Universidad Autonoma de Madrid Algebra 1. Curso 2013-14

Fisica.

Examen final
8 de enero de 2014

APELLIDOS: PROFESOR (YAKUBOVICH O ZAMBON):

NOMBRE: DNI/NIE:

INSTRUCCIONES: Entregar UNICAMENTE estas hojas. Se prohibe el uso de calculadoras, libros, apuntles.

teléfonos moviles, y en general, de toda la tecnologia moderna (posterior al boligrafo).

En los problemas 2, 3 y 4 las respuestas deben justificarse adecuadamente.

1. (10 puntos) Marca con un circulo la respuesta correcta. No es necesario justificar la respuesta.

INFORMACION: Los puntos asignados a las preguntas son: respuesta correcta, 1 punto, respuesta incorrecta, —1

punto, en blanco, 0 puntos. Valor minimo de este problema: 0 puntos.

10.

. Para todo niimero complejo z,w se cumple |zw| = |||@|, donde | - | denota la norma de un nimero

complejo y Z denota el conjugado complejo de z. @ F

Si una matriz A de tamafio m X n define una aplicacién lineal inyectiva de R™ a R™, entonces la matriz

AT define una aplicacién lineal sobreyectiva de R™ a R™. F

. El espacio vectorial de matrices 3 x 4 es isomorfo al espacio vectorial de matrices 2 x 6. F

Recordamos que, dados espacios vectoriales V; y V;, (reales o complejos), se dice que

son isomorfos si existe un isomorfismo lineal entre ellos.

Si (z,y)1 y (z,y)2 son dos productos escalares en un espacio vectorial real V, entonces

(z,y)3 = (z,y)1 + (x,y)2 es también un producto escalar. @ F
Si (z,y)1y (z,y)2 son dos productos escalares en un espacio vectorial real V, entonces

(z,y)3 = (x,y)1 — (z,y)2 es también un producto escalar. Y ®
Para todo espacio vectorial real V' de dimensién finita y positiva existe un producto escalar en V. @ F
No existe ninguna matriz de tamafo 25 x 75, .cuy..a rango sea igual a 50. @ F
Existe una aplicacién lineal sobreyectiva T': R® — R*. Vv @
Para toda matriz 3 x 4 A y todo b € R3, el sistema Az = b es compatible. \Y @
Dadas dos matrices n x n Ay B, se cumple det(A — B) = det(A) — det(B). vV @
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2. (15 puntos) Sea PR el espacio vectorial de pol:nomlos reales de grado < 3. Sea W el subespacio vectorial

generado por los polinomios 2 —z3 143z 4+2%y2+ 922 — 3. Encuentra nimeros reales a, b, c,d tales que

W = {;{JE'P%e :a-p(O)+bq)'(0)+(:<p”{0)+d<p (0):0}.

Aqui p,p",p"" denotan las derivadas primera, segunda y tercera del polinomio p.
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es dedcir, a=-1/2, b=-1/6, c= 1/2 d= 1/6/ & f_ . / r.
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3. (25 puntos) Considera la aplicacién lineal

T:R? - R%, T(z,y,2) = (z—z3z+ 4y —2)

a) Encuentra la matriz que describe la aplicacion T' con respecto a las bases canénicas de R? y de R3.

(i 0~—i)
E-gbuj,

- b) Encuentra la matriz que describe la aplicacién 7" con respecto a la base {(1,2)7,(3,1)T} de R? y la
base {(0,0,1)7,(0,1,0)7, (1,0,0)T} de R®.
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4. (20 puntos) Se considera |a matriz
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a) Encontrar los valores de A € R para los que A(A) no es invertible;
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b) Encontrar los s de A € R para los que la férmula (z, y)1 = yT Az define producto escalar
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bilineal simetrica (ya que A(lambda) es una matriz simetrica),
la respuesta es: lambda perteneciente al mtervalo (2/3, 4/3)

&{”&%%W& WW w@@w 1.

(:)ﬂ%%mmgwmm;m%ﬁmzﬁeﬁw
> teA) > D) _
= cu%(‘j)mf/f))"?@ |
: [Mt&’é@w(’ff M(ﬁ%%//‘mv&v) (18 M//
(=7 W(A ) - 4 |

(=D ey [AT) 75
(:DEW(‘%AT)ﬂq
(=2 w—@%wwmi B8 ﬂ%bu&i/&

/4 ©) 09‘6@2@5%&

Cj wa-(%,?( >2g%W@
i, | ):B«cmw/@(f///

W%% Wn%ﬁﬁ }?j%HWWW&

¢
e, R
(E)ﬂwa @:O,@io


Marco Zambon
bilineal simetrica (ya que A(lambda) es una matriz simetrica), 
la respuesta es: lambda perteneciente al intervalo (2/3, 4/3).
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