

AN EXAMPLE OF COISOTROPIC SUBMANIFOLDS C^1 -CLOSE TO A GIVEN COISOTROPIC SUBMANIFOLD

MARCO ZAMBON

ABSTRACT. We discuss a simple example of coisotropic submanifold M of a symplectic manifold, and show that the set of coisotropic submanifolds which are C^1 -close to M does not have a manifold structure.

1. INTRODUCTION

In this note we consider the symplectic manifold

$$(N, \Omega) := (\mathbb{T}^4 \times \mathbb{R}^2, dx_1 \wedge dx_2 + dx_3 \wedge d\xi_3 + dx_4 \wedge d\xi_4),$$

where (x_1, \dots, x_4) and (ξ_3, ξ_4) are canonical coordinates on \mathbb{T}^4 and \mathbb{R}^2 respectively. We regard N as a vector bundle over \mathbb{T}^4 . Observe that the zero section $M = \mathbb{T}^4 \times \{0\}$ is coisotropic in N .

We study certain aspects of the set \mathcal{C} of coisotropic submanifolds which are C^1 -close to M . First, we characterize elements of \mathcal{C} by means of a certain nonlinear relation. Then in Prop. 2.1 we show that arbitrarily small coisotropic deformations of M have characteristic foliations which are not homeomorphic to that of M .

This suggests that set of coisotropic submanifolds which are C^1 -close to M does not have a nice structure. Indeed, in Cor. 2.3 we prove that \mathcal{C} is not a manifold. This shows in particular that the formal coisotropic deformation problem for M in N is obstructed.

2. COISOTROPIC SUBMANIFOLDS CLOSE TO M

The submanifolds of N which are C^1 -close to M are of the form $M_{f,g} := \text{graph}(f, g)$, where f and g are (C^1 -small) elements of $C^\infty(\mathbb{T}^4)$. Let $i : M_{f,g} \rightarrow N$ be the inclusion. The 2-form $i^*\Omega$, at each point of $M_{f,g}$, can have rank 2 or rank 4. The first case occurs exactly at points where the determinant of $i^*\Omega$ is zero, i.e.

$$(1) \quad f_4 - g_3 = f_1 g_2 - f_2 g_1$$

where the subscripts denote partial derivatives. We conclude that $M_{f,g}$ is coisotropic iff (f, g) belongs to \mathcal{K} , the set of C^1 -small elements of $C^\infty(\mathbb{T}^4) \times C^\infty(\mathbb{T}^4)$ satisfying (1). The correspondence $M_{f,g} \leftrightarrow (f, g)$ gives an identification between \mathcal{C} and \mathcal{K} .

Recall that the *characteristic foliation* of a coisotropic submanifold \bar{M} of (N, Ω) is the foliation integrating $T\bar{M}^\Omega$, the kernel of the pullback of Ω to \bar{M} .

Proposition 2.1. *Arbitrarily C^1 -close to M there exist coisotropic submanifolds of (N, Ω) with characteristic leaves not homeomorphic to those of M .*

Keywords: Coisotropic submanifolds, deformation. MSC: 53C40, 53D05.

Proof. Let $(f, g) \in \mathcal{K}$, so that $M_{f,g} := \text{graph}(f, g)$ is a coisotropic submanifold of $\mathbb{T}^4 \times \mathbb{R}^2$. Instead of working with $(M_{f,g}, i^*\Omega)$ we use the diffeomorphism induced by the section $(f, g) : \mathbb{T}^4 \rightarrow M_{f,g} \subset \mathbb{T}^4 \times \mathbb{R}^2$ and work with $(\mathbb{T}^4, dx_1 \wedge dx_2 + dx_3 \wedge df + dx_4 \wedge dg)$. Its characteristic distribution $E_{f,g}$ is spanned by $(-f_2, f_1, 1, 0)$ and $(-g_2, g_1, 0, 1)$. Applying [1](Prop. 1, Ch. V.2) we see that the restriction of the projection $pr : \mathbb{T}^4 \rightarrow \mathbb{T}^2, (x_1, \dots, x_4) \mapsto (x_3, x_4)$ to any leaf of $E_{f,g}$ is a covering map. In particular the leaves are homeomorphic to either \mathbb{R}^2 , $S^1 \times \mathbb{R}$ or \mathbb{T}^2 . When $f = g = 0$, i.e. when $M_{f,g} = M$, the characteristic leaves are all homeomorphic to \mathbb{T}^2 .

Now, for any fixed $t > 0$, $(f, g) := (t \sin(2\pi x_1), 0)$ clearly satisfies equation (1). Let γ be any curve in \mathbb{T}^4 tangent to $E_{f,g}$ and $(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) = \gamma(0)$. Using the fact that $E_{f,g}$ is always orthogonal to $\frac{\partial}{\partial x_1}$ we have

$$\dot{\gamma}(s) = \alpha(s) \begin{pmatrix} 0 \\ 2\pi t \cos(2\pi \bar{x}_1) \\ 1 \\ 0 \end{pmatrix} + \beta(s) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

for some functions α, β . Now we have

$$\begin{aligned} & \gamma \text{ is a closed curve} \\ \Leftrightarrow & \exists s_0 : \gamma(s_0) - \gamma(0) = \int_0^{s_0} \dot{\gamma}(s) ds \in \mathbb{Z}^4 \\ \Leftrightarrow & \exists s_0 : \int_0^{s_0} \alpha(s) ds \in \mathbb{Z}, \int_0^{s_0} \beta(s) ds \in \mathbb{Z}, \left(\int_0^{s_0} \alpha(s) ds \right) \cdot 2\pi t \cos(2\pi \bar{x}_1) \in \mathbb{Z}. \end{aligned}$$

Suppose that the characteristic leaf L in which γ lies is homeomorphic to \mathbb{T}^2 . Then, since the covering map $pr : L \rightarrow \mathbb{T}^2$ induces an injection at the level of fundamental groups, we can find a loop in \mathbb{T}^2 through (\bar{x}_3, \bar{x}_4) whose class lies in the image of $\pi_1(L)$ and which “winds around in x_3 -direction” a non-zero number of times. The lift of this curve is a loop in L with $\int_0^{s_0} \alpha(s) ds \neq 0$. So the above conditions imply that $2\pi t \cos(2\pi \bar{x}_1) \in \mathbb{Q}$.

Therefore leaves through points \bar{x} of \mathbb{T}^4 with $2\pi t \cos(2\pi \bar{x}_1) \notin \mathbb{Q}$ must be homeomorphic to $S^1 \times \mathbb{R}$ (they cannot be homeomorphic to \mathbb{R}^2 because the curve $s \mapsto (\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) + s(0, 0, 0, 1)$ in L is closed and not contractible). All other leaves are easily seen to be homeomorphic to \mathbb{T}^2 . Making t arbitrarily small finishes the argument. \square

Now we consider the “space of tangent vectors to \mathcal{C} at M ”, which using the identification between \mathcal{C} and \mathcal{K} is

$$T_0 \mathcal{K} := \left\{ \frac{d}{dt} \Big|_0 \beta^t : \beta : (-\epsilon, \epsilon) \rightarrow \mathcal{K} \text{ is smooth, } \beta^0 = 0 \right\} \subset C^\infty(\mathbb{T}^4) \times C^\infty(\mathbb{T}^4).$$

Proposition 2.2. $T_0 \mathcal{K}$ is not a vector subspace of $C^\infty(\mathbb{T}^4) \times C^\infty(\mathbb{T}^4)$.

Proof. Let $(f, g) : (-\epsilon, \epsilon) \rightarrow C^\infty(\mathbb{T}^4) \times C^\infty(\mathbb{T}^4), t \mapsto (f^t, g^t)$ be any smooth curve in \mathcal{K} with $(f^0, g^0) = (0, 0)$. For all t we have

$$0 = \int_0^1 \int_0^1 (f_4^t - g_3^t) dx_3 dx_4 = \int_0^1 \int_0^1 (f_1^t g_2^t - f_2^t g_1^t) dx_3 dx_4.$$

Applying $\frac{d^2}{dt^2}|_0$ and using the notation $F := \frac{d}{dt}|_0 f^t, G := \frac{d}{dt}|_0 g^t$ we obtain $\int_0^1 \int_0^1 (F_1 G_2 - F_2 G_1) dx_3 dx_4 = 0$. Therefore all elements (F, G) of $T_0 \mathcal{K}$ are subject to the above constraint, which is clearly *non-linear*.

Now consider the curves $(f^t, g^t) = (t \sin(2\pi x_1), 0)$ and $(\tilde{f}^t, \tilde{g}^t) = (0, t \sin(2\pi x_2))$. Both curves lie in \mathcal{K} , so their derivatives at time zero (F, G) and (\tilde{F}, \tilde{G}) lie in $T_0 \mathcal{K}$. But the sum $(F + \tilde{F}, G + \tilde{G})$ does not, because it violates the above constraint:

$$\begin{aligned} & \int_0^1 \int_0^1 ((F + \tilde{F})_1(G + \tilde{G})_2 - (F + \tilde{F})_2(G + \tilde{G})_1) dx_3 dx_4 = \\ & 4\pi^2 \int_0^1 \int_0^1 \cos(2\pi x_1) \cos(2\pi x_2) dx_3 dx_4 \neq 0. \end{aligned}$$

□

Let $\mathcal{S}(N)$ be the space of all compact submanifolds of N . $\mathcal{S}(N)$ is endowed with the structure of a Fréchet manifold, and each connected component of $\mathcal{S}(N)$ consists of manifolds diffeomorphic to each other ([2], 4.1.7). From Prop. 2.2 we deduce

Corollary 2.3. *The set \mathcal{C} of coisotropic submanifolds of (N, Ω) which are C^1 -close to M is not a Fréchet submanifold of $\mathcal{S}(N)$.*

Remark 2.4. We have

$$T_0 \mathcal{K} \subset \left\{ (F, G) \mid F_4 - G_3 = 0, \int_0^1 \int_0^1 (F_1 G_2 - F_2 G_1) dx_3 dx_4 = 0 \right\}.$$

The first restriction is obtained by linearizing the equation $f_4 - g_3 = f_1 g_2 - f_2 g_1$ and is equivalent to the fact that $F dx_3 \wedge G dx_4$, viewed as a foliated form along the characteristic foliation of \mathbb{T}^4 , is closed. The second restriction was derived in the proof of Prop. 2.2 and is exactly the condition that the foliated cohomology class of $F dx_3 \wedge G dx_4$ be in the kernel of the Kuranishi map as defined in section 11 of [3]. This is the primary obstruction to extending the infinitesimal coisotropic deformation $F dx_3 \wedge G dx_4$ to a formal deformation. We refer to section 11 of [3] for a discussion of the formal deformation problem of the coisotropic submanifold M in terms of the L_∞ -algebra structure on the space of foliated differential forms along the characteristic foliation of M .

If we restrict ourselves to coisotropic deformations of M whose characteristic foliations are again smooth fibrations with 2-tori as fibers (i.e. so-called integral coisotropic deformations) the deformation problem is unobstructed [4].

Remark 2.5. We saw in equation (1) that the condition for a submanifold C^1 -close to M to be an element of \mathcal{C} is a *non-linear* condition. Further we saw in Remark 2.4 that the formal deformation problem of the coisotropic submanifold M is obstructed.

This is in contrast to the case of codimension one or lagrangian submanifolds of any symplectic manifold. Indeed the former are all coisotropic. If L is a lagrangian submanifold, then lagrangian submanifolds C^1 -close to L are given exactly by (C^1 -small) 1-forms on L which are closed.

REFERENCES

- [1] Camacho, C., and Lins Neto, A., *Geometric theory of foliations*, Birkhäuser (1985).
- [2] Hamilton, R., *The inverse function theorem of Nash and Moser*, Bull. AMS, Volume 7, Number 1, 65–222 (1982).
- [3] Oh, Y.G. and Park, J.S., *Deformations of coisotropic submanifolds and strong homotopy Lie algebroids*, Invent. Math., Volume 161, Number 2, 287–360 (2005).

[4] Ruan, W.D., *Deformation of integral coisotropic submanifolds in symplectic manifolds*, J. Symplectic Geom., Volume 3, Number 2, 161–169 (2005).

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT ZÜRICH-IRCHEL, WINTERTHURERSTR. 190, CH-8057
ZÜRICH, SWITZERLAND

E-mail address: zambon@math.unizh.ch