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Examen Parcial: soluciones

Aqúı pongo, para cada problema, una solución. Está claro que puede haber otras soluciónes
también!

1. [8 puntos] Considera la variedad topológica con borde

M := {(x, y) : x, y ∈ R, 1 ≤
√
x2 + y2 ≤ 2}

y considera esta relación de equivalencia en M : cada punto de M es equivalente sólo a
śı mismo excepto los puntos del borde {(x, y) :

√
x2 + y2 = 1} ∪ {(x, y) :

√
x2 + y2 = 2},

para los que se cumple
(x, y) ∼ (2x, 2y)

para cada (x, y) ∈M con
√
x2 + y2 = 1.

Construye un homeomorfismo del cociente M/ ∼ a una superficie en la lista del teorema
de clasificación de superficies compactas y conexas.

Construimos un homeomorfismo de M/ ∼ al toro S1×S1. Utilizamos la identificación
R2 ∼= C, (x, y) 7→ x + iy para simplificar1 la notación, es decir, tomamos M = {z ∈ C :
1 ≤ |z| ≤ 2} y z ∼ 2z para todos z con |z| = 1. La aplicación

F : M → S1 × S1, z 7→
(
z

|z|
, e2πi|z|

)
es claramente continua. F es sobreyectiva: dados (w1, w2) ∈ S1× S1, tenemos F (w1r) =
(w1, w2) donde r ∈ [1, 2) está determinado por e2πir = w2. Como 1 ≤ |z| ≤ 2 para todos
z ∈M , tenemos

F (z) = F (z′)⇔|z| − |z′| ∈ Z y
z

|z|
=

z′

|z′|

⇔(|z| = |z′| o bien |z| = 1, |z′| = 2 o bien |z| = 2, |z′| = 1) y
z

|z|
=

z′

|z′|

⇔z = z′ o bien |z| = 1, z =
z′

2
o bien |z′| = 1, z′ =

z

2
⇔z ∼ z′.

Ademas M es compacta y el toro S1 × S1 es Hausdorff, por lo tanto podemos utilizar el
ejercicio 3 de la hoja 1 y concluir que la aplicación

F̃ : M/ ∼→ S1 × S1,

determinada por F̃ ◦ π = F donde π : M → M/ ∼ es la proyección canonica, es un
homeomorfismo.

1Para escribir la demonstración en terminos de R2 utiliza |x + iy| =
√
x2 + y2 para x, y ∈ R y

eiθ = cos(θ) + isin(θ) para θ ∈ R.
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2. [7 puntos] Sea P2(R) el plano proyectivo y T := S1 × S1 el toro. ¿ A qué superficie
en la lista de superficies compactas y conexas es homeomorfa la suma conexa

P2(R) ] T ?

Demuestra.

Utilizamos el teorema de clasificación de superficies compactas y conexas (sin borde),
que clasifica dichas superficies por su orientabilidad y numero de Euler. P2(R) ] T no es
orientable, porque P2(R) no lo es (contiene una banda de Möbius). Tenemos

χ(P2(R) ] T) = χ(P2(R)) + χ(T)− 2 = 1 + 0− 2 = −1.

Por lo tanto P2(R) ] T es homeomorfo P2(R) ] P2(R) ] P2(R), ya que esta no es orientable
y tiene numero de Euler −1.

3. [8 puntos] ¿ Es verdad que R, con su topoloǵıa canonica, admite un numero infinito
de estructuras de variedad diferencial (distintas entre śı)? Demuéstralo.

Śı, es verdad. Para cada n ∈ N≥0 sea A2n+1 el atlas diferencial maximal que contiene
el homeomorfismo φ2n+1 : R → R, x 7→ x2n+1. Los A2n+1 son distintos dos a dos: dados
n,m ∈ N≥0, digamos con n < m, tenemos que φ2n+1 /∈ A2m+1 porque el cambio de

coordenadas φ2n+1 ◦ (φ2m+1)−1 : R → R es x
2n+1
2m+1 y por lo tanto no es diferenciable en

zero.

4 (7 puntos). Sea M una variedad diferencial de dimensión n, S una subvariedad de M
de dimensión k, y p un punto de S. Demuestra que existe un entorno abierto U de p en
M y una aplicación diferenciable F : U → Rn−k tal que

U ∩ S = F−1(0).

Por definición de subvariedad, existe una carta (U, φ) de la variedad diferencial M
adaptada a S y con p ∈ U . Es decir, U es un entorno abierto de p en M y φ : U → φ(U)
es un difeomorfismo a un abierto de Rn tal que φ(U ∩S) = φ(U)∩ (Rk×{0}), donde {0}
es la origen en Rn−k. Considera la aplicación

F := π ◦ φ : U → Rn−k

donde π : Rn → Rn−k es la proyección a las últimas n−k componentes. F es diferenciable
porque bajo la carta φ corresponde a π, que es una aplicación diferenciable entre abiertos
del espacio euclideo, o alternativamente porque F es la composición de dos aplicaciónes
diferenciables. Ademas

F−1(0) = φ−1(π−1(0))

= φ−1(Rk × {0})
= φ−1(φ(U) ∩ (Rk × {0}))
= U ∩ S.
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