
Invariant frames for vector bundles and applications

M. Jotz , T.S. Ratiu, and M. Zambon

This paper completes a proof of the Dirac reduction theorem by involutive tangent sub-
bundles. As a consequence, Dirac reduction by a proper Lie group action having one isotropy
type is carried out. The main technical tool in the proof is the notion of partial connections
on suitable vector bundles.
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1 Introduction

Dirac structures provide a unified framework for the study of closed two-forms, Poisson bivectors, folia-
tions, and also a convenient geometric setting for the theory of nonholonomic systems and circuit theory.
They also have a wide range of applications in geometry and theoretical physics since they encode con-
straints in conservative dynamics. Dirac manifolds were introduced in [CW88] and [Cou90a] (see also
[Cou90b] and [Dor93]) as a means to simultaneously generalize presymplectic and Poisson structures. In
this note we present two Dirac reduction theorems, that is, methods by which quotients naturally inherit
a Dirac structure.

The first reduction statement, Theorem 4.1, induces a Dirac structure on the quotient of the given
manifold by a foliation. In Theorem 4.3, this foliation is given by the orbits of a proper Lie group action
admitting a single orbit type. These results are extended to the singular case in [JRŚ11].

Theorem 4.1 already appeared in [Zam08]. However, one step of the proof is given without details:
the well-definedness of the reduced Dirac structure. A first goal of this note is to provide a simple proof
of this, using as tool the notion of partial connections on a vector bundle. A second goal is to improve
an analogous result in [Bla00] (which is also a special case of the Dirac reduction result in [BCG07]) by
weakening its assumptions; this is achieved in Theorem 4.3.

Conventions and notations If M is a smooth manifold, C∞(M) denotes the sheaf of local functions on
M , that is, an element f ∈ C∞(M) is, by definition, a smooth function f : U → R, where the domain of
definition U of f is an open subset of M .

Similarly, if E is a vector bundle over M , or a generalized distribution on M , Γ(E) denotes the sheaf
of smooth local sections of E. In particular, the sheaves of smooth local vector fields and local one-forms
on M are denoted by X(M) and Ω1(M), respectively. The open domain of definition of the local section
σ of E is denoted by Dom(σ). As Γ(E) is a sheaf, for any open set U of M we denote by Γ(E)U the
vector space of sections of E|U → U . In particular, Γ(E)M is the vector space of global sections of E.
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2 Generalities on exact Courant algebroids

Courant algebroids were introduced in [LWX97] as vector bundles E equipped with a fiberwise nonde-
generate symmetric bilinear form 〈· , ·〉, a bilinear skew-symmetric bracket [· , ·]c on the smooth sections
Γ(E), and a vector bundle map ρ : E→ TM satisfying some compatibility conditions. The bracket [· , ·]c
doesn’t satisfy the Jacobi identity in general. We adopt an equivalent definition of Courant algebroids
introduced by Ševera [Š], in which the bracket is not skew-symmetric but satisfies the Jacobi identity. It
has the nice property that any section provides an infinitesimal automorphism of the Courant algebroid
via the adjoint action. The equivalence is given by the bijection that assigns to a Courant algebroid in the
sense of [LWX97] a quadruple consisting of the same vector bundle E, the same bilinear form 〈· , ·〉, the
same vector bundle map ρ, and the bracket [e1, e2] := [e1, e2]c + 1

2ρ
∗ ◦ d〈e1, e2〉 (see [Roy99, Proposition

2.6.5]).

Definition 2.1 A Courant algebroid over a manifold M is a vector bundle E → M equipped with a
fiberwise nondegenerate symmetric bilinear form 〈· , ·〉, a bilinear bracket [· , ·] on the smooth sections
Γ(E), and a vector bundle map ρ : E→ TM called the anchor, which satisfy the following conditions for
all e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M):

1. [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],

2. ρ([e1, e2]) = [ρ(e1), ρ(e2)],

3. [e1, fe2] = f [e1, e2] + (ρ(e1)f)e2,

4. ρ(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉,

5. [e1, e1] = D〈e1, e1〉,

where D = 1
2ρ
∗ ◦ d : C∞(M) → Γ(E). Here we identify E with E∗ using 〈· , ·〉, denote by ρ∗ : T ∗M → E

the dual vector bundle map, and use the same notation ρ∗ : Ω1(M) → Γ(E) for the associated map on
local sections. It follows from axiom (5) that the bracket is not skew-symmetric, but rather satisfies
[e1, e2] = −[e2, e1] + 2D〈e1, e2〉 for all e1, e2 ∈ Γ(E).

A Courant algebroid is exact if the following sequence of vector bundles is exact:

0→ T ∗M
ρ∗→ E

ρ→ TM → 0.

Given an exact Courant algebroid, there always exists a section σ : TM → E of ρ whose range σ(TM) ⊆ E
is isotropic. We shall often call such a section a right splitting since it defines a splitting ρ∗(T ∗M) ⊕
σ(TM) = E. Associated to such a section, there is a curvature 3-form H ∈ Ω3

cl(M) defined as follows:
for vector fields X,Y, Z ∈ X(M), H(X,Y, Z) := 2〈[σ(X), σ(Y )], σ(Z)〉. Using the bundle isomorphism
σ + 1

2ρ
∗ : TM ⊕ T ∗M → E, we transport the Courant algebroid structure onto the Pontryagin bundle

PM := TM ⊕ T ∗M . Thus the symmetric pairing and the bracket on Γ(PM ) are

〈(X,α), (Y, β)〉 := α(Y ) + β(X),

[(X,α), (Y, β)]H := ([X,Y ],£Xβ − iY dα+ iY iXH) ,

for all X,Y ∈ X(M), α, β,∈ Ω1(M). The bracket [·, ·]H is the H-twisted Courant bracket on PM . If σ, σ′

are right splittings, then σ − σ′ : TM → ρ∗(T ∗M) ∼= T ∗M is skew-symmetric and hence corresponds to
a 2-form b ∈ Ω2(M). Explicitly, the 2-form is given by b(X,Y ) = 〈σ(X), σ′(Y )〉 for all X,Y ∈ X(M).
The curvature of σ and curvature of σ′ differ by the exact form db. Hence the cohomology class [H] ∈
H3(M,R), called the Ševera class, is independent of the splitting and determines the exact Courant
algebroid structure on E completely [Š][BC05, Section 4.2].
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Example 2.2 The easiest example of a Courant algebroid is the Pontryagin bundle PM = TM⊕TM∗ of
a smooth manifold M [Cou90a]. The right splitting is σ : TM → PM , σ(X) = (X, 0) for all X ∈ X(M).
Thus, the curvature is given by H = 0 and the Courant bracket by [(X,α), (Y, β)] = ([X,Y ],£Xβ −
iY dα). ♦

A E-Dirac structure onM , simply called Dirac structure onM if it is clear from the context, is a subbundle
of E that is maximal isotropic with respect to the pairing on E. The Dirac structure is integrable if it is
closed under the H-twisted Courant bracket.

We recall a statement about reduction of exact Courant algebroids from [Zam08, Theorem 3.7], which
is modeled on [BCG07, Theorem 3.3].

Theorem 2.3 Let E be an exact Courant algebroid over M , C a submanifold of M , and K an isotropic
vector subbundle of E over C such that ρ(K⊥) = TC. Assume that the space Γbas(K

⊥)C of global basic
sections over C spans pointwise K⊥ (i.e., that span{ep | e ∈ Γbas(K

⊥)C} = K⊥p for every p ∈ C) and
that the quotient C of C by the foliation integrating ρ(K) is a smooth manifold. Then there is an exact
Courant algebroid E over C that fits in the following pull back diagram of vector bundles:

K⊥/K //

��

E

��
C // C.

Recall from [Zam08, Definition 3.3] that

Γbas

(
K⊥
)

:=
{
θ ∈ Γ

(
K⊥
)∣∣∣ [Γ(K), θ] ⊆ Γ(K)

}
denotes the sheaf (over C) of sections which are basic with respect to K.

3 Connections and invariant subbundles

In this section we develop the technical tools for the proof of Theorem 2.3 given in Section 4. We begin
with two general remarks.

Remark 3.1 Let E→M be an exact Courant algebroid over a smooth manifold M with anchor ρ : E→
TM and C a submanifold of M . Let K ⊆ E|C be a vector subbundle of E over C such that ρ(K⊥) = TC.

1) Lemma 3.1 and Remark 3.2 in [Zam08] imply that if e1, e2 are sections of K⊥, then [ẽ1, ẽ2]|C
depends on the extensions ẽ1 and ẽ2 ∈ Γ(E) of e1 and e2 only up to sections of K. Hence, a statement like
[e1, e2] ∈ Γ(K) for e1, e2 ∈ Γ

(
K⊥
)

makes sense: it means that [ẽ1, ẽ2]|C ∈ Γ(K) for some (equivalently, for
all) extensions ẽ1, ẽ2 ∈ Γ(E) on M . Similarly, we take

[
Γ
(
K⊥
)
,Γ
(
K⊥
)]
⊆ Γ(K) to mean [e1, e2] ∈ Γ(K)

for all e1, e2 ∈ Γ
(
K⊥
)
.

2) The conditions [
Γ(K),Γ

(
K⊥
)]
⊆ Γ

(
K⊥
)

(1)

and [Γ(K),Γ(K)] ⊆ Γ(K) (2)

are equivalent, by using axiom 4) in the definition of Courant algebroid. �

Definition 3.2 ([Bot72]) Let M be a smooth manifold and F ⊆ TM a smooth involutive vector sub-
bundle of the tangent bundle. Let E →M be a vector bundle over M . A F -partial connection is a map
∇ : Γ(F )× Γ(E)→ Γ(E), written ∇(X, e) =: ∇X(e) for X ∈ Γ(F ) and e ∈ Γ(E), satisfying:
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1. ∇ is tensorial in the F -argument, that is, for all X,X1, X2 ∈ Γ(F ), e ∈ Γ(E), f ∈ C∞(M), we have

∇X1+X2e = ∇X1e+∇X2e

and
∇fXe = f∇Xe.

2. ∇ is R-linear in the E-argument, that is, for all α, β ∈ R, X ∈ Γ(F ), and e1, e2 ∈ Γ(E), we have

∇X(αe1 + βe2) = α∇Xe1 + β∇Xe2.

3. ∇ satisfies the Leibniz rule
∇X(fe) = X(f)e+ f∇Xe

for all X ∈ Γ(F ), e ∈ Γ(E), f ∈ C∞(M).

Lemma 3.3 Let E→M be an exact Courant algebroid, C ⊂M a submanifold, and K ⊆ E|C a subbundle
satisfying

• K is isotropic

• [Γ(K),Γ(K)] ⊆ Γ(K) (the inclusion (2))

• ρ(K⊥) = TC.

Then the map ∇ : Γ(ρ(K))× Γ(K⊥/K)→ Γ(K⊥/K) defined by

∇ρ(k)(θ̄) = [k, θ],

where θ̄ ∈ Γ(K⊥/K) is the projection of θ ∈ Γ(K⊥), is a flat ρ(K)- partial connection on K⊥/K→ C.

Remark 3.4 The partial connection ∇ arises naturally when one considers coisotropic submanifolds of
the degree 2 graded symplectic manifold associated to the Courant algebroid E [BCMZ]. �

Proof: Note first that K⊥∩T ∗M = ker(ρ|K⊥ : K⊥ → TC) has constant rank. Hence ρ(K) =
(
K⊥ ∩ T ∗M

)◦
⊆ ρ(K⊥) = TC (where the upper small circle denotes the annihilator of the subbundle in the dual of the
ambient vector bundle) is a vector subbundle, and it is involutive because of the inclusion (2) and axiom
2 in the definition of Courant algebroid.

Using (1) and (2), it is easy to check that ∇ doesn’t depend on the choice of the representative θ and
that it has image in K⊥/K. To check that it is also independent on the choice of k ∈ Γ(K), we have to show
that if ρ(k) = 0, then [k, θ] = 0. For this, assume that k lies in Γ(K∩T ∗M) = Γ

(
(ρ(K⊥))◦

)
= Γ ((TC)◦).

Since C is a smooth submanifold, we can find closed 1-forms ξi on M such that {ξi|C} are a local frame
for K∩T ∗M and we write k = f iξi. So, using the “Leibniz rule for the first entry” of the Courant bracket

[fe1, e2] = f [e1, e2]− (ρ(e2)f)e1 + 2〈e1, e2〉df (3)

and the fact that for closed 1-forms [ξi, ·] = 0, we see that [k,Γ(K⊥)] ⊂ Γ(K).
We check that ∇ is tensorial in ρ(K). Indeed, for all θ ∈ Γ(K⊥), k, k1, k2 ∈ Γ(K), f ∈ C∞(C), taking

into account (3), implies

∇ρ(k1)+ρ(k2)θ̄ = [k1 + k2, θ] = [k1, θ] + [k2, θ] = ∇ρ(k1)θ̄ +∇ρ(k2)θ̄

and

∇fρ(k)θ̄ = [fk, θ] = f [k, θ]− ρ(θ)(f)k + 0 = f [k, θ] = f∇ρ(k)θ̄.

It is easy to see that ∇ is R-linear in Γ(K⊥/K) and that for all f ∈ C∞(C), θ ∈ Γ(K⊥), k ∈ Γ(K), we
have

∇ρ(k)(fθ̄) = [k, fθ] = f [k, θ] + ρ(k)(f)θ = f∇ρ(k)(θ̄) + ρ(k)(f)θ̄.

Finally, we verify that ∇ is flat. Indeed, for all k1, k2 ∈ Γ(K), θ ∈ Γ(K⊥), the Jacobi identity yields

∇ρ(k1)∇ρ(k2)θ̄ −∇ρ(k2)∇ρ(k1)θ̄ −∇ρ([k1,k2])θ̄ = [k1, [k2, θ]]− [k2, [k1, θ]]− [[k1, k2], θ] = 0. �
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Lemma 3.5 Let A be a vector bundle over a manifold M and B ⊂ A a vector subbundle of A over M .
Let ∇ be a partial F -connection on A, where F ⊆ TM is an involutive subbundle. Assume that

∇Xb ∈ Γ(B) (4)

for all vector fields X ∈ Γ(F ) and b ∈ Γ(B). For any curve c : [0, 1] → M with image in a leaf of F
and σ(0) ∈ Ac(0), denote by σ(t) : [0, 1]→ A the parallel translation of σ(0) along c. If σ(0) ∈ Bc(0) then
σ(t) ∈ Bc(t) for all t ∈ [0, 1].

Proof: Set m := dimM , n := dimAp, k := dimFp, r := dimBp, where p ∈ M . Since the vector
subbundle F is involutive, it is integrable by the Frobenius Theorem and thus any p ∈ M lies in a
foliated chart domain U described by coordinates (x1, . . . , xm) such that the first k among them define
the local integral submanifold containing p. Thus, for any p′ ∈ U , the basis vector fields ∂x1 , . . . , ∂xk
evaluated at p′ span F (p′).

Take p = c(0), choose a local basis frame {b1, . . . , br} for B defined on a neighborhood U of p. Assume,
without loss of generality, that U is a coordinate neighborhood of M that is adapted to the foliation by
the leaves of F and that the image of c lies in U (if not, divide c into curves lying in such coordinate
neighborhoods).

Choose smooth sections br+1, . . . , bn ∈ Γ(A) such that {b1, . . . , bn} is a frame for A on U (if necessary,
we can shrink again U). We define the Christoffel symbols Γjαi by

∇∂xα bi =

n∑
j=1

Γjαibj for α = 1, . . . , k, i = 1, . . . , n.

Dividing the curve c in smaller pieces, if necessary, we may assume that there is a section a of A
defined in a neighborhood of p such that a ◦ c = σ : [0, 1] → A. Writing a =

∑n
j=1 f

jbj for some

f1, . . . , fn ∈ C∞(M), we conclude that

σ(t) = a(c(t)) =
n∑
j=1

σj(t)bj(c(t)), where σj := f j ◦ c for 1 ≤ j ≤ n

Furthermore, we can write ċ(t) =
∑k

α=1 ċ
α(t) ∂

∂xα
since c is tangent to a leaf of F . If σ : [0, 1] → A is

parallel along c, as in [Jos08, eq. (3.1.6)], it satisfies

0 =∇ċ(t)σ =
n∑
j=1

(
σ̇j(t)bj(c(t)) + σj(t)

k∑
α=1

ċα(t)

n∑
i=1

Γiαj(c(t))bi(c(t))

)

=
n∑
j=1

(
σ̇j(t) +

k∑
α=1

n∑
i=1

ċα(t)σi(t)Γjαi(c(t))

)
bj(c(t)).

Hence, we get the system of ordinary differential equations

0 = σ̇j(t) +
k∑

α=1

n∑
i=1

ċα(t)σi(t)Γjαi(c(t)) for all j = 1, . . . , n. (5)

Condition (4) on U means that

Γjαi = 0 for i ≤ r, j > r, α = 1, . . . , k.

Hence the equations in the system (5) for j > r read

0 = σ̇j(t) +
k∑

α=1

n∑
i=r+1

ċα(t)σi(t)Γjαi(c(t)). (6)
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Since a(0) ∈ Bc(0), we have aj(0) = 0 for j > r. By the uniqueness of the solution to (6) with prescribed
initial value, we conclude that

σj(t) ≡ 0 for j > r,

which means that σ(t) ∈ Bc(t) for all t ∈ [0, 1]. �

Thus, we recover the following corollary, which is a generalization of a result already proven in [NvdS90]
and [Isi95]; see Remark 3.7.

Corollary 3.6 Let E → M be an exact Courant algebroid and C a smooth submanifold of M . Let
K ⊆ E|C be a vector subbundle of E over C satisfying the assumptions of Lemma 3.3, i.e.

• K is isotropic

• [Γ(K),Γ(K)] ⊆ Γ(K) (the inclusion (2))

• ρ(K⊥) = TC.

Let D ⊆ K⊥ be a rank r subbundle of K⊥ on C such that D ∩ K has constant rank. Assume that

[Γ(K),Γ(D)] ⊆ Γ(K + D). (7)

Then for each p ∈ C there exist an open set U ⊆ C with p ∈ U and a basis frame of smooth sections
d1, . . . , dr of D, defined on U and satisfying

[Γ(K), di] ⊆ Γ(K) on U for all i = 1, . . . , r.

In other words, Dx = span{dx|d ∈ Γbas(K
⊥)U ∩ Γ(D)U} for all x ∈ U .

Proof: Note first that since K is isotropic, we have K ⊆ K⊥ and hence ρ(K) ⊆ ρ(K⊥) = TC. As in the
proof of Lemma 3.3, we get that ρ(K) is a smooth involutive subbundle of TC, which is consequently
integrable in the sense of Frobenius. Let n := dim(C). Choose p ∈ C and a foliated chart domain U
centered at p and described by coordinates (x1, . . . , xn) such that the first k among them define the local
integral submanifold of ρ(K) containing p. Let S ⊆ U be the slice φ−1({0} × Rn−k), where φ : U → Rn
is the chart adapted to the foliation.

Denote l := rank((D+K)/K). Choose e1, . . . , el ∈ Γ(D) such that ē1, . . . , ēl ∈ Γ(K⊥/K) is a basis frame
for (D + K)/K on U . We consider this frame at points of S ∩ U and construct d̄1, . . . , d̄l ∈ Γ((D + K)/K)
as follows. If q ∈ U , φ(q) = (x1, . . . , xn), then we find a path c : [0, 1] → φ−1(Rr × {(xr+1, . . . , xn)})
(the leaf of ρ(K) through q) with c(1) = q and c(0) = q′ ∈ S satisfying φ(q′) = (0, . . . , 0, xr+1, . . . , xn).
Define d̄i(q) := P 1

c (ēi(q
′)), where P 1

c (ēi(q
′)) is the parallel translate of ēi(q

′) along c at time 1 by the
ρ(K)-partial connection ∇ defined in Lemma 3.3. Since U is simply connected and the connection ∇ is
flat, parallel translation is independent of the chosen path (see, for example, [Ili06]), hence the d̄i are
∇-parallel sections of K⊥/K.

Since, by hypothesis, [Γ(K), ei] ⊆ Γ(K + D) for i = 1, . . . , l, we have ∇ρ(k)ēi ∈ Γ((D + K)/K) for all

k ∈ Γ(K). Lemma 3.5, applied to (D + K)/K ⊂ K⊥/K, implies that the sections d̄i lie in (D + K)/K.
Hence we get l parallel sections d̄1, . . . , d̄l ∈ Γ((D + K)/K) that form a point-wise basis of (D + K)/K
on U . Choose representatives d1, . . . , dl ∈ Γ(D) for d̄1, . . . , d̄l. Since ∇ρ(k)d̄i = 0 for i = 1, . . . , l and all
k ∈ Γ(K), we have [Γ(K), di] ⊆ Γ(K) for i = 1, . . . , l. Take dl+1, . . . , dr to be a frame of D ∩ K over U .
Then d1, . . . , dr is a frame of D over U composed of basic sections. �

Remark 3.7 Choose the Pontryagin bundle PM as the ambient Courant algebroid. Let V ⊂ TM be an
involutive rank k vector subbundle of TM and D a rank r subbundle of TM such that D∩V has constant
rank on M . Then V⊕{0} ⊆ PM is isotropic and its orthogonal TM⊕V◦ satisfies prTM (TM⊕V◦) = TM .
Assume that

[Γ(D),Γ(V)] ⊆ Γ(V + D).

Then the preceding corollary yields the following, which was already shown in [NvdS90], see also [Isi95].
For each p ∈M there is an open set U ⊆M with p ∈ U and smooth D-valued vector fields Z1, . . . , Zr

on U satisfying
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(i) D(q) = span{Z1(q), . . . , Zr(q)} for all q ∈ U ,

(ii) [Zi,Γ(V)] ⊆ Γ(V) on U for all i = 1, . . . , r.

In the appendix of [JR08] it is shown, following [CT89], that it is possible to drop the hypothesis on the
constant rank of D ∩ V. �

Remark 3.8 Let K be an isotropic subbundle over C such that ρ(K⊥) = TC. The following three
conditions are equivalent:

K⊥ is spanned by its (local) sections that are basic relative to K

[Γ(K),Γ(K⊥)] ⊆ Γ(K⊥), (1)

[Γ(K),Γ(K)] ⊆ Γ(K). (2)

Indeed (1) and (2) are equivalent by part 2 of Remark 3.1). If we assume (2) and apply Corollary 3.6
to D := K⊥, we conclude that the vector bundle K⊥ is spanned by its (local) basic sections. Conversely,
the latter condition implies (1) by using axiom 3) in the definition of Courant algebroid. The stronger
condition that K⊥ is spanned by its global sections that are basic (needed in Theorem 2.3) is equivalent
to saying that the flat partial connection defined in Lemma 3.3 has no holonomy. �

4 Application to Dirac reduction

In this section we recall a statement about Dirac reduction by distributions (Theorem 4.1) that appeared
in [Zam08] and fill a gap in the proof. Then we infer a Dirac reduction theorem by Lie group symmetries
(Theorem 4.3) that is more general than similar statements found in the literature.

Dirac reduction by distributions Let E be an exact Courant algebroid over M . We saw in Section 2
that an (integrable) Dirac structure is a maximal isotropic subbundle of E which is closed under the
Courant bracket.

Theorem 4.1 (Dirac reduction by distributions) Assume that the vector bundles E→M and K→
C satisfy the assumptions of Theorem 2.3, so that we have an exact Courant algebroid E→ C. Let L be
a maximal isotropic subbundle of E|C such that L ∩ K⊥ has constant rank, and assume that[

Γ (K) ,Γ
(
L ∩ K⊥

)]
⊂ Γ (L + K) . (8)

Then L descends to a maximal isotropic subbundle L of E→ C. If furthermore[
Γbas

(
L ∩ K⊥

)
,Γbas

(
L ∩ K⊥

)]
⊂ Γ(L + K). (9)

then L is an integrable Dirac structure. Here, Γbas

(
L ∩ K⊥

)
:= Γ (L) ∩ Γbas(K

⊥)

Remark 4.2 In [Zam08] conditions (8) and (9) are required for global sections. Requiring them for
global sections is equivalent to requiring them for local sections. �

The above theorem is given in [Zam08, Proposition 4.1]. One step of the proof – the well-definedness
of L – needs to be added. We present below the complete proof.

Proof: At every p ∈ C we have a Lagrangian relation between Ep and (K⊥/K)p given by {(e, e+ Kp) :
e ∈ K⊥p}. The image Lp of Lp under this relation is maximal isotropic because Lp has these properties.

Thus we obtain a maximally isotropic subbundle L of K⊥/K. This subbundle L is smooth because Lp is
the image of (L∩K⊥)p by the projection K⊥p → (K⊥/K)p, which has constant rank by assumption. (Note
that since L is Lagrangian and L ∩ K⊥ has constant rank, we get easily the fact that L ∩ K has constant
rank.)
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The assumptions of Lemma 3.3 hold (see Remark 3.8) and hence

∇ρ(k)θ := [k, θ] for k ∈ Γ(K), θ ∈ Γ(K⊥)

defines a flat, ρ(K)-connection on K⊥/K→ C. Here θ is the image of θ under the projection K⊥ → K⊥/K.

Denote by κ : K⊥ → K⊥/K the projection. Let p and q lie in the same leaf of ρ(K). In Theorem 2.3
we identified the fibers (K⊥/K)p and (K⊥/K)q in the following manner (see the proof of Theorem 3.7
of [Zam08]): ê(p) ∈ (K⊥/K)p and ê(q) ∈ (K⊥/K)q are identified if and only if there is a global section
e ∈ Γbas(K

⊥) such that (κ ◦ e)(p) = ê(p) and (κ ◦ e)(q) = ê(q). Since e ∈ Γbas(K
⊥), it follows that e is a

∇-parallel section of K⊥/K. Hence ê(q) is the parallel transport of ê(p) by ∇ along any curve c from p
to q lying in the leaf integrating ρ(K).

Now assume that ê(p) ∈ Lp = (L ∩ K⊥)p/(L ∩ K)p. We can apply Lemma 3.5 to A := K⊥/K, B :=

(L∩K⊥)/(L∩K), and ∇, because (8) implies that condition (4) is satisfied. Lemma 3.5 implies that ê(q),
the parallel transport by ∇ along c of ê(p), lies in Lq. Hence the identification K⊥/Kp

∼= K⊥/Kq maps Lp
to Lq. Consequently, we obtain a well-defined smooth maximally isotropic subbundle L of the reduced
Courant algebroid E, i.e., an E-almost Dirac structure.

Now assume that (9) holds and take two sections e1, e2 of L. Since L ∩ K⊥ has constant rank we
can lift them to sections e1, e2 of Γbas(L ∩ K⊥). As for all elements of Γbas(K

⊥), their bracket lies
in Γbas(K

⊥). Since, by assumption, it also lies in L + K, it follows that [e1, e2] is a basic section of
(L + K) ∩ K⊥ = (L ∩ K⊥) + K. Its projection under K⊥/K → E which is, by definition, the bracket of e1

and e2, lies then in L. �

Regular Dirac reduction by a Lie group action We consider a smooth manifold M and the exact
Courant algebroid

PM = TM ⊕ T ∗M

over M . Let Φ : G ×M → M be a proper action of the connected Lie group G and assume that all
isotropy subgroups are conjugated. Let V be the vertical bundle of the action, that is, the subbundle
of TM spanned at every point by the values of the fundamental vector fields ξM for all ξ ∈ g. Define
K = V ⊕ {0}, so its orthogonal is K⊥ = TM ⊕ V◦. Then K is isotropic and ρ(K⊥) = TM . Since G
is connected, the orbit space M̄ := M/G is equal to the space of leaves of the Frobenius integrable
subbundle V ⊆ TM , M̄ = M/G = M/V. Since all the isotropy subgroups are conjugated, it inherits a
smooth manifold structure such that the quotient map π : M → M̄ is a regular submersion.

In addition, π : M → M̄ is a locally trivial fiber bundle with fiber the orbit of G ·m and structure
group N(H)/H, where H = Gm is the isotropy group at m ∈ M and N(H) is its normalizer. Since all
isotropy groups are conjugated, the previous statement is independent of m.

A section θ = (X,α) ∈ Γ(K⊥) ' X(M) × Γ(V◦) is basic (here, we say also descending) if it satisfies
[(ξM , 0), (X,α)] ∈ Γ(K) for all ξ ∈ g. Hence, if (X,α) ∈ Γ(K⊥) is descending, we have

[(ξM , 0), (X,α)] = ([ξM , X],£ξMα) ∈ Γ(K) = {(V, 0) ∈ X(M)× Ω1(M) | V ∈ Γ(V)}.

Therefore, α ∈ Γ(V◦)G and [X,Γ(V)] ⊆ Γ(V) by the Leibniz identity since {ξM | ξ ∈ g} spans Γ(V) as a
C∞(M)-module.

If X ∈ X(M) is a smooth vector field satisfying [X,Γ(V)] ⊆ Γ(V), then there exists X̄ ∈ X(M̄) such
that X ∼π X̄ and hence X can be written as a sum X = XG +XV with XG ∈ X(M)G and XV ∈ Γ(V)
(see [JRŚ11]); X(M)G := {X ∈ X(M) | Φ∗gX = X for all g ∈ G}. If α is a G-invariant local section of
T ∗M annihilating the vertical spaces V(m) for all m ∈ Dom(α), then there exists a unique ᾱ ∈ Ω1(M̄)
such that α = π∗ᾱ. Hence, a descending section of K⊥ pushes forward to the quotient M/G. Using
Example 3.9 in [Zam08], we know that K⊥ is spanned by its global basic sections.

Let D be a Dirac structure on M . The Lie group G is called a symmetry Lie group of (M,D) if for
every g ∈ G the condition (X,α) ∈ Γ(D) implies that

(
Φ∗gX,Φ

∗
gα
)
∈ Γ(D) (here we use the convention

Φ∗gX = TΦg−1 ◦X ◦ Φg). We say then that the action of G on (M,D) is Dirac or canonical.
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Let g be the Lie algebra of G and ξ ∈ g 7→ ξM ∈ X(M) be the smooth left Lie algebra action induced
by the (Dirac) action of G on M . Then the Lie algebra g is a symmetry Lie algebra of (M,D): for every
ξ ∈ g the condition (X,α) ∈ Γ(D) implies that (£ξMX,£ξMα) ∈ Γ(D).

Moreover, if (X,α) is a section of D∩K⊥, then (£ξMX,£ξMα) = ([ξM , X],£ξMα) = [(ξM , 0), (X,α)] ∈
Γ(D ∩ K⊥). Since Γ(K) is spanned as a C∞(M)-module by {(ξM , 0) | ξ ∈ g}, we get equation (8) with
the Leibniz identity:

[Γ(K),Γ(D ∩ K⊥)] ⊆ Γ(D ∩ K⊥ + K).

If D is integrable, then the bracket of two descending sections of D is again descending. Indeed, if
(X,α), (Y, β) ∈ Γ(D) ∩

(
X(M)× Γ(V◦)G

)
are such that [Γ(V), X] ⊆ Γ(V) and [Γ(V), Y ] ⊆ Γ(V), then it

is easy to see that the bracket [(X,α), (Y, β)] is a descending section of PM . Since D is integrable, it is
also a section of D. Thus, if D is integrable, since Γbas(K

⊥) is closed with respect to the bracket, we have
[Γbas(D ∩ K⊥),Γbas(D ∩ K⊥)] ⊆ Γbas(D ∩ K⊥), which implies equation (9).

Assume that the G-action on the Dirac manifold (M,D) is canonical, free, and proper. Then both
vector bundles D and K⊥ are G-invariant and it is shown in [JR08] (following [BCG07]) that, under the
assumption that D ∩ K⊥ is a vector bundle on M , the quotient bundle

Dred =
(D ∩ K⊥) + K

K

/
G (10)

defines a Dirac structure on M/G, called the reduced Dirac structure.

Historically, the first method to reduce Dirac structures is due to [Bla00] and [BvdS01] (see [BR04] for
a corresponding singular reduction method). The reduced Dirac structure on M/G is given by

D̄(m̄) =

{
(X̄, ᾱ)(m̄) ∈ Γ(TM̄ ⊕ T ∗M̄)

∣∣∣∣ ∃X ∈ X(M) such that X ∼π X̄
and (X,π∗ᾱ) ∈ Γ(D)

}
(11)

for all m̄ ∈ M/G. Although this is just the formulation of (10) in terms of smooth sections, the proofs
in [Bla00] and [BvdS01] use an additional hypothesis in order to guarantee that the construction above
yields a Dirac structure: V + G0 and G0 have constant rank on M , where G0 ⊆ TM is the smooth
generalized distribution induced by D and

G0(m) := {X(m) | X ∈ X(M) is such that (X, 0) ∈ Γ(D)}

for all m ∈M . This, together with the involutivity of the vector subbundle V, is needed in their proof in
order to be able to use results in [NvdS90] and [Isi95].

Theorem 4.1 is the analogue of the reduction theorem of [BCG07] in the context of reduction by smooth
distributions. We show now, as a consequence of Theorem 4.1 and the considerations above, that the
Dirac reduction theorems of [BCG07] (in the case of a free and proper action on the underlying manifold
M) and [Bla00] are valid under weaker assumptions.

Theorem 4.3 Assume that the Lie group G acts properly and canonically on the Dirac manifold (M,D)
with all its isotropy subgroups conjugated. If D ∩ K⊥ has constant rank on M , then the Dirac structure
D on M induces a Dirac structure D̄ on M̄ whose fiber at every point m̄ ∈ M̄ is given by

D̄(m̄) =

{(
X̄(m̄), ᾱ(m̄)

)
∈ Tm̄M̄ × T ∗m̄M̄

∣∣∣∣ ∃X ∈ X(M) such that X ∼π X̄
and (X,π∗ᾱ) ∈ Γ(D)

}
. (12)

If D is integrable, then D̄ is also integrable.

Proof: By the considerations above, all the hypotheses in Theorem 4.1 applied to C = M , E = PM ,
K = V ⊕ {0}, and the Dirac structure D, are satisfied. Since the ambient Courant algebroid is the
Pontryagin bundle PM on M , the reduced Courant algebroid is the Pontryagin bundle on M̄ and we get
a Dirac structure on M̄ that is given by (12). �
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Remark 4.4 Since D ∩ K⊥ is assumed to have constant rank on M and D is maximal isotropic, the
intersection D∩K automatically has constant rank on M . Using Corollary 3.6, it is also possible to prove
Theorem 4.3 exactly in the same manner as in [BvdS01], [Bla00], but without the assumption on G0 and
G0 + V to have constant rank on M . The assumption that the action is free can be weakened to the
hypothesis that the isotropy subgroups are all conjugated. �
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42. Basel: Birkhäuser. xv, 441 p. , 2006.

[Isi95] A. Isidori, Nonlinear Control Systems, third ed., Communications and Control Engineering
Series, Springer-Verlag, Berlin, 1995.

[Jos08] J. Jost, Riemannian Geometry and Geometric Analysis, fifth ed., Universitext, Springer-Verlag,
Berlin, 2008.

[JR08] M. Jotz and T.S. Ratiu, Dirac and nonholonomic reduction, arXiv:0806.1261v2 (2008).
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