Algebra I, curso 2012-13 30/11/2012

Ejercicios en clase 2 - Soluciones

Serafin Ruiz Cabello

Nota: Las soluciones de los ejercicios estan redactadas de forma exhaustiva, incluyendo
diferentes formas de abordar cada problema y diferentes soluciones, asi como razonamien-
tos tedricos adicionales y aclaraciones sobre errores frecuentes a la hora de resolverlos.
En ningtn caso pretender reflejar el nivel exigido en la asignatura.

1 (5 puntos) a) Considera la aplicacién lineal de R?* a R?* dada por reflexién
con respecto a la recta r; = z5. Encuentra la matriz correspondiente.

b) Encuentra la matriz correspondiente a la aplicacién lineal T: R* — R?,

. T+ 2y
T( ): 2x — by
Y Ty

a. Para realizar este apartado debemos

= Dar una descripcion explicita de esta aplicacion; es decir, escribir la ecuacion
que la representa.

» Escribir la matriz correspondiente a dicha aplicacion.

La parte mas complicada es la primera, puesto que la matriz correspondiente es muy
sencilla. En primer lugar vamos a resolver el ejercicio dando por sabida la férmula
de esta reflexién, y luego probaremos como se obtiene. Si llamamos R(a, b) al punto
reflejado por (a, b) respecto de la recta = = y, entonces se tiene que R(a,b) = (b, a).
Matricialmente, esto se expresa como

()= (o) ()= ()

Y por tanto, la matriz que expresa la reflexion no es més que

01
(10

Conviene observar que R es efectivamente una aplicacién lineal, simplemente por
construccion.

., Cémo se obtiene la féormula para R si no se conoce previamente? Hay varias formas
de obtenerla. La més sencilla en este caso concreto es que, como R(1,0) = (0,1) y

R(0,1) = (1,0). Por tanto,
10 01
R'(o 1)‘(1 o>’

y de aqui se obtiene la matriz para R. Otra forma de verlo, mas complicada pero
util en otros casos (como en reflexiones en tres dimensiones) es ver cémo actia esta
reflexién sobre un punto cualquiera del plano, (a,b). Coloquialmente, la reflexién
envia dicho punto a otro punto que esta al otro lado de la recta, a la misma distancia
y en la misma posicion. De forma més exacta, la reflexiéon del punto (a,b) a través
de la recta x = y es el tnico punto R(a,b) de R? que



» Estd a la misma distancia de la recta que (a,b).
» El vector que lo une con (a,b) es perpendicular a la recta z = y.

= No es el punto (a,b).

Por supuesto, si (a, b) estd encima de la recta, su reflejado es él mismo, y la definicién
no es valida. Para calcular R(a,b) de forma explicita, empezamos por construir el
vector v perpendicular a la recta y tal que (a,b) + v esté encima de la recta. Como
el vector director del plano es (1,1), el vector v .= (vy,v9) tendrd que verificar
(1,1)(v1,v9) = 0, de donde v = (—A, \), para cualquier A real. Como (a,b)+(—\, \)
tiene que estar encima de la recta, a — A = b+ A, de donde A = (@ — b)/2. Ahora
basta duplicar el vector para obtener por fin el reflejado de (a, b):

a—b a—"»
2 9 2 >—(b,(l)

Obsérvese que, si (a,b) estd encima de la recta, esta férmula es consistente, ya
que R(a,a) = (a,a). No se exige justificar esta construccién si se conoce de ante-
mano que esta reflexion consiste en intercambiar las coordenadas. También puede
obtenerse de forma gréfica.

R(a,b) = (a,b) + 2v = (a,b) +2(—

Para calcular reflexiones en torno a otras rectas del plano, es mejor llevar la recta
a uno de los ejes por un giro, aplicar la reflexion y luego deshacer de nuevo el giro.
Por ejemplo, para calcular la reflexién alrededor de la recta que pasa por el origen
(si no, no es lineal) y forma un dngulo « con el eje z, la férmula es

cos —sen 10 cosa  sena [a
Ry(a,b) =
sena  Cos 0 —1 —sena Ccos b
_ [cosa  sena cosa  sena [a
~ \sena —cosa) \—sena cosa ) \b
~ [cos?a—sen*a  2senacosa a
- 2senacosa  sen’a —cos?a ) \ b
cos(2a)  sen(2a) a
sen(2a)) —cos(2a) ) \ b
En el dltimo paso se utilizan las igualdades para el angulo doble. No se trata de un
giro porque el determinante no es 1, sino —1. Esta férmula es valida para todas las

reflexiones. Puede comprobarse que, para a = 7/4, coincide con la matriz solucién
de este apartado.

. En general, la matriz correspondiente a una aplcacion lineal entre dos espacios
vectoriales de dimensiones m y n tendrda m columnas (tantas como el espacio de
partida) y n filas (tantas como el espacio de llegada). En este caso, para que la
multiplicaciéon matricial sea correcta, 1" serd una matriz 3 x 2:

v ) = 2xxt25?y
(Y

o O o O
T=1| o o |, tal que o o <
o o o o Ty



Basta rellenarla con los coeficientes de la matriz final, en el orden adecuado:

1 2
T=12 =5
0 7

2 (5 puntos) Averiguar si son subespacios vectoriales de My,,(R) (las matri-
ces reales 2 por 2) los siguientes subconjuntos:

a) Las matrices de niimeros reales de orden 2 x 2 de rango 1.

b) Las matrices de ntiimeros reales de orden 2 x 2 que conmutan con la matriz
B, siendo B una matriz fija 2 x 2.

En general, un subconjunto S de un espacio vectorial V' con un cuerpo de escalares k
serd un subespacio vectorial de V' si se cumplen las dos siguientes condiciones:

= La suma de dos elementos de S también pertenece a S.
= El producto de cualquier escalar de k por cualquier elemento de S pertenece a S.

El enunciado no dice explicitamente que My3(IR) sea un espacio vectorial, pero sabemos
X 9

por teoria que lo es, siendo R sus escalares. Es importante tener esto claro antes de

comenzar, ya que

» Si Myy2(R) no fuese un espacio vectorial, los dos subconjuntos dados no serfan
subespacios aunque cumpliesen las dos propiedades antes nombradas.

= Segun cudl sea el cuerpo de escalares, la segunda propiedad puede cumplirse o no.

Para probar cada apartado, pues, basta demostrar las dos propiedades, si el subconjunto
correspondiente es un subespacio vectorial; o dar un contraejemplo, si no lo es.

a. Sea S el subconjunto de matrices de Mayo(R). No es un subespacio vectorial, ya
que no cumple ninguna de las dos propiedades, y es bastante sencillo encontrar
ejemplos en ambos casos.

= La suma de dos matrices de S puede tener cualquier rango entre cero y dos, y
por tanto no tiene por qué permanecer en S:

10 n -1 0\ [0 0 10 n 0 0y (10
0 0 0 0/ \0 0)’ 00 0 1) \0 1)°
= El producto por escalar mantiene el rango salvo en caso de que el escalar sea

cero. Por tanto, multiplicar por cero una matriz de S da como resultado una
matriz que no estd en S.

Cualquiera de los contraejemplos expuestos prueba que S no es un subespacio
vectorial de My »(R).



b. Fijemos una matriz cualquiera B, perteneciente a Mayo(R). Sea T'(B) el subcon-
junto de Mayo(R) de matrices A tales que AB = BA. Es decir,

T(B) = {A S M2X2<R) :AB = BA} C MQXQ(R).

Esta notacion, que en principio puede resultar confusa, se toma para reflejar el
punto clave de este apartado: hay que probar que T'(B) es un subespacio vectorial
para todas las posibles matrices B. Si hubiera una sola que no lo cumpliera, entonces
la respuesta seria negativa. Pero, de hecho, T'(B) si es un subespacio vectorial, sea
cual sea la matriz B escogida. Un error bastante frecuente es pensar que hay que
distinguir casos segin B sea la matriz nula, invertible o no, etcétera. La realidad
es que todos los casos pueden probarse de una sola vez:

Sean A y C' dos matrices cualesquiera de T'(B), y sea A un nimero real. Por defi-
niciéon, AB = BA y AC = C'A. Vamos a ver que efectivamente se cumplen las dos
propiedades.

s La matriz A + C conmuta con B, ya que, usando propiedades elementales de
la suma y producto de matrices, se tiene que

(A+C)B=AB+CB = BA+ BC = B(A+ ().

Como puede verse, ha sido clave el hecho de que cada una de las dos matrices
(A 'y C) conmuten individualmente con B. De la igualdad anterior se deduce
que A+ C € T(B).

= Por otro lado,
(M)B = AM(AB) = A(BA) = (AB)A,

utilizando de nuevo que A conmuta con B. Como consecuencia de la igual-
dad, hemos probado que la matriz AA también conmuta con B, por lo que
AA € T(B). De la unién de los dos apartados, se concluye que T'(B) es un
subespacio vectorial de Ms,>(R) para cualquier matriz B 2 x 2 real.

Nota: También es posible probar este apartado escribiendo las matrices A, By C'
de forma explicita:

A CLlle7 B 61627 O 01027
as a4 by by C3 C4

y comprobando las mismas operaciones,
a; Qg C1 Co bl bQ bl b2 a; as C1 Co
+ . = : +
as ag C3 (4 b3 b4 bg b4 a3 ay C3 C4
\ ayp ag by by — | by by ayp agz\
a3 Qay bg b4 N bg b4 a3 Qaq k

pero es una manera mucho mas larga y complicada, por lo que no es un método
recomendable.



3 (5 puntos) Hallar las ecuaciones cartesianas del siguientes subespacio de
R
S :=Span{(3,1,0,-1),(1,1,—-1,-1),(7,1,2,—-1)}.

Este ejercicio tiene una infinidad de soluciones posibles (a partir de un conjunto de
ecuaciones solucion, cualquier otro que se obtenga mediante transformaciones elementales
también lo es), y existen varios métodos posibles para obtener cualquiera de ellas. Vamos
a exponer dos métodos diferentes, y esbozaremos un tercero que puede ser 1util en otros
casos. Se utilice el que se utilice, la finalidad es dar unas ecuaciones cartesianas correctas,
entendiéndose por correctas que

» Todos los vectores que pertenecen S verifiquen cada una de las ecuaciones (Basta
comprobarlo para unos generadores).

= Todo vector que no pertenezca a S no verifiquen todas las ecuaciones simultanea-
mente.

» Las ecuaciones sean linealmente independientes entre si.

Coloquialmente, la primera condicion puede interpretarse como que no sobra ninguna
ecuacion y la segunda como que no falta ninguna ecuacion. La tercera condicién puede no
ser estrictamente necesaria; al ponerla se impide que se anadan ecuaciones reduntantes.

El primer paso consiste en obtener una base de .S, ya que los generadores dados pueden
ser linealmente dependientes entre si. Colocamos los vectores por filas en una matriz y
efectuamos transformaciones elementales hasta conseguir una matriz diagonal; es decir,
con ceros bajo la diagonal principal. Como el segundo vector tiene un uno en la primera
coordenada, lo colocamos primero para facilitar los calculos:

11 -1 -1 = 1 1 -1 -1 1 1 -1 -1
31 0 -1 Fy —3F 0 -2 3 2 = 0 -2 3 2
71 2 -1 Fs —TF 0 -6 9 6 Fs —3F; 0 0 0 0

Luego S esta generado por los vectores {(1,1,—1,—1), (0, —2,3,2)} y tiene dimensién
2. Vamos a exponer a continuacién tres posibles formas de construir las ecuaciones carte-
sianas. Por teoria, el nimero de ecuaciones que hay que hallar es igual a la dimensin de
R* menos la dimensién de S; es decir, 4 — 2 = 2 ecuaciones.

a. El primer método utiliza una consecuencia del teorema de Rouché-Frobenius: se
colocan los vectores por columnas en una matriz y se anade una tercera columna
con las variables (x1, 29, 3, x4). Luego se calcula la forma reducida de la matriz:

1 0 |xg = 1 0 T

1 —2 ) FQ—Fl 0 -2 To — X1
—1 3 T3 F3—|—F1 0 3 T3+ X1
-1 2 Ty F4—|—F1 0 2 T4+ 21



1 0 T
= 0 —2 To — X1
F34+3F | 0 0 |3+ 32— 1ny
F4+F2 0 0 Ty + X9

Considerando; por un lado, las filas 1,2 y 3 de la matriz; y por otro, las filas 1,2
y 4; el sistema tendra solucion si y sélo si x3 + %xg — %xl =0y x4+a9 =0,
respectivamente (para que el rango de la matriz ampliada sea 2, el mismo que el
de la que forman las dos primeras columnas). Uniendo estas dos condiciones, se
obtienen unas ecuaciones cartesianas de S
_%iL'l + %l‘g + 3 = 0 } (1)
T2 + x4 = 0

. El segundo método se basa en que los coeficientes de las ecuaciones cartesianas
equivalen a los vectores que forman una base del nA°cleo. Para sacar partido de
esto, se describe S mediante sus ecuaciones paramétricas y se invierten variables
para obtener las cartesianas (también llamadas implicitas). Planteamos entonces
un sistema de ecuaciones con los vectores que forman la base de S:

o 2% )0 ]=() @

Se trata de un sistema de 2 ecuaciones (tantas como la dimensién de S) y 4 incogni-
tas (tantas como la dimensién de R*); luego su solucién general tendra dos pardme-
tros. Para dar dicha solucion, vamos a calcular la forma reducida de Gauss-Jordan
de la matriz de coeficientes. Para conseguirla, simplemente hay que modificar la
segunda columna:

1 1 -1 -1 = 11 -1 -1\FK-F (10 % 0
0 -2 3 2 ) 3K 01 -3 -1 = 01 -3 -1

2

QUL O o2

Si declaramos ¢ y d como variables libres, entonces a = —%c; y b= gc + d. Por
tanto, escribiendo ¢ = p y d = A, la solucién general del problema es

1 1
{ILL(_§7 ;7 170) + )\(07 1707 1) ) A€ R} = Span{(_é? ;7 170)7 (O’ 1707 1)}

Las ecuaciones cartesianas se obtienen mutiplicando cada uno de estos vectores por
el vector de incognitas (x1, z2, x3,x4) € igualando a cero:

J = ]=(0)

O =
— O

VR

o |
N | =

— N



De donde se obtienen de nuevo las dos ecuaciones de (1).

Nota: A veces por error se piensa que las ecuaciones del sistema (2) son las carte-
sianas correspondientes a S; pero esto es un error. De hecho, basta comprobar que,
por ejemplo, la ecuacién zy + x5 — x3 — x4 = 0 no es valida para ninguno de los
generadores de S.

c. El tercer método que vamos a ver sélo es util para determinados subespacios vecto-
riales formados por vectores con muchos ceros; y consiste en obtener las ecuaciones
a mano. Si se consiguen dos ecuaciones linealmente independiente entre si y tales
que todos los puntos de un conjunto cualquier de generadores de S verifiquen am-
bas ecuaciones; habremos conseguido una soluciéon valida. En este caso concreto es
bastante dificil de hacer, por lo que no es un método recomendable. Es facil ver que
en todos los generadores la segunda coordenada es igual a la cuarta, con el signo
cambiado. Luego la ecuacion x5 = x4 es una de las dos que estamos buscando. La
segunda, sin embargo, es muy dificil de encontrar por tanteo. Sin embargo, para
otros subespacios, este método puede resultar eficaz y mucho més rapido que los
otros dos.

Por 1ltimo, recordar que la solucién a este problema no es tinica y que, en funcién del
camino escogido y de cudnto se simplifiquen los generadores de S, se obtienen muchas
ecuaciones diferentes. Algunas de las mas habituales, junto con (1), son:

—%ZEl + r3 — %ZL‘4 = 0
T + T4 = 0
ry — 31’2 - 2ZE3 =0
T + x4 = 0

1 —2173+3[E4:0
T + $4:O



