ respectively,

[P P <|(@=-0)~ca\CB|

<[(@-0) = (exp3).CB| + |(exp3).CB —ca\CB

. 2 .
<d(C, A)|CB| + @wm

In the last inequality we used @ — 0= B — C = &(1) — 5(0) and (exp,').CB = &(0) to
apply the first statement of Fact A.1 (with € given by Lemma A.1.4) for the first term

and Lemma A.1.2 for the second term.

On the other hand we have
|P' — 0| =|CB]| - cos (£(cA\CB, Pa))
>|CB| - cos(h)
>|C'B|V/1 — 62
>|CBJ\/1 - C2d(C, A)2.

Therefore we have

P — P 4eA) 4 q
sin (£(P'—0,P -0 <| < 5
( ) < [P = 0] = \/1—C2d(C, A)?

d(C, A).

So, using the restrictions C < 2 and d(C, A) < 0.15, and using % > % for x € [0,0.8],
we obtain

L(P'—0,P - P) < %sin(A(P’ —0,P' - P)) <2d(C, A).
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The second statement of Fact A.1 delivers

Corollary A.1.2
£((exp1)«CB, B — C) < 3d(C, A).

Proof: Applying again Fact A.1 to the curve ¢ : [0,1] — T4M we want to obtain an
estimate for a := £(5(1) —5(0) , 5(0)) = £(B— C, (exp;')«CB). Lemma A.1.4 and

Lemma A.1.5 deliver the estimates

B ' _d(C,B) dp_ _dC.B)
e=d(C,A)-d(C,B), C= NET v AD= 2 Y

Therefore, using the abbreviation d := d(C, A), we have

2

D2 2(1+ d2)

5odt o 5-d 2
14 d? 2(1+d?) '

Notice that due to the restriction d < 0.15 we have cos(a) > @, so that [a] < § < 0.8.

So
8 8 5—d4 5—d+ \?2
< Zlqi < Zdosg )/ — g2 — < .
o = 7l sinfa)] < =d \/1+d2 d (2(1+d2)> < 3d

cos(a) >

sin?(a) < d?

The above corollary estimates the angle of two vectors based at C' = eXpEI(C’). Now we

will estimate the angle of certain vectors based at 0 € T4 M.

Corollary A.1.3
£(Q —0,64\CB) < 4d(C, A).

Proof: Since B — C = @ — 0 we just have to estimate

L(cA\CB , (exp;').CB) = 4£(;\¢(0), 5(0))
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and apply the triangle inequality together with Corollary A.1.2.
Denoting by L the distance from ;\&(0) € T4M to the line spanned by 7(0), we have
L < |1\o(0) — 5(0)] < %d(C’, A)d(C, B), where we used Lemma A.1.3 in the second

inequality. Hence

- L(;\G(0) , 5(0)) < sin (LN 6(0) , 5(0)) = =t <

ol

where we used # > % for z € ]0,0.8].

Combining this with Corollary A.1.2 gives

£ (cA\\CB, B- (?) < 3d(A,C) + %d(A, 0) < 4d(A, O).

We conclude this appendix by deriving the estimate need in Claim 3 of Proposition 4.2.1.

Corollary A.1.4
- 11
B - — B).
|B —C| < 54(C, B)

Proof: This follows easily from Lemma A.1.2 since

- - 1 11
|B—C’|§/ 15(s)|ds < Ld(C, B).
A 10
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Appendix B

The proof of Proposition 4.3.1

Here we will prove Proposition 4.3.1 of Section 4.3, namely the estimate

3150¢
fr)

To do so we will use the fact that N is C'-close to Ny, see Lemma B.1.3.

expy! C =% \(expy! A)| < L(v)

In addition to the notation introduced in Section 4.3 to state the proposition, we will

use the following.

We will denote by m.(t) the curve my, o c(t), so 7. is just a reparametrization of 7.

We will use exp as a short-hand notation for the normal exponential map expy, :
(VNg)1 — expy, (VNg)1. Therefore &(t) := exp~1(c(t)) will be a section of vN, along ..
The image under exp, of the Ehresmann connection corresponding to V+ will be the
subbundle LCY of TM|OXpNg(l,Ng)1.

To simplify notation we will denote by pr ) Hor? the projection of 4(t) € T,y M onto
Vertf/(t) along Horf/(t) . We will also use prﬁ-/(t)aHorg and pr ;) LCY to denote projec-

: g g g :
tions onto aVertﬁ/( " along aH o 1) and LC’A{( " respectively.

Our strategy will be to bound above |%6(t)| = |eXp;1(pré(t)LC’9)| (see Lemma B.1.3)
using

TN ~ Hor9 ~aHor? ~ LCY.

Integration along 7. will deliver the desired estimate.
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B.1 Estimates

The estimates to make precise T'N ~ Hor? and Hor? ~ aHor? were derived in [We|. In

the next two lemmas we will do the same for aHor9 ~ LCY.

Lemma B.1.1 If L < 0.08 and p is a point in O expy, (vNg)r, then
d(aHord, LCY) < aresin ( 2L
aHor}, p) < arcsin E .

Proof: Tt is enough to show that, if Y’ € LCY is a unit vector, |pryaHor?| < L.

Let ((s) be a curve tangent to the distribution LCY such that 8(0) = p, 3(0) = Y.
Then exp~(B(s)) = L&(s) for a unit length parallel section & of VN, along the curve
v(s) := mn,(B(s)). If we denote by K the Ny Jacobi-field arising from the variation
fs(t) = exp(t&(s)), then clearly K(L) =Y and K(0) = 5(0).

We claim that £ is a strong Jacobi-field (see the remark in Section 4.1.2): we have

Gilofs(t) = €(s), so

0= 2| 2| 1) = T €0y = T e9) — Aeori(0) = A0 K0

dt‘o@s

The claim follows since £(0) = 4,(0), where =y, denotes the unique geodesic parametrized
by arc length connecting 7y, (p) to p.
Now let us denote by J the N, Jacobi-field along 7, vanishing at 0 such that J(L) =

pryaHor9 € aVert]. By Lemma 4.1.9, using the fact that Y is a unit vector, we have
9
lpryaort|? = (pryatort, Y) = [(J(L), K(L))| < o L+ [pryaHor?

and we are done. O

Lemma B.1.2 Let L < 0.08. For any point p in dexpy, (vNy)r, the projections T,M —

aVerty along aHor and LC3 differ at most by 2L in the operator norm.

Proof: Let ¢ : aHor) — aVert) be the linear map whose graph is LCJ. Let X €

T,M a unit vector and write X = X,;, + X, for the decomposition of X into almost
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horizontal and almost vertical vectors. Then X = (Xup + ¢(Xan)) + (Xaw — ¢(Xan)) is
the decomposition with respect to the subspaces LC} and aVert). The difference of the

two projections onto aVert) maps X to ¢(Xan). Now

[0(Xan)| < [@lop < tan(d(aH ory, LCP)) <

where we used [We, Cor. A.5] in the second inequality and Lemma B.1.1 in the third

one. O

Now we are ready to bound the covariant derivative of é(t):

Lemma B.1.3 Forallt
vJ_

Proof: Let %5(75) denote %6(t)/€_&rc(t)N 4 but considered as an element of Ty (v, (1) Ng)-
First notice that, by definition, %5(75) is the image of ¢(t) under the projection Ty (vNg) —
T4y (Vr, (1)Ng) along the Ehresmann connection on v N, corresponding to VL. Therefore,
since exp, maps the this Ehresmann connection to LCY and tangent spaces to the fibers

of YNy to aVert?, we have

\Va 9
€XP, Ec(t) = pré(t)LC .
Notice that here exp, denotes dg;) exp N,-

The fact that N is C'-close the N, (see Theorem 1), since ¢(t) € T, c(tyN implies that
L(e(t), Horg(t)) < 2500e. By [We, Prop. 3.7] d(Horg(t), aHorg(t)) < ¢ since d(c(t), Ny) <
100e.

Therefore £(é(t), aHorg(t)) < 2501€ and [prqgyaHor?| < sin(2501¢) < 2501e.

On the other hand, by Lemma B.1.2, |prygaHor? — preLC9] < 200e. The triangle
inequality therefore gives |pre;) LCY| < sin(2701¢). Therefore, using Lemma A.1.2 and

1
€ < 35000°

lexp, ! (pre LCY)| <

e preg LCY ( < 2702e.
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Lemma B.1.3 allows us to bound |eXp_IC’ _7Jr_b\\ (eXp_lA)| in terms of L(c). However
we want a bound in terms of L(+y), so now we will compare the lengths of the two curves.
Recall that f(z) = cos(z) — 3 sin(z) and r := 100e + @ Notice also that r < 0.08 due
to our restrictions on € and d(C, A).

Lemma B.1.4

1 4 3200€
L(c) < WL(V)-

Proof: Since ¢, (7N, ¢(t)) = ¢(t), by Proposition 4.1.1 we have |¢(t) — \ (7w, ¢(1))] <
3200¢|m, ¢(t)], so
|é(t)] < (14 32006)| 7w, é(1)].

Since L(mn, o c) = L(n), from this follows L(c) < (14 3200¢)L(7). By [We, Lemma 3.3]
we have f(r)L(m) < L(v) and we are done. O

Proof of Proposition 4.3.1: 'We have

exp 'C _7Jr_b\\ (eXp_lA)

L(c) d
— Rl A\
-1 & e

L(c) vJ_
_ L ~
- [ e

<2702¢L(c)
(1 + 3200¢)
f(r)

where we used Lemma B.1.3 and lemma B.1.4 in the last two inequalities. The proposi-

<2702¢ L(v)

tion follows using the bound € < m. O
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Appendix C

The proof of Proposition 4.3.2

Here we will prove Proposition 4.3.2 of Section 4.3, i.e. the estimate

) ) 99 ¢ 5 sk
exp} ()~ ez (4)] > L) [— (o) o00e a5 0) ( T “;)

We will use the fact that Ny has bounded second fundamental form (see the first state-

ment of Lemma C.1.3) and that v is a geodesic (see the second statement of the same
Lemma).

We will use the notation introduced in Section 4.3 and at the beginning of Appendix B.
Recall that 7(t) := eXp]_Vi (7(t)) is a section of ¥ N, along .

C.1 Estimates

First we will set a lower bound on the initial derivative of 7.

Lemma C.1.1 We have

Vd—:N(o)‘ > % [sin (a - 2) - 2006} .

Proof: Analogously to the proof of Lemma B.1.3 we have exp*(zl—tli(O)) = pryo)LCY,

where %i(O) is an element of T’ g)Vr(0)Ny-
By [We, Prop 3.7] we have d(Hory, , aHory,) < §. So

£ (3(0), aHord) > £ (7(0) , Horl,) —d(Hor{, , aHord,) > a —

P
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Therefore |prsgyaHor?| > sin(a — 7).
On the other hand, by Lemma B.1.2, |prﬁ-/(0)aHor9 — prﬁ(O)LC’9| < 200e. The inverse

triangle inequality gives
) €
Iprs0)LCY| > sin(a — Z) — 200€.

Applying exp; !, by Lemma A.1.2 we have |eXp*_1(prﬁ-{(0)LC’9)| > ﬁ|prﬁ-{(0)LC’9|, and

; 1 99
since jm: > 100 We are done. O

Our next goal is to show that F(t) “grows at a nearly constant rate”. This will be
achieved in Corollary C.1.3. Together with Lemma C.1.1 and integration along 7 this

will deliver the estimate of Proposition 4.3.2.

The next two lemmas will be used to prove Corollary C.1.1, where we will show that

%i(O) and exp, ! o\ o eXp*(%i(t)) - i.e. the parallel translate of %i(t) “along ~”

—

- are close for all t. Here %i(t) denotes the vector %i(t) regarded as an element of

T5) (Ve(ryNg). To this aim we show that
PLs(0) LC? 2 prs (o) Hord ~ pryp Hor? ~ prs ) LC7,

where we identify tangent spaces by parallel translation along . The crucial step is the
second “~”, where we use that fact that v is a geodesic. Applying exp; ! will easily

imply Corollary C.1.1 since exp*_l(prﬁ-{(t)LC'g) = %i(t).

Lemma C.1.2 For any L < 1 and any point p € expy, (vNg)r the orthogonal projec-

tions TyM — aHor}) and T,M — Hor{ differ at most by %2 in the operator norm.

Proof: This follows immediately from [We, Prop. 3.7]. 0

Lemma C.1.3 For all t

d(Vertd, »\ Vertf{ ( t)) < arcsin

r—l—%
t(r—l— f(r))




87

Furthermore,

r43
|prﬁ-/(0)Hor9 —ﬁ/b\\prﬁ-/(t)Horﬂ <t (r + f(r)2> .

Proof: We first want to estimate d(Verty, ﬁ/b\\Vertf'/ (t)). Let v € vcN4 be a normal
unit vector.
First of all, for the V and V= parallel translations along 7 from C to m(t) we have
3 3t
1
A\ \\U‘ < §L(7T|[0,t]) < 270

The first inequality follows from a simple computation involving the second fundamental

form of N, which is bounded in norm by 2 (see [We, Cor. 3.2]). The second inequality
is due to f(r)L(n[4) < L(7lo,q), which follows from [We, Lemma 3.3].
Secondly, denoting by 74 the unit speed geodesic from 7 (t) to v(t), we have

o\ — A/b\\o ~ \ o W\\v‘ﬁrt(l—k%).

Indeed, the above expression just measures the holonomy as one goes once around the

polygonal loop given by the geodesics 78,7, 74 and 4. Using the bounds on curvature

we know that this is bounded by the area of a surface spanned by the polygon (see [BK,

6.2.1]). The estimate given above surely holds since L(7), L(70) < 7, L(7|j04) =t and,
t

as we just saw, L(7[p4) < o

Together this gives
W\ = e wl e Aol <lmlv = e Ao M| +

<t r—l—r—i—%
- fr)y )

So we obtain a bound on the distance from ;\v € Vert?, to a unit vector in ﬁ/b\\Vertf’/ o

Ao mho [Aw =\l

This delivers the first statement of the lemma. The second statement follows using [We,

Prop. A.4], since ,\prsyHor? = prso)(;2\H orf’/ ( t)) because 7 is a geodesic. 0

Corollary C.1.1 For allt

_ Vi vt
€XPy ! Oﬁ/b\\ O CXPy (EW(ﬂ) - EW(O)

[

5 r+3
<= [2.1(1006—1—7")-1—75 (r—l— f(r)2>] :
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Proof: From Lemma C.1.2 and Lemma B.1.2 we have for all ¢

[prsHor? = prs LC| < [pry Hor? = prygaHor?| + |prygaHor? — prsq) LCY|
2
< % + 2r
< 2.1r.

For t = 0, since d(C, N4) < 100¢, we have the better estimate
’prﬁ-/(o)Horg — prﬁ-/(o)LC@’ < 210e.

Combining this with the second statement of Lemma C.1.3 gives

r+43
Pra) LCY —p \\prﬁ-,(t)LC’Q‘ < 2.1(100e+7) + ¢t (r + 2) '

f(r)
Recall that prs ) LCI = eXp*(%i(t)), as in the proof of Lemma B.1.3. Also, for any
vector X € ToM we have |exp, ' X| < 1|i(|£ by Lemma A.1.2. So applying (exp™!), to

pT;/(O)LCg b \\pT’A/(t)LCg we get

AV _ A\
~3(0) — exprt o) 0 exp, (Ew))

r+ 3 1
< [2.1(1006+r)+t <r+ f(r)2>] q

O

Now let § be a unit vector in v, Ng. Denote by ¢ the same vector thought of as an
element of T (Vr(¢)Nyg)-

In the next two lemmas we want to show that #b\\g and exp; ! o\ 0 exp, & € ToM are
close to each other, i.e. that under the identification by exp the V-'-parallel translation
along 7 and the V-parallel translation along v do not differ too much. Here we also
make use of the fact that N has bounded second fundamental form (see Lemma C.1.5).

In Corollary C.1.2 we will apply this to the vector %i(t).

Lemma C.1.4 Denoting by 7; the unit speed geodesic from w(t) to (),

2

Ao\ or\¢ — expy o\ o exp, €] < 7.



Proof: First let us notice that applying Lemma A.1.2 three times we get

A Ve, d] —eort [ hep, 8] <1

o7t [ ewn. ]

— |\ exp. €

Therefore, applying Lemma A.1.2 to £, the left hand side of the statement of this lemma
is bounded above by

Ao A\ L\\é’} —p\ o «,b\\[exp* é] ‘—I—

2\ o [»,b \\ exp, 5} —exp; ! [yb\\ exp, é’”
r? 21+ %

<
-5

Lemma C.1.5

- 2 5
‘exp*_1 o\ oexp,§ — 7Jr_b\\ 5‘ = % i <T+ Tf—(l—?")2> ‘

Proof: The left hand side in the statement of the lemma is bounded above by
‘eXp*_l © «/b\\ © eXp*é - 7—3\\ © ﬁ/b\\ © Tt\\é‘

Ao o e — ]
¢ - B

2

<7 ot (1 n 1 > N 3t
—+r = .
-2 fr)) 21
The first term is estimated by Lemma C.1.4.

_|_

_|_

The second one is just the holonomy as once goes around the loop given by 7,7, T(l]’ and
m, which was bounded above in the proof of Lemma C.1.3.
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The third and last term is estimated in the proof of Lemma C.1.3 as well. a

Corollary C.1.2 The section 4 satisfies

1
exp:t o\ o exp, (Z—jw) )

2 4 r43
< P24t 2.
_37" +3 <r+ f(r))

Proof: We apply Lemma C.1.5 to %i(t), where now we have to take into consideration

the length of %i(t) in our estimate.

We have |7 (t)] = [expy (prs) LO?)| <

; lﬁ |prs)LC?| by Lemma A.1.2, and

Iprs oy LC| < |prsy LCY — prsyaHord| + [prygyaHor?| < 2r + 1

by Lemma B.1.2. Since 12r_4;21 < % for » < 0.08 we are done. O

5

Now Corollary C.1.1 and Corollary C.1.2 immediately imply that J(¢) “grows at a nearly

constant rate”:

Corollary C.1.3 The section 4 satisfies

1 L sk
YA0) - #\\Vd—twt)‘ < 3000c-+7) + 51 (” f(+r>2>'

Proof of Proposition 4.3.2: The estimate of Proposition 4.3.2 follows from
Lv)  wyit
exp(0) 5 \esp ! (4)] = l | g

L(v) w+
> —~ t
/0 C(0)d

/0”“0 (ZTLN(O) _#’\\YT;NUO dt

€ L(~) s
21|00 - [

dt
using Lemma C.1.1 and Corollary C.1.3. ad

1
(0) -5\ 0 at
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