
Álgebra I, curso 2012-13 30/11/2012

Ejercicios en clase 2 - Soluciones
Seraf́ın Ruiz Cabello

Nota: Las soluciones de los ejercicios están redactadas de forma exhaustiva, incluyendo
diferentes formas de abordar cada problema y diferentes soluciones, aśı como razonamien-
tos teóricos adicionales y aclaraciones sobre errores frecuentes a la hora de resolverlos.
En ningún caso pretender reflejar el nivel exigido en la asignatura.

1 (5 puntos) a) Considera la aplicación lineal de R2
a R2

dada por reflexión

con respecto a la recta x1 = x2. Encuentra la matriz correspondiente.

b) Encuentra la matriz correspondiente a la aplicación lineal T : R2 → R3
,

T

�
x
y

�
=




x+ 2y
2x− 5y

7y



 .

a. Para realizar este apartado debemos

Dar una descripción expĺıcita de esta aplicación; es decir, escribir la ecuación
que la representa.

Escribir la matriz correspondiente a dicha aplicación.

La parte más complicada es la primera, puesto que la matriz correspondiente es muy
sencilla. En primer lugar vamos a resolver el ejercicio dando por sabida la fórmula
de esta reflexión, y luego probaremos como se obtiene. Si llamamos R(a, b) al punto
reflejado por (a, b) respecto de la recta x = y, entonces se tiene que R(a, b) = (b, a).
Matricialmente, esto se expresa como

R

�
a
b

�
=

�
0 1
1 0

�
·
�
a
b

�
=

�
b
a

�
.

Y por tanto, la matriz que expresa la reflexión no es más que

R =

�
0 1
1 0

�
,

Conviene observar que R es efectivamente una aplicación lineal, simplemente por
construcción.

¿Cómo se obtiene la fórmula para R si no se conoce previamente? Hay varias formas
de obtenerla. La más sencilla en este caso concreto es que, como R(1, 0) = (0, 1) y
R(0, 1) = (1, 0). Por tanto,

R ·
�
1 0
0 1

�
=

�
0 1
1 0

�
,

y de aqúı se obtiene la matriz para R. Otra forma de verlo, más complicada pero
útil en otros casos (como en reflexiones en tres dimensiones) es ver cómo actúa esta
reflexión sobre un punto cualquiera del plano, (a, b). Coloquialmente, la reflexión
env́ıa dicho punto a otro punto que está al otro lado de la recta, a la misma distancia
y en la misma posición. De forma más exacta, la reflexión del punto (a, b) a través
de la recta x = y es el único punto R(a, b) de R2 que



Está a la misma distancia de la recta que (a, b).

El vector que lo une con (a, b) es perpendicular a la recta x = y.

No es el punto (a, b).

Por supuesto, si (a, b) está encima de la recta, su reflejado es él mismo, y la definición
no es válida. Para calcular R(a, b) de forma expĺıcita, empezamos por construir el
vector v perpendicular a la recta y tal que (a, b) +v esté encima de la recta. Como
el vector director del plano es (1, 1), el vector v = (v1, v2) tendrá que verificar
(1, 1)·(v1, v2) = 0, de donde v = (−λ, λ), para cualquier λ real. Como (a, b)+(−λ, λ)
tiene que estar encima de la recta, a − λ = b + λ, de donde λ = (a − b)/2. Ahora
basta duplicar el vector para obtener por fin el reflejado de (a, b):

R(a, b) = (a, b) + 2v = (a, b) + 2
�
− a− b

2
,
a− b

2

�
= (b, a).

Obsérvese que, si (a, b) está encima de la recta, esta fórmula es consistente, ya
que R(a, a) = (a, a). No se exige justificar esta construcción si se conoce de ante-
mano que esta reflexión consiste en intercambiar las coordenadas. También puede
obtenerse de forma gráfica.

Para calcular reflexiones en torno a otras rectas del plano, es mejor llevar la recta
a uno de los ejes por un giro, aplicar la reflexión y luego deshacer de nuevo el giro.
Por ejemplo, para calcular la reflexión alrededor de la recta que pasa por el origen
(si no, no es lineal) y forma un ángulo α con el eje x, la fórmula es

Rα(a, b) =

�
cosα − senα
senα cosα

��
1 0
0 −1

��
cosα senα
− senα cosα

��
a
b

�

=

�
cosα senα
senα − cosα

��
cosα senα
− senα cosα

��
a
b

�

=

�
cos2 α− sen2 α 2 senα cosα
2 senα cosα sen2 α− cos2 α

��
a
b

�

=

�
cos(2α) sen(2α)
sen(2α) − cos(2α)

��
a
b

�

En el último paso se utilizan las igualdades para el ángulo doble. No se trata de un
giro porque el determinante no es 1, sino −1. Esta fórmula es válida para todas las
reflexiones. Puede comprobarse que, para α = π/4, coincide con la matriz solución
de este apartado.

b. En general, la matriz correspondiente a una aplcación lineal entre dos espacios
vectoriales de dimensiones m y n tendrá m columnas (tantas como el espacio de
partida) y n filas (tantas como el espacio de llegada). En este caso, para que la
multiplicación matricial sea correcta, T será una matriz 3× 2:

T =




◦ ◦
◦ ◦
◦ ◦



 , tal que




◦ ◦
◦ ◦
◦ ◦




�

x
y

�
=




x+ 2y
2x− 5y

7y







Basta rellenarla con los coeficientes de la matriz final, en el orden adecuado:

T =




1 2
2 −5
0 7



 .

2 (5 puntos) Averiguar si son subespacios vectoriales de M2×2(R) (las matri-

ces reales 2 por 2) los siguientes subconjuntos:

a) Las matrices de números reales de orden 2× 2 de rango 1.

b) Las matrices de números reales de orden 2×2 que conmutan con la matriz

B, siendo B una matriz fija 2× 2.

En general, un subconjunto S de un espacio vectorial V con un cuerpo de escalares k
será un subespacio vectorial de V si se cumplen las dos siguientes condiciones:

La suma de dos elementos de S también pertenece a S.

El producto de cualquier escalar de k por cualquier elemento de S pertenece a S.

El enunciado no dice expĺıcitamente que M2×2(R) sea un espacio vectorial, pero sabemos
por teoŕıa que lo es, siendo R sus escalares. Es importante tener esto claro antes de
comenzar, ya que

Si M2×2(R) no fuese un espacio vectorial, los dos subconjuntos dados no seŕıan
subespacios aunque cumpliesen las dos propiedades antes nombradas.

Según cuál sea el cuerpo de escalares, la segunda propiedad puede cumplirse o no.

Para probar cada apartado, pues, basta demostrar las dos propiedades, si el subconjunto
correspondiente es un subespacio vectorial; o dar un contraejemplo, si no lo es.

a. Sea S el subconjunto de matrices de M2×2(R). No es un subespacio vectorial, ya
que no cumple ninguna de las dos propiedades, y es bastante sencillo encontrar
ejemplos en ambos casos.

La suma de dos matrices de S puede tener cualquier rango entre cero y dos, y
por tanto no tiene por qué permanecer en S:

�
1 0
0 0

�
+

�
−1 0
0 0

�
=

�
0 0
0 0

�
,

�
1 0
0 0

�
+

�
0 0
0 1

�
=

�
1 0
0 1

�
.

El producto por escalar mantiene el rango salvo en caso de que el escalar sea
cero. Por tanto, multiplicar por cero una matriz de S da como resultado una
matriz que no está en S.

Cualquiera de los contraejemplos expuestos prueba que S no es un subespacio

vectorial de M2×2(R).



b. Fijemos una matriz cualquiera B, perteneciente a M2×2(R). Sea T (B) el subcon-
junto de M2×2(R) de matrices A tales que AB = BA. Es decir,

T (B) := {A ∈ M2×2(R) : AB = BA} ⊂ M2×2(R).

Esta notación, que en principio puede resultar confusa, se toma para reflejar el
punto clave de este apartado: hay que probar que T (B) es un subespacio vectorial
para todas las posibles matrices B. Si hubiera una sola que no lo cumpliera, entonces
la respuesta seŕıa negativa. Pero, de hecho, T (B) śı es un subespacio vectorial, sea
cual sea la matriz B escogida. Un error bastante frecuente es pensar que hay que
distinguir casos según B sea la matriz nula, invertible o no, etcétera. La realidad
es que todos los casos pueden probarse de una sola vez:

Sean A y C dos matrices cualesquiera de T (B), y sea λ un número real. Por defi-
nición, AB = BA y AC = CA. Vamos a ver que efectivamente se cumplen las dos
propiedades.

La matriz A+ C conmuta con B, ya que, usando propiedades elementales de
la suma y producto de matrices, se tiene que

(A+ C)B = AB + CB = BA+BC = B(A+ C).

Como puede verse, ha sido clave el hecho de que cada una de las dos matrices
(A y C) conmuten individualmente con B. De la igualdad anterior se deduce
que A+ C ∈ T (B).

Por otro lado,
(λA)B = λ(AB) = λ(BA) = (λB)A,

utilizando de nuevo que A conmuta con B. Como consecuencia de la igual-
dad, hemos probado que la matriz λA también conmuta con B, por lo que
λA ∈ T (B). De la unión de los dos apartados, se concluye que T (B) es un

subespacio vectorial de M2×2(R) para cualquier matriz B 2× 2 real.

Nota: También es posible probar este apartado escribiendo las matrices A, B y C
de forma expĺıcita:

A =

�
a1 a2
a3 a4

�
, B =

�
b1 b2
b3 b4

�
, C =

�
c1 c2
c3 c4

�
,

y comprobando las mismas operaciones,

��
a1 a2
a3 a4

�
+

�
c1 c2
c3 c4

��
·
�
b1 b2
b3 b4

�
=

�
b1 b2
b3 b4

�
·
��

a1 a2
a3 a4

�
+

�
c1 c2
c3 c4

��

λ

��
a1 a2
a3 a4

��
b1 b2
b3 b4

��
=

�
λ

�
b1 b2
b3 b4

���
a1 a2
a3 a4

�
;

pero es una manera mucho más larga y complicada, por lo que no es un método
recomendable.



3 (5 puntos) Hallar las ecuaciones cartesianas del siguientes subespacio de

R4
:

S := Span{(3, 1, 0,−1), (1, 1,−1,−1), (7, 1, 2,−1)}.

Este ejercicio tiene una infinidad de soluciones posibles (a partir de un conjunto de
ecuaciones solución, cualquier otro que se obtenga mediante transformaciones elementales
también lo es), y existen varios métodos posibles para obtener cualquiera de ellas. Vamos
a exponer dos métodos diferentes, y esbozaremos un tercero que puede ser útil en otros
casos. Se utilice el que se utilice, la finalidad es dar unas ecuaciones cartesianas correctas,
entendiéndose por correctas que

Todos los vectores que pertenecen S verifiquen cada una de las ecuaciones (Basta
comprobarlo para unos generadores).

Todo vector que no pertenezca a S no verifiquen todas las ecuaciones simultánea-
mente.

Las ecuaciones sean linealmente independientes entre śı.

Coloquialmente, la primera condición puede interpretarse como que no sobra ninguna
ecuación y la segunda como que no falta ninguna ecuación. La tercera condición puede no
ser estrictamente necesaria; al ponerla se impide que se añadan ecuaciones reduntantes.

El primer paso consiste en obtener una base de S, ya que los generadores dados pueden
ser linealmente dependientes entre śı. Colocamos los vectores por filas en una matriz y
efectuamos transformaciones elementales hasta conseguir una matriz diagonal; es decir,
con ceros bajo la diagonal principal. Como el segundo vector tiene un uno en la primera
coordenada, lo colocamos primero para facilitar los cálculos:




1 1 −1 −1
3 1 0 −1
7 1 2 −1




⇒

F2 − 3F1

F3 − 7F1




1 1 −1 −1
0 −2 3 2
0 −6 9 6



 ⇒
F3 − 3F2




1 1 −1 −1
0 −2 3 2
0 0 0 0





Luego S está generado por los vectores {(1, 1,−1,−1), (0,−2, 3, 2)} y tiene dimensión
2. Vamos a exponer a continuación tres posibles formas de construir las ecuaciones carte-
sianas. Por teoŕıa, el número de ecuaciones que hay que hallar es igual a la dimensiń de
R4 menos la dimensión de S; es decir, 4− 2 = 2 ecuaciones.

a. El primer método utiliza una consecuencia del teorema de Rouché-Fröbenius: se
colocan los vectores por columnas en una matriz y se añade una tercera columna
con las variables (x1, x2, x3, x4). Luego se calcula la forma reducida de la matriz:





1 0 x1

1 −2 x2

−1 3 x3

−1 2 x4





⇒
F2 − F1

F3 + F1

F4 + F1





1 0 x1

0 −2 x2 − x1

0 3 x3 + x1

0 2 x4 + x1







⇒
F3 +

3
2F2

F4 + F2





1 0 x1

0 −2 x2 − x1

0 0 x3 +
3
2x2 − 1

2x1

0 0 x4 + x2





Considerando; por un lado, las filas 1, 2 y 3 de la matriz; y por otro, las filas 1, 2
y 4; el sistema tendrá solución si y sólo si x3 +

3
2x2 − 1

2x1 = 0 y x4 + x2 = 0,
respectivamente (para que el rango de la matriz ampliada sea 2, el mismo que el
de la que forman las dos primeras columnas). Uniendo estas dos condiciones, se
obtienen unas ecuaciones cartesianas de S:

−1
2x1 + 3

2x2 + x3 = 0
x2 + x4 = 0

�
(1)

b. El segundo método se basa en que los coeficientes de las ecuaciones cartesianas
equivalen a los vectores que forman una base del nÃocleo. Para sacar partido de
esto, se describe S mediante sus ecuaciones paramétricas y se invierten variables
para obtener las cartesianas (también llamadas impĺıcitas). Planteamos entonces
un sistema de ecuaciones con los vectores que forman la base de S:

�
1 1 −1 −1
0 −2 3 2

�




a
b
c
d



 =

�
0
0

�
(2)

Se trata de un sistema de 2 ecuaciones (tantas como la dimensión de S) y 4 incógni-
tas (tantas como la dimensión de R4); luego su solución general tendrá dos paráme-
tros. Para dar dicha solución, vamos a calcular la forma reducida de Gauss-Jordan
de la matriz de coeficientes. Para conseguirla, simplemente hay que modificar la
segunda columna:

�
1 1 −1 −1
0 −2 3 2

�
⇒

−1
2F2

�
1 1 −1 −1
0 1 −3

2 −1

�
F1 − F2

⇒

�
1 0 1

2 0
0 1 −3

2 −1

�

Si declaramos c y d como variables libres, entonces a = −1
2c; y b = 3

2c + d. Por
tanto, escribiendo c = µ y d = λ, la solución general del problema es

{µ(−1

2
,
3

2
, 1, 0) + λ(0, 1, 0, 1) : µ, λ ∈ R} = Span{(−1

2
,
3

2
, 1, 0), (0, 1, 0, 1)}.

Las ecuaciones cartesianas se obtienen mutiplicando cada uno de estos vectores por
el vector de incógnitas (x1, x2, x3, x4) e igualando a cero:

�
−1

2
3
2 1 0

0 1 0 1

�




x1

x2

x3

x4



 =

�
0
0

�
.



De donde se obtienen de nuevo las dos ecuaciones de (1).

Nota: A veces por error se piensa que las ecuaciones del sistema (2) son las carte-
sianas correspondientes a S; pero esto es un error. De hecho, basta comprobar que,
por ejemplo, la ecuación x1 + x2 − x3 − x4 = 0 no es válida para ninguno de los
generadores de S.

c. El tercer método que vamos a ver sólo es útil para determinados subespacios vecto-
riales formados por vectores con muchos ceros; y consiste en obtener las ecuaciones
a mano. Si se consiguen dos ecuaciones linealmente independiente entre śı y tales
que todos los puntos de un conjunto cualquier de generadores de S verifiquen am-
bas ecuaciones; habremos conseguido una solución válida. En este caso concreto es
bastante dif́ıcil de hacer, por lo que no es un método recomendable. Es fácil ver que
en todos los generadores la segunda coordenada es igual a la cuarta, con el signo
cambiado. Luego la ecuación x2 = x4 es una de las dos que estamos buscando. La
segunda, sin embargo, es muy díficil de encontrar por tanteo. Sin embargo, para
otros subespacios, este método puede resultar eficaz y mucho más rápido que los
otros dos.

Por último, recordar que la solución a este problema no es única y que, en función del
camino escogido y de cuánto se simplifiquen los generadores de S, se obtienen muchas
ecuaciones diferentes. Algunas de las más habituales, junto con (1), son:

−1
2x1 + x3 − 3

2x4 = 0
x2 + x4 = 0

�

x1 − 3x2 − 2x3 = 0
x2 + x4 = 0

�

x1 − 2x3 + 3x4 = 0
x2 + x4 = 0

�


