

Differentiable Manifolds: Homework 6

1 (6 pts). Let M be a *compact* manifold and E a rank k vector bundle over M . Prove that there exists *finitely many* sections s_1, \dots, s_n of E such that $\text{span}\{s_1(x), \dots, s_n(x)\} = E_x$ for all $x \in M$.

Remark: Here “section” of course means global section, i.e. defined on the whole of M .

Hint: To start, choose an open cover $\{U_\alpha\}$ of M such that each $E|_{U_\alpha}$ is a trivial vector bundle, and choose a partition of unity subordinate to this cover. Then construct the s_i ’s out of sections of $E|_{U_\alpha}$ and the partition of unity.

2 (4 pts). Consider the vector fields $X, Y, Z \in \mathfrak{X}(\mathbb{R}^3)$ given by

$$X = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}, \quad Y = z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z}, \quad Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}.$$

Prove that

$$[X, Y] = Z, \quad [Y, Z] = X, \quad [Z, X] = Y.$$

3 (4 pts). Let G be the Lie group $SL(2, \mathbb{R})$ and $g = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in G$. Describe explicitly $T_g G$ (as a subspace of $Mat(2, \mathbb{R})$).

Hint: Use the left multiplication $L_g : G \rightarrow G$.

4 (6 pts). Let $(\mathfrak{g}, [\bullet, \bullet])$ be a Lie algebra with $\dim(\mathfrak{g}) = 2$. Show that either $[\bullet, \bullet] \equiv 0$ or there is a basis X, Y of \mathfrak{g} such that the bracket is given by

$$[X, Y] = X, \quad [X, X] = 0, \quad [Y, Y] = 0.$$

Hint: Start picking any basis X, Y of \mathfrak{g} . We have $[X, Y] = aX + bY$ for some real numbers a, b . Transform suitably X and Y to a new basis with the desired properties.