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Abstract. We discuss a simple example of coisotropic submanifold M of a symplectic
manifold, and show that the set of coisotropic submanifolds which are C1-close to M does
not have a manifold structure.

1. Introduction

In this note we consider the symplectic manifold

(N,Ω) := (T4 × R2, dx1 ∧ dx2 + dx3 ∧ dξ3 + dx4 ∧ dξ4),

where (x1, . . . , x4) and (ξ3, ξ4) are canonical coordinates on T4 and R2 respectively. We
regard N as a vector bundle over T4. Observe that the zero section M = T4 × {0} is
coisotropic in N .

We study certain aspects of the set C of coisotropic submanifolds which are C1-close to
M . First, we characterize elements of C by means of a certain nonlinear relation. Then in
Prop. 2.1 we show that arbitrarily small coisotropic deformations of M have characteristic
foliations which are not homeomorphic to that of M .

This suggests that set of coisotropic submanifolds which are C1-close to M does not have
a nice structure. Indeed, in Cor. 2.3 we prove that C is not a manifold. This shows in
particular that the formal coisotropic deformation problem for M in N is obstructed.

2. Coisotropic submanifolds close to M

The submanifolds of N which are C1-close to M are of the form Mf,g := graph(f, g),
where f and g are (C1-small) elements of C∞(T4). Let i : Mf,g → N be the inclusion. The
2-form i∗Ω, at each point of Mf,g, can have rank 2 or rank 4. The �rst case occurs exactly
at points where the determinant of i∗Ω is zero, i.e.

(1) f4 − g3 = f1g2 − f2g1

where the subscripts denote partial derivatives. We conclude that Mf,g is coisotropic i�
(f, g) belongs to K, the set of C1-small elements of C∞(T4)× C∞(T4) satisfying (1). The
correspondence Mf,g ↔ (f, g) gives an identi�cation between C and K.

Recall that the characteristic foliation of a coisotropic submanifold M̄ of (N,Ω) is the
foliation integrating TM̄Ω, the kernel of the pullback of Ω to M̄ .

Proposition 2.1. Arbitrarily C1-close to M there exist coisotropic submanifolds of (N,Ω)
with characteristic leaves not homeomorphic to those of M .
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Proof. Let (f, g) ∈ K, so that Mf,g := graph(f, g) is a coisotropic submanifold of T4 × R2.
Instead of working with (Mf,g, i

∗Ω) we use the di�eomorphism induced by the section (f, g) :
T4 → Mf,g ⊂ T4×R2 and work with (T4, dx1∧dx2 +dx3∧df +dx4∧dg). Its characteristic
distribution Ef,g is spanned by (−f2, f1, 1, 0) and (−g2, g1, 0, 1). Applying [1](Prop. 1, Ch.
V.2) we see that the restriction of the projection pr : T4 → T2, (x1, · · · , x4) 7→ (x3, x4) to
any leaf of Ef,g is a covering map. In particular the leaves are homeomorphic to either R2,
S1 × R or T2. When f = g = 0, i.e. when Mf,g = M , the characteristic leaves are all
homeomorphic to T2.

Now, for any �xed t > 0, (f, g) := (t sin(2πx1), 0) clearly satis�es equation (1). Let γ
be any curve in T4 tangent to Ef,g and (x̄1, x̄2, x̄3, x̄4) = γ(0). Using the fact that Ef,g is

always orthogonal to ∂
∂x1

we have

γ̇(s) = α(s)


0
2πt cos(2πx̄1)
1
0

 + β(s)


0
0
0
1


for some functions α, β. Now we have

γ is a closed curve

⇔ ∃s0 : γ(s0)− γ(0) =
∫ s0

0
γ̇(s)ds ∈ Z4

⇔ ∃s0 :
∫ s0

0
α(s)ds ∈ Z,

∫ s0

0
β(s)ds ∈ Z,

( ∫ s0

0
α(s)ds

)
· 2πt cos(2πx̄1) ∈ Z.

Suppose that the characteristic leaf L in which γ lies is homeomorphic to T2. Then, since
the covering map pr : L → T2 induces an injection at the level of fundamental groups, we
can �nd a loop in T2 through (x̄3, x̄4) whose class lies in the image of π1(L) and which
�winds around in x3-direction� a non-zero number of times. The lift of this curve is a loop
in L with

∫ s0

0 α(s)ds 6= 0. So the above conditions imply that 2πt cos(2πx̄1) ∈ Q.

Therefore leaves through points x̄ of T4 with 2πt cos(2πx̄1) /∈ Q must be homeomorphic
to S1 × R (they cannot be homeomorphic to R2 because the curve s 7→ (x̄1, x̄2, x̄3, x̄4) +
s(0, 0, 0, 1) in L is closed and not contractible). All other leaves are easily seen to be
homeomorphic to T2. Making t arbitrarily small �nishes the argument. �

Now we consider the �space of tangent vectors to C at M �, which using the identi�cation
between C and K is

T0K :=
{ d

dt

∣∣∣
0
βt : β : (−ε, ε) → K is smooth, β0 = 0

}
⊂ C∞(T4)× C∞(T4).

Proposition 2.2. T0K is not a vector subspace of C∞(T4)× C∞(T4).

Proof. Let (f, g) : (−ε, ε) → C∞(T4)×C∞(T4), t 7→ (f t, gt) be any smooth curve in K with
(f0, g0) = (0, 0). For all t we have

0 =
∫ 1

0

∫ 1

0
(f t

4 − gt
3)dx3dx4 =

∫ 1

0

∫ 1

0
(f t

1g
t
2 − f t

2g
t
1)dx3dx4.

Applying d2

dt2
|0 and using the notation F := d

dt |0f
t, G := d

dt |0g
t we obtain

∫ 1
0

∫ 1
0 (F1G2 −

F2G1)dx3dx4 = 0. Therefore all elements (F,G) of T0K are subject to the above constraint,
which is clearly non-linear.
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Now consider the curves (f t, gt) = (t sin(2πx1), 0) and (f̃ t, g̃t) = (0, t sin(2πx2)). Both

curves lie in K, so their derivatives at time zero (F,G) and (F̃ , G̃) lie in T0K. But the sum
(F + F̃ , G + G̃) does not, because it violates the above constraint:∫ 1

0

∫ 1

0
((F + F̃ )1(G + G̃)2 − (F + F̃ )2(G + G̃)1)dx3dx4 =

4π2

∫ 1

0

∫ 1

0
cos(2πx1) cos(2πx2)dx3dx4 6≡ 0.

�

Let S(N) be the space of all compact submanifolds of N . S(N) is endowed with the
structure of a Fréchet manifold, and each connected component of S(N) consists of manifolds
di�eomorphic to each other ([2], 4.1.7). From Prop. 2.2 we deduce

Corollary 2.3. The set C of coisotropic submanifolds of (N,Ω) which are C1-close to M
is not a Fréchet submanifold of S(N).

Remark 2.4. We have

T0K ⊂
{

(F,G) | F4 −G3 = 0 ,

∫ 1

0

∫ 1

0
(F1G2 − F2G1)dx3dx4 = 0

}
.

The �rst restriction is obtained by linearizing the equation f4 − g3 = f1g2 − f2g1 and is
equivalent to the fact that Fdx3 ∧Gdx4, viewed as a foliated form along the characteristic
foliation of T4, is closed. The second restriction was derived in the proof of Prop. 2.2 and
is exactly the condition that the foliated cohomology class of Fdx3 ∧Gdx4 be in the kernel
of the Kuranishi map as de�ned in section 11 of [3]. This is the primary obstruction to
extending the in�nitesimal coisotropic deformation Fdx3 ∧ Gdx4 to a formal deformation.
We refer to section 11 of [3] for a discussion of the formal deformation problem of the
coisotropic submanifold M in terms of the L∞-algebra structure on the space of foliated
di�erential forms along the characteristic foliation of M .

If we restrict ourselves to coisotropic deformations of M whose characteristic foliations are
again smooth �brations with 2-tori as �bers (i.e. so-called integral coisotropic deformations)
the deformation problem is unobstructed [4].

Remark 2.5. We saw in equation (1) that the condition for a submanifold C1-close to M to
be an element of C is a non-linear condition. Further we saw in Remark 2.4 that the formal
deformation problem of the coisotropic submanifold M is obstructed.

This is in contrast to the case of codimension one or lagrangian submanifolds of any
symplectic manifold. Indeed the former are all coisotropic. If L is a lagrangian submanifold,
then lagrangian submanifolds C1-close to L are given exactly by (C1-small) 1-forms on L
which are closed.
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