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Ejercicios en clase 1 - Soluciones
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1 (5 puntos) Hallar un número complejo en forma binómica: a + bi tal que
(a+ bi)2 = 1 + i.

Debe obtenerse un número z ∈ C tal que z2 = i+1. Basta con resolver dicha ecuación
y dar una de sus ráıces. Vamos a ver dos formas de hacerlo:

Con coordenadas polares: En primer lugar hay que escribir i + 1 como z = reiα,
donde r es el módulo y α es el ángulo. Concretamente,

r =
√

12 + 12 =
√

2, α = arctan(1/1) =
π

4
.

Por tanto, la ecuación se puede reescribir en polares como

z2 =
√

2eiπ/4.

Como se trata de una ráız cuadrada, existen dos soluciones distintas, que llamare-
mos z1 y z2. Ambas tienen el mismo módulo, que es la ráız cuadrada positiva de r;

es decir
√√

2 = 21/4. En cuanto a los ángulos, la primera de ellas tiene α/2 = π/8;
y la segunda, α/2 + π = 9π/8. Por tanto,

z1 = 21/4eiπ/8, z2 = 21/4ei9π/8.

Cualquiera de ellas es una solución válida, pero el enunciado nos pide presentarla
en forma binómica. Para ello, basta recordar que

eix = cosx+ i senx, para cualquier x real.

Por tanto, las dos posibles soluciones del problema son:

z1 = 21/4 cos(π/8) + i 21/4 sen(π/8)
z2 = 21/4 cos(9π/8) + i 21/4 sen(9π/8).

Con coordenadas rectangulares: En este caso la resolución es ligeramente más com-
plicada, aunque las soluciones se obtienen directamente en forma binómica. Ele-
vando el cuadrado la expresión de la izquierda de la igualdad en el enunciado, se
obtiene:

a2 + 2abi− b2 = 1 + i.

Ahora igualamos las partes reales e imaginarias, y se obtiene un sistema de dos
ecuaciones:

a2 − b2 = 1
2ab = 1

}
.



Como a = 0 no es solución, podemos dividir la segunda ecuación por 2a y se obtiene
b = 1/(2a). Sustituyendo el valor de b en la primera ecuación, queda

a2 − 1

4a2
= 1 ⇒ 4a4 − 1 = 4a2.

Mediante el cambio x = a2, esta ecuación queda reducida a una de segundo grado,
4x2 − 4x− 1 = 0. Sus soluciones son

x =
4±
√

16 + 16

8
=

1

2
±
√

1

2
.

Como a = ±
√
x, sólo nos podemos quedar con la solución positiva de x. Por tanto,

a tiene dos soluciones, que son

a1 =

√
1

2
+

√
1

2
, a2 = −

√
1

2
+

√
1

2
.

Ahora podemos despejar b1 = 1/(2a1) y b2 = 1/(2a2). Por tanto, las dos posibles
soluciones son

z1 =

√
1

2
+

√
1

2
+

i

2

√
1
2

+
√

1
2

, z2 = −

√
1

2
+

√
1

2
− i

2

√
1
2

+
√

1
2

.

Con la ayuda de una calculadora puede comprobarse que las soluciones obtenidas
mediante ambos métodos coinciden. De hecho,

z1 ≈ 1′0987 + i · 0′4551, z2 ≈ −1′0987− i · 0′4551.

2 (5 puntos) ¿Cuáles de los siguientes conjuntos (con la adición y multipli-
cación por escalares definidas de manera natural) son espacios vectoriales?
Justifica tu respuesta.

a) El conjunto de todas las funciones no-negativas en el intervalo [0, 1].

b) El conjunto de todos polinomios de grado exactamente n.

a. Este conjunto de funciones, al que llamaremos A, no es un espacio vectorial. La
razón es que al multiplicar cualquiera de estas funciones (no nula) por un escalar
negativo, se obtiene una función que no pertenece al conjunto. Esto, sin ser una de
las ocho propiedades necesarias, ya provoca que A no pueda ser espacio vectorial,
pues la multiplicación por escalares no está bien definida. De las ocho propiedades
que debe cumplir un espacio vectorial, la única que A no cumple es la propiedad del
inverso aditivo. Según esta propiedad, para cada función f ∈ A, debeŕıa existir otra
función g ∈ A tal que f + g ≡ 0; o equivalentemente, f(x) + g(x) = 0,∀x ∈ [0, 1].
Pero la única función posible como candidata a g es −f . Y toda función f de A que
no sea la función 0 toma valores positivos en algún punto del intervalo [0, 1], por lo
que −f no está en A. Por tanto, este conjunto de funciones no es un espacio
vectorial. Puede comprobarse que las otras siete propiedades śı se cumplen, a
partir de las propiedades básicas de funciones.



b. Llamemos B a este segundo conjunto. Tampoco va a ser un espacio vectorial, y en
este caso hay varias razones. Pero la principal es que B no es cerrado para la suma
de polinomios. Si consideramos por ejemplo, los polinomios xn + x− 3 y −xn + 2,
su suma ya no es un polinomio de grado n, sino uno de grado menor. Esto ya causa
que B no pueda ser espacio vectorial, pues la suma no está bien definida para todos
sus elementos. A partir de esto, que de nuevo no es una de las ocho propiedades
pero es necesario para que la definición sea correcta, puede demostrarse fácilmente
que B no cumple ciertas propiedades de espacio vectorial:

No existe elemento neutro para la suma. El único candidato es el polinomio 0,
que obviamente no tiene grado n para cualquier n ≥ 1, y por tanto no estÃ¡
en B.

No existe elemento neutro para el producto. De nuevo, el candidato natural es
el polinomio constante 1, que tampoco tiene el grado adecuado si n ≥ 1.

Cualquiera de estar tres razones justifica que B no es un espacio vectorial. Es
interesante notar que si se considera en su lugar el conjunto de todos los polinomios
de grado como mucho n, entonces śı que se tiene un espacio vectorial.

3 (5 puntos) Explica por qué lo siguiente no es un producto escalar en el
espacio vectorial especificado:

a) 〈(x1, x2), (y1, y2)〉 = x1y1 − x2y2 en R2

b) 〈A,B〉 = Traza(A+B) en el espacio de matrices reales 2× 2.

Recuerda: La traza de una matriz A =

(
α β
γ δ

)
es Traza(A) := α + δ.

a. La función 〈〉 : R2 × R2 → R no es un producto escalar porque no cumple la
última propiedad de estos (es fácil comprobar que cumple todas las demás). Para
(x1, x2) = (y1, y2), se tiene que

〈(x1, x2), (x1, x2)〉 = x21 − x22,

y dicha cantidad no será siempre positiva para cualquier vector (x1, x2) no nulo de
R2. Por ejemplo, 〈(1, 1), (1, 1)〉 = 12 − 12 = 0, o 〈(0, 1), (0, 1)〉 = 0− 12 = −1.

b. Algo muy similar ocurre con la siguiente función, 〈〉 : M2×2(R) ×M2×2(R) → R.
Para A = B, se tiene

〈A,A〉 = Traza(2A) = 2α + 2δ,

y esta cantidad puede ser negativa o cero para muchas matrices 2x2. Por ejemplo,

Traza

(
0 1
1 0

)
= 0 + 0 = 0, Traza

(
1 0
0 −2

)
= 2− 4 = −2.

Por tanto, esta función no es un producto escalar.


