

Metodos matematicos da fisica: Homework 2

1 (6 pt). Consider $F: \mathbb{R}^M \rightarrow \mathbb{R}^k$ with components f_1, \dots, f_k .

i) Show for any $p \in \mathbb{R}^M$ that $d_p F: T_p \mathbb{R}^M \rightarrow T_{F(p)} \mathbb{R}^k$ is surjective iff $df_1(p), \dots, df_k(p)$ are linearly independent elements of $T_p^* \mathbb{R}^M$.

Denote $N := F^{-1}(0) := \{q \in \mathbb{R}^M : f_1(q) = \dots = f_k(q) = 0\}$. One can show that if any of the two equivalent conditions above is satisfied for all $q \in N$, then N is a submanifold, and $T_q N = \{v \in T_q \mathbb{R}^M : df_1(q), \dots, df_k(q) = 0\}$.

ii) What is the dimension of N ?

Hint: Use that $\dim(N) = \dim(T_q N)$ for all $q \in N$.

2 (6 pt). Let ω be a symplectic form on \mathbb{R}^{2n} , and $f_1, \dots, f_k: \mathbb{R}^{2n} \rightarrow \mathbb{R}$ such that $df_1(q), \dots, df_k(q)$ are linearly independent elements of $T_q^* \mathbb{R}^{2n} \forall q \in N$. Prove that:

- i) $(T_q N)^\omega = \text{span}\{X_{f_1}(q), \dots, X_{f_k}(q)\} \forall q \in N$.
- ii) N is a coisotropic submanifold iff $\{f_i, f_j\}(q) = 0 \forall q \in N$.
- iii) N is a symplectic submanifold iff $\det(\{f_i, f_j\}(q)) \neq 0 \forall q \in N$.

3 (6 pt). Let ω be a symplectic form on \mathbb{R}^{2n} . Show that the Poisson bracket satisfies the Jacobi identity, i.e.,

$$\{f_1, \{f_2, f_3\}\} + \{f_2, \{f_3, f_1\}\} + \{f_3, \{f_1, f_2\}\} = 0.$$

Hint: Use $d\omega = 0$ and the formula for the de Rham differential in terms of Lie brackets of vector fields given in class.

4 (6 pt). Let ω_1, ω_2 be two symplectic forms on \mathbb{R}^{2n} . Let $\phi: \mathbb{R}^{2n} \rightarrow \mathbb{R}^{2n}$ be differentiable map such that $\phi^* \omega_2 = \omega_1$.

- i) Show that $D_p \phi: T_p \mathbb{R}^{2n} \rightarrow T_{\phi(p)} \mathbb{R}^{2n}$ is a linear isomorphism, for all $p \in \mathbb{R}^{2n}$.
- ii) Show that $\text{graph}(\phi) := \{(p, \phi(p)) : p \in \mathbb{R}^{2n}\}$ (which is a submanifold of $\mathbb{R}^{2n} \times \mathbb{R}^{2n}$) is a Lagrangian submanifold of $(\mathbb{R}^{2n} \times \mathbb{R}^{2n}, \omega_1 - \omega_2)$.
- iii) For each $p \in \text{graph}(\phi)$ construct $2n$ functions f_1, \dots, f_{2n} , defined in a little neighborhood U of p in $\mathbb{R}^{2n} \times \mathbb{R}^{2n}$, which are constraints for $\text{graph}(\phi)$, i.e., $\text{graph}(\phi) \cap U = \{q \in U : f_1(q) = \dots = f_{2n}(q) = 0\}$.

5 (6 pt). Let ω be a symplectic form on \mathbb{R}^{2n} , and f_1, \dots, f_k functions s.t. $df_1(p), \dots, df_k(p) \in T_p^* \mathbb{R}^{2n}$ are linearly independent at every point $p \in \mathbb{R}^{2n}$.

- i) If H is a function such that $\{H, f_i\} = 0$ for all i , then for any $p \in \mathbb{R}^{2n}$ the integral curve of X_H through p must lie inside the submanifold $\{q \in \mathbb{R}^{2n} : f_i(q) = f_i(p)\}$.
- ii) If $\{f_i, f_j\} = 0$ for all i, j then necessarily $k \leq n$.